
Appendix E: Evaluation

In this appendix we consider the cases of [12] and other bx examples, and use transformation
patterns and the interpretation of QVT-R in UML-RSDS to provide systematic specifications of
these.

In each case we used Version 1.9 of the Agile UML tools for UML-RSDS, available at https://
projects.eclipse.org/projects/modeling.agileuml. We used the current version of the Medini QVT
tools [3]. All tests were carried out on a Windows 10 i5-6300 dual core laptop with 2.4GHz clock
frequency, 8GB RAM and 3MB cache. We generated example models using Java, replicating a
basic model structure for each case multiple times in order to produce models of different scales.
We computed execution times as an average over three independent runs for each model. All
execution times are expressed in ms.

The code of all examples, together with their semantic interpretations in UML-RSDS and
example execution scenarios, can be found at [9].

E.1 Batch-mode bidirectional transformations

Seven cases of batch-mode bidirectional transformations are considered in [12] to investigate the
capabilities of QVT-R for bx specification:

1. Migration of person databases

2. Unweighted and weighted Petri nets

3. Unordered and ordered sets

4. Migration of bags

5. Expression trees and dags

6. Gantt diagrams and CPM networks

7. Ecore models and relational schemas.

We will respecify cases 1 to 6 using our approach, and evaluate the quality and efficiency of
these versions compared to the versions of [12].

E.1.1 Migration of person databases

This is a simple case of the Lens pattern, and can be specified as follows:

top relation Database2Database1

{ enforce domain src d : Database { name = n };

enforce domain trg d1 : Database1 { name = n };

}

top relation Person2Person1

{ enforce domain src p : Person

{ id = i, birthday = b, placeOfBirth = pob,

database = d : Database {} };

enforce domain trg p1 : Person1

{ id = i, birthday = b, placeOfBirth = pob,

database = d1 : Database1 {} };

when { Database2Database1(d,d1) }

where

{ p1.name = p.firstName + ’ ’ + p.lastName and

p.firstName = p1.name->before(’ ’) and
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p.lastName = p1.name->after(’ ’)

}

}

This version is very similar to the original case of [12], but omits function definitions, and uses the
UML-RSDS →before and →after operators on strings. Only the first where clause assignment is
effective for update in the trg direction, and only the second and third in the src direction. Thus
target data is write-only in both directions. Restricting to src models where all first names contain
no spaces, the reverse transformation is a right inverse to the forward transformation.

The conditions (a) to (e) of Section 5 can be checked to hold in both src and trg directions.
(a), (c) and (e) are direct, (b) holds since although the two relations both write to features of
Database1 (in the trg direction), these features are distinct and unrelated (name in the first
relation and persons in the second). Likewise for the src direction. Condition (d) holds because
the mandatory feature database is set when Person or Person1 instances are created.

This transformation can be executed also in incremental mode in both directions using our
semantics. Execution traces of example scenarios can be found in the qvt2umlrsds dataset.

Table 1 summarises the performance measurements for Java implementations of the case study,
generated from the UML-RSDS semantic representations for the forward and reverse directions.
The time measure is an average of three repetitions for each model. We only include execution
times below 1000s.

The forward and reverse directions of this transformation are almost identical in terms of execu-
tion times, as are incremental-mode forward and reverse executions (changing the firstName/name
of all Person/Person1 elements). The batch modes have approximately quadratic time complex-
ity, and the incremental modes are approximately linear. The quadratic time complexity is ex-
pected because two object variables p, d appear in the LHS of the constraints interpreting the
Person2Person1 relation in the forward direction, and likewise two variables p1, d1 in the reverse
direction. Each variable is iterated over separately. The original batch mode transformation ver-
sion of [12] executed using Medini QVT is less efficient, by a factor of around 103 for the largest
case, this seems primarily due to the use of interpreted execution in Medini QVT.

