1	The influence of time since introduction on the population growth of introduced
2	species and the consequences for management
3	
4	Hiroyuki Yokomizo, Takenori Takada, Keiichi Fukaya, John G. Lambrinos
5	
6	Center for Health and Environmental Risk Research, National Institute for Environmental
7	Studies, Onogawa 16-2, Tsukuba 305-8506, Japan.
8	
9	e-mail: <u>hiroyuki.yokomizo@nies.go.jp</u> .
10	

11	Supplementary Material 1
12	
13	Table S1
14	The demographic properties of introduced species included in the study.
15	
16	Literature Cited
17	Bellingham PJ, Duncan RP, Lee WG, Buxton RP (2004) Seedling growth rate and survival do
18	not predict invasiveness in naturalized woody plants in New Zealand. Oikos 106:308-316
19	Borger C (2007) The biology and ecology of Salsola australis R.Br. (Chenopodiaceae) in
20	southwest Australian cropping systems. University of Western Australia
21	Borger CPD, Scott JK, Renton M, Walsh M, Powles SB (2009) Assessment of management
22	options for Salsola australis in south-west Australia by transition matrix modelling.
23	Weed Research 49:400–408
24	Brown KA, Spector S, Wu W (2008) Multi-scale analysis of species introductions: combining
25	landscape and demographic models to improve management decisions about non-native
26	species. J Appl Ecol 45:1639–1648
27	Buckley YM, Brockerhoff E, Langer L, Ledgard N, North H, Rees M (2005) Slowing down a
28	pine invasion despite uncertainty in demography and dispersal. J Appl Ecol 42:1020-
29	1030
30	Burns JH, Pardini EA, Schutzenhofer MR, Chung YA, Seidler KJ, Knight TM (2013) Greater
31	sexual reproduction contributes to differences in demography of invasive plants and their
32	noninvasive relatives. Ecology 94:995–1004

33 Caswell H (2014) Matrix Population Models. In: Wiley StatsRef: Statistics Reference Online

34 John Wiley & Sons, Ltd

- 35 Ceska A (1999) *Rubus armeniacus* a correct name for Himalayan blackberries.
- 36 http://www.ou.edu/cas/botany-micro/ben/ben230.html Accessed 19 Apr 2017
- 37 Christman S (1999) Sapium sebiferum Plant Profile. In: Floridata: Florida Plant Encyclopedia.
- http://floridata.com/Plants/Euphorbiaceae/Sapium%20sebiferum/593 Accessed 19 Apr
 2017
- Clements DR, Upadhyaya MK, Bos SJ (1999) The biology of Canadian weeds. 110. *Tragopogon dubius* Scop., *Tragopogon pratensis* L., and *Tragopogon porrifolius* L. Can J Plant Sci
 79:153–163
- 43 Davis AS, Landis DA, Nuzzo V, Blossey B, Gerber E, Hinz HL (2006) Demographic Models
- Inform Selection of Biocontrol Agents for Garlic Mustard (*alliaria Petiolata*). Ecol Appl
 16:2399–2410
- 46 Davis PB, Menalled FD, Peterson RKD, Maxwell BD (2011) Refinement of weed risk
- 47 assessments for biofuels using *Camelina sativa* as a model species. J Appl Ecol 48:989–
 48 997
- 49 DeWalt SJ (2006) Population Dynamics and Potential for Biological Control of an Exotic

50 Invasive Shrub in Hawaiian Rainforests. Biol Invasions 8:1145–1158

- 51 Donaldson S (2002) Identification and management of common teasel (*Dipsacus fullonum*).
- 52 University of Nevada <u>https://www.unce.unr.edu/publications/files/nr/2002/FS0240.pdf</u>
- 53 Accessed 19 Apr 2017

