Numerical modelling of land subsidence related to groundwater overexploitation in the Firenze-Prato-Pistoia basin (central Italy)

Mattia Ceccatelli¹, Matteo Del Soldato¹, Lorenzo Solari², Riccardo Fanti¹, Gaddo Mannori³, Fabio Castelli¹

¹ Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence 50121, Italy

² Centre Tecnològic de Telecomunicacions de Catalunya (CTTC), Division of Geomatics. Av. Gauss, 7 E-08860 Castelldefels (Spain)

³ Freelance geologist, Largo San Biagio 149, Pistoia 51100, Italy

Corresponding author: Mattia Ceccatelli, Department of Earth Sciences, University of Florence, Via G. La Pira 4, Florence 50121, Italy. email: mattia.ceccatelli@unifi.it

Electronic supplementary material – Hydrogeology Journal

Figure S1 – ENVISAT velocity map in ascending orbit. The reference period is 2003-2010. The black circles refer to the areas where representative time series are extracted (see section '*PSI velocity maps*' in the main article).

Figure S2 – Sentinel-1 velocity map in ascending orbit. The reference period is 2003-2010. The black circles refer to the areas where representative time series are extracted (see section '*PSI velocity maps*' in the main article).

Figure S3 - Reference time series for the (a) Pistoia city center and (b) the area of Bottegone.

Table S1 – Main characteristics of the PSI datasets used in this work. The MP density is calculated for the area of interest (~350 km²) in MP/km². *Minimum coherence* refers to the minimum value of temporal coherence for the datasets. *Velocity std. dev.* and *Velocity range* refer to the value of standard deviation and range in mm/year for all the MP in the area of interest for the four datasets.

Satellite	Orbit	Reference	N° of	Nº of MP	МР	Minimum	Velocity	Velocity
	(track number)	period	images		density	coherence	std. dev.	range
ENVISAT	A (444)	10/06/2003 27/05/2010	35	52796	150.8	0.6	0.95	-37 - 6.9
	D (394)	10/02/2003 19/04/2010	35	56045	160.2	0.6	0.95	-39.2 - 5.3
Sentinel-1 (SNT-1)	A (117)	12/12/2014 09/10/2017	101	96682	276.4	0.8	0.90	-21.5 - 7.0
	D (168)	22/03/2015 13/10/2017	98	102075	293.2	0.8	0.80	-28.8 - 7.7

Figure S4 - Time series of forecasted ground displacement in Pistoia area under the increasing pumping rate scenario for a) 2020-2030 period, b) 2030-2040 period and c) 2040-2050 period. Sources: Esri, Airbus DS, USGS, NGA, NASA, N. Robinson, NCEAS, NLS, OS, NMA, Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap and the GIS user community.

Figure S5 - Time series of forecasted ground displacement in Pistoia area under the decreasing pumping rate scenario for a) 2020-2030 period, b) 2030-2040 period and c) 2040-2050 period. Sources: Esri, Airbus DS, USGS, NGA, NASA, N. Robinson, NCEAS, NLS, OS, NMA, Geodatastyrelsen, Rijkswaterstaat, GSA, Geoland, FEMA, Intermap and the GIS user community.