Person/Person1 500 1000 5000 10000 50000 100000
elements

Batch 0 10.7 114.3 421.3 10527.7 42522.7
Forward
Batch 5 10.3 109.3 443.3 10160 42296
Reverse
Incremental 0 5.3 0 10.3 20.7 36.7
Forward
Incremental 0 5 16 20.3 33 52.3
Reverse
Medini 605.7 2171.3 52,724.7 376,404.7 – –
Batch forward
Medini 632.7 2173 57,027.7 254,766.7 – –
Batch reverse

Table 1: Execution times (ms) for person migration

E.1.2 Unweighted and weighted Petri nets

The forward transformation is a case of introducing intermediate classes (Edge subclasses TPEdge
and PTEdge) between the original Transition and Place classes. More specifically, it comprises two
applications of the class diagram refinement “Replace a many-many association by an intermediate
class” [6]. As such, the transformation has a standard form, and it was automatically generated
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from the metamodels using the metamodel matching techniques of [1]. The original references
trgT2P : Transition −→∗ Place and trgP2T : Place −→∗ Transition are refined by composi-
tions outTPEdges.toPlace : Transition1 −→∗ Place1 and outPTEdges.toTransition : Place1 −→∗
Transition1 via TPEdge and PTEdge respectively. This standard restructuring has as its right
inverse the removal of the indirection, ie., flattening of the composition.

The specification of the QVT-R transformation is then a mechanical process, using Map objects
before links to organise the relations. The matching of each *-multiplicity reference is defined in
a separate rule, to avoid the complications discussed in Section 2.4:

top relation Place2Place1

{ enforce domain source place$x : Place

{ name = name$value, ntokens = ntokens$value };

enforce domain target place1$x : Place1

{ name = name$value, ntokens = ntokens$value };

}

top relation Net2Net1

{ enforce domain source net$x : Net {};

enforce domain target net1$x : Net1 {};

}

top relation Transition2Transition1

{ enforce domain source transition$x : Transition

{ name = name$value };

enforce domain target transition1$x : Transition1

{ name = name$value };

}

top relation MapPlace2Place1

{ enforce domain source place$x : Place

{ trgP2T = place$x_trgP2T$x : Transition { } };

enforce domain target place1$x : Place1

{ outPTEdges = place1$x_outPTEdges$x : PTEdge

{ toTransition = place1$x_outPTEdges_toTransition$x : Transition1 { } } };

when

{ Place2Place1(place$x,place1$x) and

Transition2Transition1(place$x_trgP2T$x,place1$x_outPTEdges_toTransition$x) }

}

top relation MapNet2Net1places

{ enforce domain source net$x : Net

{ places = net$x_places$x : Place { } };

enforce domain target net1$x : Net1

{ places = net1$x_places$x : Place1 { } };

when

{ Net2Net1(net$x,net1$x) and

Place2Place1(net$x_places$x,net1$x_places$x) }

}

top relation MapNet2Net1transitions

{ enforce domain source net$x : Net

{ transitions = net$x_transitions$x : Transition { } };

enforce domain target net1$x : Net1

{ transitions = net1$x_transitions$x : Transition1 { } };
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when

{ Net2Net1(net$x,net1$x) and

Transition2Transition1(net$x_transitions$x,net1$x_transitions$x) }

}

top relation MapTransition2Transition1

{ enforce domain source transition$x : Transition

{ trgT2P = transition$x_trgT2P$x : Place { } };

enforce domain target transition1$x : Transition1

{ outTPEdges = transition1$x_outTPEdges$x : TPEdge

{ toPlace = transition1$x_outTPEdges_toPlace$x : Place1 { } } };

when

{ Transition2Transition1(transition$x,transition1$x) and

Place2Place1(transition$x_trgT2P$x,transition1$x_outTPEdges_toPlace$x) }

}

The first phase of the transformation (the first three rules) performs a 1-1 mapping between Place
and Place1, Net and Net1 and Transition and Transition1. The 1-1 mapping arises because of the
default mandatory creation target resolution policy (if check-before-enforce was adopted, different
source elements would be merged into single target elements by these relations). Alternatively, the
1-1 mapping could be enforced by making name a key of these elements. In the second phase (the
remaining rules), links from Transition to Place correspond to TPEdge instances and associated
links, and links from Place to Transition correspond to PTEdge instances and associated links.