54	Drayton B, Primack RB (1999) Experimental Extinction of Garlic Mustard (Alliaria petiolata)
55	Populations: Implications for Weed Science and Conservation Biology. Biol Invasions
56	1:159–167
57	Dunn PH (1976) Distribution of Carduus nutans, C. acanthoides, C. pycnocephalus, and C.
58	crispus, in the United States. Weed Sci 24:518–524
59	Eckardt (1987) Element Stewardship Abstract for Rosa multiflora.
60	www.invasive.org/weedcd/pdfs/tncweeds/rosamul.pdf Accessed 19 Apr 2017
61	Eckberg JO, Tenhumberg B, Louda SM (2014) Native insect herbivory limits population growth
62	rate of a non-native thistle. Oecologia 175:129-138
63	Emery SM, Gross KL (2005) Effects of timing of prescribed fire on the demography of an
64	invasive plant, spotted knapweed Centaurea maculosa. J Appl Ecol 42:60-69
65	Evans JA, Davis AS, Raghu S, Ragavendran A, Landis DA, Schemske DW (2012) The
66	importance of space, time, and stochasticity to the demography and management of
67	Alliaria petiolata. Ecol Appl 22:1497-1511
68	Flory SL, D'Antonio CM (2015) Taking the long view on the ecological effects of plant
69	invasions. Am J Bot 102:817-818
70	Fremstad E (2010) Invasive Alien Species Fact Sheet – Lupinus polyphyllus. Online Database of
71	the European Network on Invasive Alien Species – NOBANIS. www.nobanis.org.
72	Accessed 19 Apr 2017
73	González de León S, Herrera I, Guevara R (2016) Mating system, population growth, and
74	management scenario for Kalanchoe pinnata in an invaded seasonally dry tropical forest.
75	Ecol Evol 6:4541–4550

-		TT1 IZD	(1007)	T1 · 1 ·	• • •				•
16	(fordon DR	, Thomas KP (1997	Florida	s invasion h	w nonindi	genous nlan	ts history	screening
10	Oblabil DR	, inomus ixi (1////	1 Ionau	5 myasion (/ nonnai	genous plun	is. motory.	, sereening,

- and regulation. Strangers in paradise: impact and management of nonindigenous species
 in Florida Island Press, Washington, DC, pp 21–37
- 79 Griffith AB (2010) Positive effects of native shrubs on *Bromus tectorum* demography. Ecology
- 80 91:141–154
- 81 Harvard University Herbaria accession #00567705. Fernald ML.
- 82 <u>http://kiki.huh.harvard.edu/databases/specimen_search.php?mode=details&id=404751</u>
 83 Accessed 19 Apr 2017
- Harvey KJ, Nipperess DA, Britton DR, Hughes L (2013) Does time since introduction influence
 enemy release of an invasive weed? Oecologia 173:493–506
- 86 Hüls J, Otte A, Eckstein RL (2007) Population life-cycle and stand structure in dense and open
- 87 stands of the introduced tall herb *Heracleum mantegazzianum*. Biol Invasions 9:799–811
- 88 Hyatt LA, Araki S (2006) Comparative Population Dynamics of an Invading Species in its

89 Native and Novel Ranges. Biol Invasions 8:261–275

- Iacarella JC, Mankiewicz PS, Ricciardi A (2015) Negative competitive effects of invasive plants
 change with time since invasion. Ecosphere 6:1–14
- Jahodová Š, Trybush S, Pyšek P, Wade M, Karp A (2007) Invasive species of *Heracleum* in
- 93 Europe: an insight into genetic relationships and invasion history. Divers Distrib 13:99–
 94 114
- Jongejans E, Shea K, Skarpaas O, Kelly D, Sheppard AW, Woodburn TL (2008) Dispersal and
 demography contributions to population spread of *Carduus nutans* in its native and
 invaded ranges. J Ecol 96:687–697

