Skip to main content
Erschienen in: Wireless Networks 5/2018

24.11.2016

Resource allocation for real-time traffic in unreliable wireless cellular networks

verfasst von: Jun Xu, Chengcheng Guo, Hao Zhang, Jianfeng Yang

Erschienen in: Wireless Networks | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Providing reliable transmission for real-time traffic in wireless cellular networks is a great challenge due to the unreliable wireless links. This paper concentrates on the resource allocation problem aiming to improve the real-time throughput. First, the resource allocation problem is formulated as a Markov Decision Process and thus the optimal resource allocation policy could be obtained by adopting the value iteration algorithm. Considering the high time complexity of the optimal algorithm, we further propose an approximate algorithm which decomposes the resource allocation problem into two subproblems, namely link scheduling problem and packet scheduling problem. By this method, the unreliable wireless links are only constrained in the link scheduling problem, and we can focus on the real-time requirement of traffic in packet scheduling problem. For the link scheduling problem, we propose the maxRel algorithm to maximize the long-term network reliability, and we theoretically prove that the maxRel algorithm is optimal in scenarios with dynamic link reliabilities. The Least Laxity First algorithm is adopted for the packet scheduling problem. Extensive simulation results show that the proposed approximate resource allocation algorithm makes remarkable improvement in terms of time complexity, packet loss rate and delay.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sadi, Y., & ColeriErgen, S. (2015). Energy and delay constrained maximum adaptive schedule for wireless networked control systems. IEEE Transactions on Wireless Communications, 14(7), 3738–3751.CrossRef Sadi, Y., & ColeriErgen, S. (2015). Energy and delay constrained maximum adaptive schedule for wireless networked control systems. IEEE Transactions on Wireless Communications, 14(7), 3738–3751.CrossRef
2.
Zurück zum Zitat Song, J., Han, S., Mok, A. K., Chen, D., Lucas, M., & Nixon, M. (2008). WirelessHART: Applying Wireless Technology in real-time industrial process control. RTAS, 2008, pp. 377–386. Song, J., Han, S., Mok, A. K., Chen, D., Lucas, M., & Nixon, M. (2008). WirelessHART: Applying Wireless Technology in real-time industrial process control. RTAS, 2008, pp. 377–386.
3.
Zurück zum Zitat Yan, M., Lam, K. Y., Han, S., Chan, E., Chen, Q., Fan, P., et al. (2014). Hypergraph-based data link layer scheduling for reliable packet delivery in wireless sensing and control networks with end-to-end delay constraints. Information Sciences, 278, 34–55.MathSciNetCrossRefMATH Yan, M., Lam, K. Y., Han, S., Chan, E., Chen, Q., Fan, P., et al. (2014). Hypergraph-based data link layer scheduling for reliable packet delivery in wireless sensing and control networks with end-to-end delay constraints. Information Sciences, 278, 34–55.MathSciNetCrossRefMATH
4.
Zurück zum Zitat Shakkottai, S., & Srikant, R. (2002). Scheduling real-time traffic with deadlines over a wireless channel. Wireless Networks, 8(1), 13–26.CrossRefMATH Shakkottai, S., & Srikant, R. (2002). Scheduling real-time traffic with deadlines over a wireless channel. Wireless Networks, 8(1), 13–26.CrossRefMATH
5.
Zurück zum Zitat Li, Y., Zhang, H., Huang, Z., & Albert, M. (2014). Optimal link scheduling for delay-constrained periodic traffic over unreliable wireless links. INFOCOM, 2014, pp. 1465–1473 Li, Y., Zhang, H., Huang, Z., & Albert, M. (2014). Optimal link scheduling for delay-constrained periodic traffic over unreliable wireless links. INFOCOM, 2014, pp. 1465–1473
6.
Zurück zum Zitat Hou, I. H., Borkar, V., & Kumar, P. R. (2009). A theory of QoS for wireless. INFOCOM, 2009, pp. 486–494 Hou, I. H., Borkar, V., & Kumar, P. R. (2009). A theory of QoS for wireless. INFOCOM, 2009, pp. 486–494
7.
Zurück zum Zitat Nan, F., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.CrossRef Nan, F., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.CrossRef