Correctness conditions (a) and (e) hold by construction. (b) holds since MapPlace2Place1
and MapTransition2Transition1 update disjoint sets of features of Place and Transition. Sim-
ilarly MapNet2Net1places and MapNet2Net1transitions update different features of Net/Net1.
(c) holds since distinct instances of PTEdge are created for each distinct x : place$x .trgP2T in
MapPlace2Place1 – assuming default exists semantics for the : PTEdge instantiation, and likewise
for TPEdge in MapTransition2Transition1. (d) holds since toTransition is set for PTEdge in-
stances when they are created, and likewise toPlace for TPEdges. The aggregation owner net of all
places and transitions is also set by theMapNet rules. In the reverse direction the transformation is
an example of flattening, with the compositions outTPEdges.toPlace and outPTEdges.toTransition
replaced by trgT2P and trgP2T respectively. Change-propagation of addition, creation and dele-
tion changes is supported for incremental execution in both directions.

Scenarios of the forward and reverse transformation are given in our dataset. Execution times
are given in Table 2. The batch forward and reverse transformations have approximately quadratic
time complexity. A comparison with Medini execution of the original version of [12] is also in-
cluded, where execution was feasible: larger cases encountered “out of memory” errors, which our
implementation does not.

E.1.3 Unordered and ordered sets

In the direction from ordered to unordered sets, the mapping of this transformation is from a
recursively composed reference elements→closure(next) ofMyOrderedSet to the elements reference
of MySet (Figure 1). However there is no systematic way to invert such a mapping. Instead, the
Object Indexing pattern can be used to introduce a String-valued key/identity attribute elementId
into each of Element and Element1, which defines a 1-1 correspondence of instances of these classes
based on equality of the key values:

key Element { elementId };

key Element1 { elementId };

top relation MySet2MyOrderedSet

{ enforce domain src m : MySet { name = n };

enforce domain trg m1 : MyOrderedSet { name = n }
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Place/Place1/ 500 1000 5000 10000 50000 100000
Transition/Transition1
elements

Batch 26.3 47 749 2957.7 67,790.3 –
Forward
Batch 21.3 48.3 740.7 2873.3 68,404.7 –
Reverse
Incremental 5 20.7 230.7 1180.3 22,370 –
Forward
Incremental 6.3 18.7 189 3117.7 25,604 –
Reverse
Medini batch 1381 4050 170,897.7 – – –
Forward
Medini batch 1311.7 3776.3 134,778 – – –
Reverse

Table 2: Execution times (ms) for Petri Net mappings

}

top relation Element2Element1

{ enforce domain src e : Element

{ elementId = id, value = v, set = m : MySet {} };

enforce domain trg e1 : Element1

{ elementId = id, value = v, orderedSet = m1 : MyOrderedSet {} };

when

{ MySet2MyOrderedSet(m,m1) }

}

Figure 1: Unordered and ordered sets metamodels

The Map objects before links pattern is then used to define next/previous links based on
lexicographic ordering of the (distinct) values of the elementIds:

top relation LinkElement1Element1

{ enforce domain src ea : Element { };

enforce domain src eb : Element { };

enforce domain trg ea1 : Element1 { next = eb1 : Element1 { } };

when
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{ ea.set = eb.set and

Element2Element1(ea,ea1) and

Element2Element1(eb,eb1) and

ea.elementId < eb.elementId and

ea.set.elements->forAll( ec |

ec.elementId > ea.elementId implies ec.elementId >= eb.elementId ) }

}

This linking relation has no effect when executed in the src direction, apart from creating the
relation trace. In this direction the relation should be omitted because it violates correctness
condition (a), since it reads target data elements, set , elementId in the when clause.

Otherwise, properties (a) and (e) are clearly satisfied. (b) holds since distinct features name
and elements of MySet/MyOrderedSet are updated by the first two relations. (c) holds for
LinkElement1Element1 because the next/previous features cannot be set to contradictory val-
ues for the same elements by different relation executions: the lexicographic ordering is a total
ordering. (d) holds because set/orderedSet are assigned to elements in Element2Element1.