98	Koop AL, Horvitz CC (2005) Projection Matrix Analysis of the Demography of an Invasive,
99	Nonnative Shrub (ardisia Elliptica). Ecology 86:2661–2672
100	Lambrecht-McDowell SC, Radosevich SR (2005) Population demographics and trade-offs to
101	reproduction of an invasive and noninvasive species of Rubus. Biol Invasions 7:281-295
102	Langeland KA, Craddock Burks K (eds) (1998) Identification & biology of non-native plants in
103	Florida's natural areas. University of Florida, Institute of Food and Agricultural Sciences,
104	Gainesville
105	Lesica P, Ellis M (2010) Demography of Sulfur Cinquefoil (Potentilla recta) in a Northern
106	Rocky Mountain Grassland. Invasive Plant Sci Manag 3:139-147
107	Luken JO, Thieret JW (1996) Amur Honeysuckle, Its Fall from Grace. BioScience 46:18-24
108	Luken JO, Thieret JW (1997) Assessment and Management of Plant Invasions. Springer, New
109	York
110	Mack RN (1986) Alien Plant Invasion into the Intermountain West: A Case History. In: Mooney
111	HA, Drake JA (eds) Ecology of Biological Invasions of North America and Hawaii.
112	Springer, New York, pp191–213
113	Mack RN (2003) Plant Naturalizations and Invasions in the Eastern United States: 1634-1860.
114	Ann Missouri Bot Gard 90:77–90
115	Mack RN, Erneberg M (2002) The United States Naturalized Flora: Largely the Product of
116	Deliberate Introductions. Annals Missouri Botanical Garden 89:176-189
117	Marco DE, Páez SA (2000) Invasion of Gleditsia triacanthos in Lithraea ternifolia Montane
118	Forests of Central Argentina. Environ Manag 26:409-419

119	Maron JL, Horvitz CC, Williams JL (2010) Using experiments, demography and population
120	models to estimate interaction strength based on transient and asymptotic dynamics. J
121	Ecol 98:290–301
122	Medd RW (1987) Impact of legislative actions on the invasion of Carduus nutans. Weed Society
123	of New South Wales, pp 290–293
124	Medley Me, Bryan H, MacGregor J, Thieret JW (1985) Achyranthes japonica (Miq) Nakai
125	(Amaranthaceae) in Kentucky and West Virginia: new to North America. SIDA, Contrib
126	Bot 11:92–95
127	Meekins JF, McCarthy BC (2000) Responses of the biennial forest herb Alliaria petiolata to
128	variation in population density, nutrient addition and light availability. J Ecol 88:447-463
129	Missouri Botanical Garden Herbarium accession #29443. Grimmer L
130	http://www.tropicos.org/Specimen/100513946 Accessed 19 Apr 2017
131	Missouri Botanical Garden Herbarium accession Julian A. Steyermark - 67357. Steyermark J.
132	http://www.tropicos.org/Specimen/3544157 Accessed 19 Apr 2017
133	Moul ET (1948) A dangerous weedy Polygonum in Pennsylvania. Rhodora 50:64-66
134	Nehrbass N, Winkler E, Pergl J, Perglová I, Pysek P (2006) Empirical and virtual investigation
135	of the population dynamics of an alien plant under the constraints of local carrying
136	capacity: Heracleum mantegazzianum in the Czech Republic. Perspect Plant Ecol Evol
137	Syst 7:253–262
138	Nishiwaki A, Mizuguti A, Kuwabara S, Toma Y, Ishigaki G, Miyashita T, Yamada T, Matuura
139	H, Yamaguchi S, Rayburn AL, Akashi R, Stewart JR (2011) Discovery of natural
140	Miscanthus (Poaceae) triploid plants in sympatric populations of Miscanthus
141	sacchariflorus and Miscanthus sinensis in southern Japan. Am J Bot 98:154–159

