Electronic supplementary material – Hydrogeology Journal

Application of a novel cascade-routing and reinfiltration concept with a Voronoi unstructured grid in MODFLOW 6, for an assessment of surface-water/groundwater interactions in a hard-rock catchment (Sardon, Spain)

<u>Authors</u>

Mostafa Gomaa Daoud¹, Maciek W. Lubczynski¹, Zoltan Vekerdy^{1,2}, Alain Pascal Francés³

1. Department of Water Resources, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands

Email: m.g.m.daoud@utwente.nl, m.w.lubczynski@utwente.nl, z.vekerdy@utwente.nl

- Department of Water Management and Climate Adaptation, Institute of Environmental Sciences, Hungarian University of Agriculture and Life Sciences, Páter Károly u. 1., 2100 Gödöllő, Hungary Email: <u>vekerdy.zoltan@uni-mate.hu</u>
- LNEG Laboratório Nacional de Energia e Geologia, Apartado 7586, Alfragide, 2610-999 Amadora, Portugal Email: <u>alain.frances@lneg.pt</u>

Table S1 List of abbreviations and symbols

$lpha_{i,j}$	Fraction of flow from the cell i to the neighbouring j cell
a _i	Land-cover class coverage fraction over the total catchment area for the calculations of $E_{\rm sf}$
$\beta_{i,j}$	Flow partitioning factor used in model calibration
b _i	Land-cover class coverage fraction over the total catchment area for the calculations of PET
С	Fractional canopy cover
ΔS	Total catchment storage
ΔS_{g}	Groundwater zone storage
ΔS_{u}	Unsaturated zone storage
d_{ext}	Extinction depth
$d_{ m surf}$	Surface depth at which groundwater exfiltration can start
elv	Land surface elevation
Eg	Groundwater evaporation
Es	Surface evaporation
E _I	Canopy interception
ET	Evapotranspiration
ETg	Groundwater evapotranspiration
ETo	Reference evapotranspiration
ET _{oc}	Reference evapotranspiration per unit area of canopy cover
ET _{ss}	Subsurface evapotranspiration
ET _u	Unsaturated zone evapotranspiration
Exf _{gw}	Groundwater exfiltration
Exf ^e _{gw}	Evaporated groundwater exfiltration
$\mathrm{Exf}^{\mathrm{i}}_{\mathrm{gw}}$	Reinfiltrated groundwater exfiltration
Exf ^r _{gw}	Groundwater exfiltration transferred down-gradient as runoff
Exf ^s _{gw}	Groundwater exfiltration routed to streams
Ι	Net infiltration
I _a	Active infiltration

K _b	Hydraulic conductivity of stream reach's bed
K _c	Crop coefficient
K _{cb}	Transpiration crop coefficient
K _e	Soil evaporation crop coefficient
K _h	Horizontal hydraulic conductivity
K _{sat}	Saturated vertical hydraulic conductivity
K _v	Vertical hydraulic conductivity
LAI	Leaf area index
l _{i,j}	Distance between the centres of the connected i and j cells
Р	Precipitation
Pe	Effective precipitation
PET	Potential evapotranspiration
q	Total stream outflow at the catchment outlet
$q_{ m B}$	Baseflow
q_{g}	Lateral groundwater outflow
$q_{\rm gs}$	Groundwater leakage to streams
Q.i.	Quercus ilex
Q.p.	Quercus pyrenaica
$q_{ m sg}$	Stream leakage to groundwater
\overline{R}	Mean rainfall intensity
$RE^{i} = (RI^{i} + Exf^{i}_{gw})$	Total reinfiltrated water originated from the sum of RI^i and Exf^i_{gw}
$RE_{net}^i = RE^i - RI^r$	Net total reinfiltrated water
$RE^{s} = (RI^{s} + Exf_{gw}^{s})$	Direct runoff originated from the sum of RI^s and Exf^s_{gw}
R _g	Gross groundwater recharge
RI	Rejected infiltration
RI ^e	Rejected infiltration evaporated
RI ⁱ	Rejected infiltration reinfiltrated
RI ^r	Rejected infiltration transferred down-gradient as runoff
$RI_{net}^r = RI^r - RE^i$	Net rejected infiltration transferred down-gradient

RI ^s	Rejected infiltration routed to streams
R _n	Net groundwater recharge
S	Canopy storage capacity
SAVI	Soil adjusted vegetation index
S _c	Canopy storage capacity per unit area of canopy cover
S _{i,j}	Slope gradient between cell i and j
S _s	Specific storage
Sy	Specific yield
$ heta_{ m i}$	Initial water content
$\theta_{\rm ext}$	Extinction water content
$\theta_{\rm resid}$	Residual water content
$\theta_{\rm sat}$	Saturated water content