By examining the logical semantics of the transformation, we can deduce that it can be executed
in incremental mode in the forward direction.

For example:

• Creation of a new e : Element with e.set = s and e1.elementId < e.elementId and
e.elementId < e2.elementId where e1 and e2 are pre-existing elements in s with correspond-
ing Element1 instances e2′ ∈ e1′.next : ConElement2Element1 creates a new e ′ : Element1
corresponding to e, and ConLinkElement1Element1 executes on pairs e1′, e ′ and e ′, e2′ to set
e ′ ∈ e1′.next and e2′ ∈ e ′.next , hence also removing e2′ from e1′.next (because next has
0..1 multiplicity).

• Deletion of such an intermediate e: the trace elements of Element2Element1$trace and
LinkElement1Element1$trace linked to e are deleted. ConLinkElement1Element1 becomes en-
abled on (e1, e2) and establishes e2′ ∈ e1′.next , hence removing e ′ from e1′.next and from
e2′.previous, thus also removing e2′ from e ′.next . CleanupElement1 then deletes e ′.

Examples of execution of these scenarios can be found at [9].
Unlike the previous two examples, this transformation is not bijective, because many different

non-isomorphic target models (ordered sets) could correspond to the same source model (sets).
Table 3 summarises the performance measurements for Java implementations of the case study,
generated from the UML-RSDS semantic representations for the forward and reverse directions.
The forward transformation is much more time consuming than the reverse, since it needs to
create the ordering of elements, which is discarded by the reverse direction. The reverse batch
mode has approximately quadratic time complexity, as does the forward incremental mode (for
value changes of all Element instances). The times for Medini QVT execution of the version of
[12] are also included. The reverse direction has quadratic time complexity, but is a factor of 563
slower than our version for the largest case. Because of the high time complexity of the forward
direction of [12] it was not possible to execute any test case larger than 200 elements in the forward
direction.

E.1.4 Migration of bags

Because the source and target models in this case are related in a semantically complex manner,
we use Auxiliary models to split the transformation into a sequential composition of two sub-
transformations Bag1Bag2, Bag2Bag3 (Figure 2). The separate transformations each involve 1-1
mappings (Element1 to Element2 in Bag1Bag2 and ElementCollection to Element3 in Bag2Bag3).

The first subtransformation relates individual e1 : Element1 elements to the ElementCollection
representing the group of all elements of the bag which have the same value as e1. Firstly,
using Object Indexing, we introduce unique identifier attributes bagId , elementId for bags and
elements, to enforce 1-1 relations of Bag1 to Bag2 and Element1 to Element2. ElementCollection
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Element/Element1 500 1000 5000 10000 50000 100000
elements

Batch 239.7 921 60293 406,152 – –
Forward
Batch 0 5 114.7 421.7 10146 42751
Reverse
Incremental 10.3 15.3 436 1721 – –
Forward
Incremental 0 0 0 5 26 55.3
Reverse
Medini batch – – – – – –
Forward
Medini batch 541.3 1819.3 52,728.7 237,516.3 – –
Reverse

Table 3: Execution times (ms) for sets and ordered sets

Figure 2: Migration of bags metamodels
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is introduced as an intermediate class between bags and elements. It has a key formed as a
combination of the linked bag and its own value:

key Bag1 { bagId };

key Element1 { elementId };

key Bag2 { bagId };

key Element2 { elementId };

key ElementCollection { myBag, value };

subtransformation Bag1Bag2(bag1 : Bag1, bag2 : Bag2)

{ top relation MyBag12MyBag2

{ enforce domain bag1 b1 : MyBag1 { bagId = id };

enforce domain bag2 b2 : MyBag2 { bagId = id };

}

top relation Element12Element2

{ enforce domain bag1 e1 : Element1 { elementId = id, value = v };

enforce domain bag2 e2 : Element2 { elementId = id, value = v };