142	Novak SJ, Mack RN (2001) Tracing Plant Introduction and Spread: Genetic Evidence from
143	Bromus tectorum (Cheatgrass) Introductions of the invasive grass Bromus tectorum
144	worldwide were broadly similar and closely tied to patterns of European human
145	immigration. BioScience 51:114–122
146	Nuzzo V (1993) Distribution and spread of the invasive biennial Alliaria petiolata (garlic
147	mustard) in North America. Indiana Academy of Science, pp 137-145
148	Osunkoya OO, Perrett C, Fernando C, Clark C, Raghu S (2013) Modeling population growth and
149	site specific control of the invasive Lantana camara. Popul Ecol 55:291-303
150	Parker IM (2000) Invasion Dynamics of Cytisus Scoparius: A Matrix Model Approach. Ecol
151	Appl 10:726–743
152	Peterson DJ, Prasad R (1998) The biology of Canadian weeds. 109. Cytisus scoparius (L.) Link.
153	Can J Plant Sci 78:497–504
154	Pittman SE, Muthukrishnan R, West NM, Davis AS, Jordan NR, Forester JD (2015) Mitigating
155	the potential for invasive spread of the exotic biofuel crop, Miscanthus \times giganteus. Biol
156	Invasions 17:3247–3261
157	Popay AI, Medd RW (1990) The biology of Australian weeds. 21. Carduus nutans L. ssp. nutans.
158	Plant Protection Quarterly 5:3–13
159	Prevéy JS, Germino MJ, Huntly NJ (2010) Loss of foundation species increases population
160	growth of exotic forbs in sagebrush steppe. Ecol Appl 20:1890-1902
161	Prieto AR, Blasi AM, De Francesco CG, Fernández C (2004) Environmental history since
162	11,000 14C yr B.P. of the northeastern Pampas, Argentina, from alluvial sequences of the
163	Luján River. Quaternary Res 62:146–161

164	Raghu S, Wilson JR, Dhileepan K (2006) Refining the process of agent selection through
165	understanding plant demography and plant response to herbivory. Aust J Entomol
166	45:308–316
167	Ramula S (2014) Linking vital rates to invasiveness of a perennial herb. Oecologia 174:1255–
168	1264
169	Ramula S, Buckley YM (2010) Management recommendations for short-lived weeds depend on
170	model structure and explicit characterization of density dependence. Methods Ecol Evol
171	1:158–167
172	Renne IJ (2001) Invasion of Chinese tallow tree: causes, consequences and forecast. PhD thesis.
173	Clemson University, Clemson, South Carolina
174	Ridley CE, Ellstrand NC (2010) Rapid evolution of morphology and adaptive life history in the
175	invasive California wild radish (Raphanus sativus) and the implications for management.
176	Evol Appl 3:64–76
177	Roché BFJ, Piper GL, Talbott CJ (1986) Knapweeds of Washigton. Extension bulletin -
178	Washington State University, Cooperative Extension Service (USA)
179	Rogler GA, Lorenz RJ (1983) Crested wheatgrass: early history in the United States. J Range
180	Manag 36:91–93
181	Rousseau C (1968) Histoire, habitat et distribution de 220 plantes introduites au Québec. Le
182	Naturaliste Canadien 95:49–169
183	Schutzenhofer MR, Valone TJ, Knight TM (2009) Herbivory and population dynamics of
184	invasive and native Lespedeza. Oecologia 161:57-66
185	Schwartz L (2015) A comparative study of the population dynamics of four Amaranthaceae
186	species.

- 187 http://opensiuc.lib.siu.edu/cgi/viewcontent.cgi?article=2091&context=dissertations
 188 Accessed 19 Apr 2017
- 189 Sebert-Cuvillier E, Paccaut F, Chabrerie O, Endels P, Goubet O, Decocq G (2007) Local
- 190 population dynamics of an invasive tree species with a complex life-history cycle: A
- 191 stochastic matrix model. Ecol Model 201:127–143
- 192 Shea K, Kelly D (1998) Estimating Biocontrol Agent Impact with Matrix Models: *Carduus*
- 193 *Nutans* in New Zealand. Ecol Appl 8:824–832
- Shea K, Kelly D, Sheppard AW, Woodburn TL (2005) Context-Dependent Biological Control of
 an Invasive Thistle. Ecology 86:3174–3181
- 196 Smith CW (1992) Distribution, status, phenology, rate of spread, and management of Clidemia in
- Hawaii. Alien plant invasions in native ecosystems of Hawaii University of Hawaii Press,
 Honolulu 241–253
- 199 Starfinger U (2010) NOBANIS Invasive Alien Species Fact Sheet Prunus serotina. Online
- 200 Database of the European Network on Invasive Alien Species NOBANIS.
- 201 www.nobanis.org. Accessed 19 Apr 2017
- 202 Stewart-Wade SM, Neumann S, Collins LL, Boland GJ (2002) The biology of Canadian weeds.
- 203 117. Taraxacum officinale G. H. Weber ex Wiggers. Can J Plant Sci 82:825–853
- 204 Stokes KE, Buckley YM, Sheppard AW (2006) A modelling approach to estimate the effect of
- 205 exotic pollinators on exotic weed population dynamics: bumblebees and broom in
- 206 Australia. Divers Distrib 12:593-600
- 207 Swarbrick JT (1986) History of the lantanas in Australia and origins of the weedy biotypes. Plant
- 208 Protection Quarterly 1:115–121