Land cover	Grass/bare soil		Outo	crops	Q.i.			Q.p.					
class					on soil		on outcrops		on	on soil		on outcrops	
b _i [-]	0.695		0.212		0.036		0.009		0.0	0.035		0.013	
Month	K _{e1}	K _{cb1}	K _{e2}	K _{cb2}	K _{e3}	K _{cb3}	K_{e_4}	K_{cb_4}	K _{e5}	K _{cb5}	K _{e6}	K _{cb6}	
Oct-09	0.14	0.22	0.07	0.00	0.00	0.70	0.00	0.73	0.00	0.63	0.00	0.56	
Nov-09	0.43	0.28	0.22	0.00	0.00	0.82	0.00	0.78	0.00	0.75	0.00	0.67	
Dec-09	0.53	0.29	0.26	0.00	0.00	0.95	0.00	0.84	0.00	0.88	0.00	0.79	
Jan-10	0.40	0.49	0.20	0.00	0.00	1.06	0.00	1.01	0.00	1.04	0.00	0.88	
Feb-10	0.50	0.43	0.25	0.00	0.00	1.15	0.00	1.11	0.00	1.04	0.00	0.97	
Mar-10	0.53	0.41	0.27	0.00	0.00	1.19	0.00	1.13	0.00	1.11	0.00	1.03	
Apr-10	0.60	0.38	0.30	0.00	0.00	1.29	0.00	1.25	0.00	1.22	0.00	1.19	
May-10	0.27	0.63	0.13	0.00	0.00	1.25	0.00	1.19	0.00	1.17	0.00	1.16	
Jun-10	0.30	0.41	0.15	0.00	0.00	1.15	0.00	1.13	0.00	1.14	0.00	1.13	
Jul-10	0.07	0.33	0.04	0.00	0.00	0.85	0.00	0.97	0.00	1.11	0.00	1.00	
Aug-10	0.11	0.19	0.06	0.00	0.00	0.55	0.00	0.78	0.00	1.00	0.00	0.85	
Sep-10	0.32	0.20	0.16	0.00	0.00	0.54	0.00	0.71	0.00	0.93	0.00	0.82	

Fig. S1 Schematic cross-section after Lubczynski & Gurwin (2005)

Fig. S2 Schematic cross-section after Francés et al. (2014)

Fig. S3 CVFD requirements. The red line connecting the centers of the two cells should (1) intersect the shared edge at the right angle (*highlighted by the green line and the green angle symbols respectively*), and (2) bisect the shared edge (*highlighted by the equality signs*)

Fig. S4 Groundwater hydrographs: the simulated heads (*red lines*) versus the observed heads (*black lines*) at the 14 observation points within the study period (1 October 2007 – 30 September 2014); *n* is the number of daily records while RMSE is the root mean square error between simulated and observed heads; the locations of the head observation points are presented in Fig. 1 of the main article

Fig. S5 Components of Sardon catchment daily outflow versus precipitation presented for the seven hydrological years studied, i.e. from 1 October 2007 to 30 September 2014; the zoom window presents flows in the dry year 2009 and in the wet year 2010. Note: (i) the flume-estimated flow is limited to 0.145 m³ s⁻¹, as marked by *black dash horizontal line* and (ii) simulated total flow, and direct runoff are graphically restricted by *purple dash horizontal line* to < 0.2 m³ s⁻¹ for visualization purposes

Fig. S6 Daily LAI of the seven hydrological years (1 October 2007 – 30 September 2014) for the land-cover class "grass/bare soil", as presented in Fig. 2 of the main article

ESM References

- Lubczynski, M. W., & Gurwin, J. (2005). Integration of various data sources for transient groundwater modeling with spatio-temporally variable fluxes—Sardon study case, Spain. *Journal of Hydrology*, *306*(1–4), 71–96. https://doi.org/10.1016/J.JHYDROL.2004.08.038
- Francés, A. P., Lubczynski, M. W., Roy, J., Santos, F. A. M., & Mahmoudzadeh Ardekani, M. R. (2014).
 Hydrogeophysics and remote sensing for the design of hydrogeological conceptual models in hard rocks –
 Sardón catchment (Spain). *Journal of Applied Geophysics*, *110*, 63–81.
 https://doi.org/10.1016/J.JAPPGEO.2014.08.015