}

top relation IntroduceElementCollection

{ enforce domain bag1 b1 : MyBag1

{ elements1 = e1 : Element1 { value = v } };

enforce domain bag2 b2 : MyBag2

{ elements2 = ec : ElementCollection

{ value = v, elems = e2 : Element2 { } } };

when

{ MyBag12MyBag2(b1,b2) and

Element12Element2(e1,e2)

}

}

};

Because of the key definitions only one ElementCollection is introduced for each different value
within one bag. In UML-RSDS this is expressed by

ElementCollection->existsLC( ec | ec : b2.elements2 & ec.value = v & ... )

This subtransformation satisfies correctness conditions (a), (b), (c) – because separate additions
to the collection-valued references elements1, elements2 and elems are non-interfering. It also
satisfies (d), (e), and is reversible, as for the general Introduce intermediate class pattern.

In the second subtransformation, Bag2Bag3, element collections are mapped to individual
Element3 elements with multiplicity equal to the number of elems in the collection. As with
element collections, Element3 instances are identified by their bag and value:

subtransformation Bag2Bag3(bag 2 : Bag2, bag3 : Bag3)

{ key Element3 { myBag, value };

top relation MyBag22MyBag3

{ enforce domain bag2 b2 : MyBag2 { bagId = id };

enforce domain bag3 b3 : MyBag3 { bagId = id };

}

top relation ElementCollection2Element3

{ enforce domain bag2 ec : ElementCollection

{ myBag = b2 : MyBag2 {}, value = v };
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enforce domain bag3 e3 : Element3 { myBag = b3 : MyBag3 {}, value = v };

when { MyBag22MyBag3(b2,b3) }

}

The critical step in the transformation is the mapping from an Element3 to an ElementCollection
with a set of Element2 instances. The most direct way to achieve this is to create copies of an
Element2 for each index i from 1 up to e3.multiplicity , for the given e3 : Element3:

top relation MapElementCollection2Element3

{ enforce domain bag2 ec : ElementCollection

{ value = v };

enforce domain bag3 e3 : Element3 { value = v };

when

{ ElementCollection2Element3(ec,e3) }

where

{ e3.multiplicity = ec.elems->size() and

Integer.subrange(1,e3.multiplicity)->forAll( i |

Element2->exists( e2 |

e2.elementId = e3.myBag.bagId + "~" + v + "~" + i and

e2.value = v and e2 : ec.elems ) )

}

}

}

The first conjunct of the where clause is only effective for update in the bag3 direction, and
the second is only effective for update in the bag2 direction, because it updates data Element2,
Element2 :: elementId , etc of bag2.

Note that the second clause violates semantic condition (a) in the bag2 direction, because it
uses an explicit creation of Element2 instances in the where clause, and these created Element2
instances will not exist in any relation trace, and hence will be deleted by the Cleanup phase of
the transformation. To correct this, a non-top relation should be used to create and record the
Element2 instances:

relation Element32Element2

{ primitive domain i : int;

enforce domain bag3 e3 : Element3

{ value = v, myBag = b3 : MyBag3 { bagId = bId } };

enforce domain bag2 ec : ElementCollection

{ elems = e2 : Element2

{ elementId = bId + "~" + v + "~" + i, value = v } }

}

This is called as:

Integer.subrange(1,e3.multiplicity)->forAll( i |

Element32Element2(i,e3,ec))

in the second where clause of MapElementCollection2Element3. Thus our language extension to
permit subtransformations enables an improved solution to this case compared to the original
version of [12].

Table 4 summarises the performance measurements for Java implementations of the case study,
generated from the UML-RSDS semantic representations for the forward and reverse directions.
The times for the two subtransformations are shown separately, as bag1bag2 + bag2bag3 in the
forward direction and as bag3bag2 + bag2bag1 in the reverse. The step from Bag3/Element3
to Bag2/Element2 is the most time-consuming up to 50,000 elements. This step and the Bag2
to Bag1 step are both approximately quadratic, but the Bag1 to Bag2 step has a higher time

9



complexity, because it is a structure constructing transformation. The reverse direction of the
version of [12] is not executable in Medini. The forward direction can only be executed for the
smallest case.