8.
Zurück zum Zitat Jiang, H., Zhou, C., Wu, L., et al. (2015). TDOCP: A two-dimensional optimization integrating channel assignment and power control for large-scale WLANs with dense users. Ad Hoc Networks, 26, 114–127.CrossRef Jiang, H., Zhou, C., Wu, L., et al. (2015). TDOCP: A two-dimensional optimization integrating channel assignment and power control for large-scale WLANs with dense users. Ad Hoc Networks, 26, 114–127.CrossRef
9.
Zurück zum Zitat Gabale, V., Raman, B., Dutta, P., & Kalyanraman, S. (2013). A classification framework for scheduling algorithms in wireless mesh networks. IEEE Communications Surveys and Tutorials, 15(1), 199–222.CrossRef Gabale, V., Raman, B., Dutta, P., & Kalyanraman, S. (2013). A classification framework for scheduling algorithms in wireless mesh networks. IEEE Communications Surveys and Tutorials, 15(1), 199–222.CrossRef
10.
Zurück zum Zitat Tassiulas, L., & Ephremides, A. (1992). Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions on Automatic Control, 37(12), 1936–1948.MathSciNetCrossRefMATH Tassiulas, L., & Ephremides, A. (1992). Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions on Automatic Control, 37(12), 1936–1948.MathSciNetCrossRefMATH
11.
Zurück zum Zitat Hou, I. H., & Kumar, P. R. (2011). A survey of recent results on real-time wireless networking. In Proceedings of the real-time wireless for industrial applications, pp. 1–6. Hou, I. H., & Kumar, P. R. (2011). A survey of recent results on real-time wireless networking. In Proceedings of the real-time wireless for industrial applications, pp. 1–6.
12.
Zurück zum Zitat Hou, I. H., & Kumar, P. R. (2009). Scheduling heterogeneous real-time traffic over fading wireless channels. IEEE/ACM Transactions on Networking, 22(5), 1631–1644.CrossRef Hou, I. H., & Kumar, P. R. (2009). Scheduling heterogeneous real-time traffic over fading wireless channels. IEEE/ACM Transactions on Networking, 22(5), 1631–1644.CrossRef
13.
Zurück zum Zitat Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic programming. New Jersey: Wiley.CrossRefMATH Puterman, M. L. (1994). Markov decision processes: Discrete stochastic dynamic programming. New Jersey: Wiley.CrossRefMATH
14.
Zurück zum Zitat Abu Alsheikh, M., Hoang, D. T., Niyato, D., Tan, H. P., & Lin, S. (2015). Markov decision processes with applications in wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 17(3), 1239–1267.CrossRef Abu Alsheikh, M., Hoang, D. T., Niyato, D., Tan, H. P., & Lin, S. (2015). Markov decision processes with applications in wireless sensor networks: A survey. IEEE Communications Surveys and Tutorials, 17(3), 1239–1267.CrossRef
15.
Zurück zum Zitat Willig, A., & Uhlemann, E. (2014). Deadline-aware scheduling of cooperative relayers in TDMA-based wireless industrial networks. Wireless Networks, 20(1), 73–88.CrossRef Willig, A., & Uhlemann, E. (2014). Deadline-aware scheduling of cooperative relayers in TDMA-based wireless industrial networks. Wireless Networks, 20(1), 73–88.CrossRef
16.
Zurück zum Zitat Wang, R., & Lau, V. K. (2013). Delay-aware two-hop cooperative relay communications via approximate MDP and stochastic learning. IEEE Transactions on Information Theory, 59(11), 7645–7670.MathSciNetCrossRefMATH Wang, R., & Lau, V. K. (2013). Delay-aware two-hop cooperative relay communications via approximate MDP and stochastic learning. IEEE Transactions on Information Theory, 59(11), 7645–7670.MathSciNetCrossRefMATH
17.
Zurück zum Zitat Zhou, B., Cui, Y., & Tao, M. (2015). Stochastic throughput optimization for two-hop systems with finite relay buffers. IEEE Transactions on Signal Processing, 63(20), 5546–5560.MathSciNetCrossRef Zhou, B., Cui, Y., & Tao, M. (2015). Stochastic throughput optimization for two-hop systems with finite relay buffers. IEEE Transactions on Signal Processing, 63(20), 5546–5560.MathSciNetCrossRef
18.
Zurück zum Zitat Moghadari, M., Hossain, E., & Le, L. B. (2013). Delay-optimal distributed scheduling in multi-user multi-relay cellular wireless networks. IEEE Transactions on Communications, 61(4), 1349–1360.CrossRef Moghadari, M., Hossain, E., & Le, L. B. (2013). Delay-optimal distributed scheduling in multi-user multi-relay cellular wireless networks. IEEE Transactions on Communications, 61(4), 1349–1360.CrossRef