- Taylor CM, Hastings A (2004) Finding optimal control strategies for invasive species: a density structured model for *Spartina alterniflora*. J Appl Ecol 41:1049–1057.
- 211 Tenhumberg B, Louda SM, Eckberg JO, Takahashi M (2008) Monte Carlo analysis of parameter
- 212 uncertainty in matrix models for the weed *Cirsium vulgare*. J Appl Ecol 45:438–447
- 213 Trinklein D (2014) Iris: A Brief History. Missouri Environment and Garden News Article.
- 214 Integrated Pest Management, University of Missouri
- 215 http://ipm.missouri.edu/MEG/2014/6/Iris-A-Brief-History/ Accessed 19 Apr 2017
- Upadhyaya MK, Tilsner HR, Pitt MD (1988) The biology of Canadian weeds.: 87. *Cynoglossum officinale* L. Can J Plant Sci 68:763–774
- 218 van Klinken RD, Pichancourt JB (2015) Population-level consequences of herbivory, changing
- climate, and source–sink dynamics on a long-lived invasive shrub. Ecol Appl 25:2255–
 220 2270
- 221 Vavrek MC, McGraw JB, Yang HS (1997) Within-Population Variation in Demography of
- *Taraxacum Officinale*: Season- and Size-Dependent Survival, Growth and Reproduction.
 J Ecol 85:277–287
- 224 Wadsworth FH (1943) Pomarrosa, Jambosa jambos (L.) Millsp. and its place in Puerto Rico.
- 225 Caribbean Forester 4:183–94
- 226 Waterhouse BM (1988) Broom (Cytisus scoparius) at Barrington Tops, New South Wales.
- Australian Geographical Studies 26:239–248
- Watson S (1885) A history and revision of the roses of North America. Proc Am Acad Arts Sci
 New Series vol. XII, Whole Series vol. XX:324–352
- 230 Williams JL, Auge H, Maron JL (2010) Testing hypotheses for exotic plant success: parallel
- experiments in the native and introduced ranges. Ecology 91:1355–1366

- 232 Woods W (1992) Phytophagous insects collected from *Parkinsonia aculeata* [Leguminosae:
- 233 *Caesalpiniaceae*] in the Sonoran desert region of the southwestern United States and
- 234 Mexico. Entomophaga 37:465–474
- 235

236 Supplementary Material 2

237

Model selection removing the dependence of the multiple populations of the same species onelasticities:

240

241 For some species, multiple populations of the same species are included in the 242 analyses. This suggests that data from these species may be correlated violating the 243 assumption of independence in the regression analysis. We conducted an additional 244 analysis in which only one set of population data was used for each species to remove the 245 dependence of the multiple data points for one species. The dataset includes four 246 populations of Alliaria petiolata and Carduus nutans and include two populations of 247 Cytisus scoparius, Heracleum mantegazzianum, and Taraxacum officinale. There are 128 248 cases to choose one population for each species. We picked up one population for each 249 species and calculated AIC and BIC values of the 6 models for the 128 cases (The AIC 250 and BIC values are shown in Table S2 in ESM).

The best model selected by AIC includes both years since introduction and matrix dimension for all 128 cases. On the other hand, the best model selected by BIC in 71.9% of the cases (92 cases) includes only years since introduction and the best model in 28.1% of the cases (36 cases) includes years since introduction and matrix dimension as a covariate. Based on the best models selected by AIC and BIC, it is reasonable to consider that elasticities change with time since introduction.

257

- 259 Table S2
- 260 (a) AIC and (b) BIC values of the 6 models for the 128 cases.
- 261
- 262 Cells of minimum values of AIC or BIC are shaded. Asterisks represent that the populations are
- selected in the calculations of AIC or BIC.