Numerical modelling of land subsidence related to groundwater overexploitation in the Firenze-PratoPistoia basin (central Italy)

Mattia Ceccatelli ${ }^{1}$, Matteo Del Soldato ${ }^{1}$, Lorenzo Solari ${ }^{2}$, Riccardo Fanti 1, Gaddo Mannori ${ }^{3}$, Fabio Castelli ${ }^{1}$
${ }^{1}$ Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence 50121, Italy
${ }^{2}$ Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Division of Geomatics. Av. Gauss, 7 E08860 Castelldefels (Spain)

${ }^{3}$ Freelance geologist, Largo San Biagio 149, Pistoia 51100, Italy

Corresponding author: Mattia Ceccatelli, Department of Earth Sciences, University of Florence, Via G. La Pira 4,
Florence 50121, Italy. email: mattia.ceccatelli@unifi.it

Figure S1 - ENVISAT velocity map in ascending orbit. The reference period is 2003-2010. The black circles refer to the areas where representative time series are extracted (see section 'PSI velocity maps' in the main article).

Figure S2 - Sentinel-1 velocity map in ascending orbit. The reference period is 2003-2010. The black circles refer to the areas where representative time series are extracted (see section 'PSI velocity maps' in the main article).

Figure S3-Reference time series for the (a) Pistoia city center and (b) the area of Bottegone.

Table S1 - Main characteristics of the PSI datasets used in this work. The MP density is calculated for the area of interest $\left(\sim 350 \mathbf{k m}^{2}\right)$ in $M P / \mathbf{k m}^{2}$. Minimum coherence refers to the minimum value of temporal coherence for the datasets. Velocity std. dev. and Velocity range refer to the value of standard deviation and range in $\mathrm{mm} /$ year for all the MP in the area of interest for the four datasets.

Figure S4-Time series of forecasted ground displacement in Pistoia area under the increasing pumping rate scenario for a) 2020-2030 period, b) 2030-2040 period and c) 2040-2050 period. Sources: Esri, Airbus DS, USGS, NGA, NASA, N. Robinson, NCEAS, NLS, OS, NMA, Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap and the GIS user community.

Figure S5-Time series of forecasted ground displacement in Pistoia area under the decreasing pumping rate scenario for a) 2020-2030 period, b) 2030-2040 period and c) 2040-2050 period. Sources: Esri, Airbus DS, USGS, NGA, NASA, N. Robinson, NCEAS, NLS, OS, NMA, Geodatastyrelsen, Rijkswaterstaat, GSA,

Geoland, FEMA, Intermap and the GIS user community.