19.
Zurück zum Zitat Niafar, S., Tan, X., & Tsang, D. H. (2016). Optimal downlink scheduling for heterogeneous traffic types in LTE-A based on MDP and chance-constrained approaches. Mobile Networks and Applications, 21(3), 390–401.CrossRef Niafar, S., Tan, X., & Tsang, D. H. (2016). Optimal downlink scheduling for heterogeneous traffic types in LTE-A based on MDP and chance-constrained approaches. Mobile Networks and Applications, 21(3), 390–401.CrossRef
20.
Zurück zum Zitat Xu, J., Yang, J., Xie, Y., Guo, C., & Yu, Y. (2016). MDP based link scheduling in wireless networks to maximize the reliability. Wireless Networks, 22(5), 1659–1671.CrossRef Xu, J., Yang, J., Xie, Y., Guo, C., & Yu, Y. (2016). MDP based link scheduling in wireless networks to maximize the reliability. Wireless Networks, 22(5), 1659–1671.CrossRef
21.
Zurück zum Zitat Lei, L., Kuang, Y., Cheng, N., Shen, X., & Lin, C. (2016). Delay-optimal dynamic mode selection and resource allocation in device-to-device communications-Part I: Optimal policy. IEEE Transactions on Vehicular Technology, 65(5), 3474–3490.CrossRef Lei, L., Kuang, Y., Cheng, N., Shen, X., & Lin, C. (2016). Delay-optimal dynamic mode selection and resource allocation in device-to-device communications-Part I: Optimal policy. IEEE Transactions on Vehicular Technology, 65(5), 3474–3490.CrossRef
22.
Zurück zum Zitat Lei, L., Kuang, Y., Cheng, N., Shen, X., & Lin, C. (2015). Delay-optimal dynamic mode selection and resource allocation in device-to-device communications-Part II: Practical algorithm. IEEE Transactions on Vehicular Technology, 65(5), 3491–3505.CrossRef Lei, L., Kuang, Y., Cheng, N., Shen, X., & Lin, C. (2015). Delay-optimal dynamic mode selection and resource allocation in device-to-device communications-Part II: Practical algorithm. IEEE Transactions on Vehicular Technology, 65(5), 3491–3505.CrossRef
23.
Zurück zum Zitat Wu, H., Lin, X., Liu, X., Tan, K., & Zhang, Y. (2014). Decomposition of large-scale MDPs for wireless scheduling with load-and channel-awareness. In IEEE information theory and applications workshop, pp. 1–10 Wu, H., Lin, X., Liu, X., Tan, K., & Zhang, Y. (2014). Decomposition of large-scale MDPs for wireless scheduling with load-and channel-awareness. In IEEE information theory and applications workshop, pp. 1–10
24.
25.
Zurück zum Zitat Elliott, E. O. (1963). Estimates of error rates for codes on burst-noise channels. The Bell System Technical Journal, 42(5), 1977–1997.CrossRef Elliott, E. O. (1963). Estimates of error rates for codes on burst-noise channels. The Bell System Technical Journal, 42(5), 1977–1997.CrossRef
26.
Zurück zum Zitat Hong, S. W., & Moayeri, N. (1995). Finite-state Markov channel-a useful model for radio communication channels. IEEE Transactions on Vehicular Technology, 44(1), 163–171.CrossRef Hong, S. W., & Moayeri, N. (1995). Finite-state Markov channel-a useful model for radio communication channels. IEEE Transactions on Vehicular Technology, 44(1), 163–171.CrossRef
27.
Zurück zum Zitat Liu, J. W. (2000). Real-time systems. New York: Prentice Hall. Liu, J. W. (2000). Real-time systems. New York: Prentice Hall.
28.
Zurück zum Zitat Jain, R., Hawe W., & Chiu D. (1984). A Quantitative measure of fairness and discrimination for resource allocation in Shared Computer Systems. DEC-TR-301, September, 1984. Jain, R., Hawe W., & Chiu D. (1984). A Quantitative measure of fairness and discrimination for resource allocation in Shared Computer Systems. DEC-TR-301, September, 1984.
Metadaten
Titel
Resource allocation for real-time traffic in unreliable wireless cellular networks
verfasst von
Jun Xu
Chengcheng Guo
Hao Zhang
Jianfeng Yang
Publikationsdatum
24.11.2016
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 5/2018
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1413-x

Weitere Artikel der Ausgabe 5/2018

Wireless Networks 5/2018 Zur Ausgabe

Neuer Inhalt