Element/Element1 500 1000 5000 10000 50000 100000
elements

Batch 10.3 + 0 28 + 0 550.3 + 0 4404 + 5 36,512.3 + 8.7 –
Forward
Batch 5.3 + 26 + 346.3 + 1216.3 + 36,962.7 + 145,972 +
Reverse 5.3 15.7 203 754.7 17,900.7 71,318
Medini forward
Batch 467,662.7 – – – – –

Table 4: Execution times (ms) for bag migration

E.1.5 Expression trees and dags

This is an example of an update-in-place bx with recurrent rewrites of models in both forward and
reverse directions. For this case UML-RSDS is more suitable than QVT-R, since the case involves
explicit deletion of elements (in the tree to dag direction).

Figure 3 shows our adaption of the metamodels of this case. We assume that basic ex-
pressions only occur as part of a larger expression, ie., be.outgoing is non-empty for each be :
BasicExpression.

Figure 3: Trees and dags metamodels

In the forward direction there are two rewrite rules. The first operates on pairs of basic
expressions self , be with self ̸= be with duplicate data, the two expressions are then merged into
self , which gains all the outgoing edges of be, and be is deleted:

BasicExpression::

be : BasicExpression & be /= self &

be.name = name & be.value = value =>

outgoing->includesAll(be.outgoing) & be->isDeleted()

Basic expressions form the leaves of the expression tree. The above rule executes until all such
duplicated leaf expressions are removed.

This rule could be imitated in QVT-R using update-in-place semantics:
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top relation MergeBasicExpr

{ checkonly domain source be : BasicExpression { };

checkonly domain source be1 : BasicExpression { };

enforce domain target be : BasicExpression { };

when

{ be /= be1 and be.name@pre = be1.name@pre and

be.value@pre = be1.value@pre and

be.outgoing@pre.size > 0

}

where

{ be1.outgoing@pre->forAll( e | be.outgoing->includes(e) ) }

}

top relation CopyBasicExpr

{ checkonly domain source be : BasicExpression { };

enforce domain target be : BasicExpression { };

when

{ be.outgoing@pre.size > 0 }

}

The effect of the first rule is to move all the outgoing edges from be1 to be. The second rule ensures
that basic expressions with non-empty outgoing are preserved (ie., that other basic expressions
are implicitly deleted). This is an example of deletion by selective copying. Successive iterations
of the transformation result in a single BasicExpression for each name, value combination, with
all the outgoing edges of any of the original basic expressions with that combination.

Similarly, two binary expressions with the same operator and arguments are merged by the
following rule:

BinaryExpression::

bx : BinaryExpression & bx /= self &

bx.operator = operator & bx.incoming.source = incoming.source =>

outgoing->includesAll(bx.outgoing) & bx->isDeleted()

This rule repeats until all such pairs of binary expressions are removed.
The corresponding QVT-R is:

top relation MergeBinaryExpr

{ checkonly domain source bx : BinaryExpression { };

checkonly domain source bx1 : BinaryExpression { };

enforce domain target bx : BinaryExpression { };

when

{ bx /= bx1 and bx.operator@pre = bx1.operator@pre and

bx.incoming.source@pre = bx1.incoming.source@pre and

bx.incoming@pre.size > 0

}

where

{ bx1.incoming@pre->forAll( f | bx.incoming->includes(f) ) and

bx1.outgoing@pre->forAll( e | bx.outgoing->includes(e) ) }

}

top relation CopyBinaryExpr

{ checkonly domain source bx : BinaryExpression { };

enforce domain target bx : BinaryExpression { };

when

{ bx.incoming@pre.size > 0 }

}
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The reverse transformation applies the model rewrites in the reverse direction, and in reverse
order:

BinaryExpression::

outgoing.size > 1 & nx : outgoing =>

BinaryExpression->exists( be | be.operator = operator & be.outgoing = Set{nx} &

incoming->forAll( e |

Edge->exists( ed | ed.label = e.label & ed.target = be &

ed.source = e.source ) ) ) & outgoing->excludes(nx)

BasicExpression::

outgoing.size > 1 & nx : outgoing =>

BasicExpression->exists( be | be.value = value & be.name = name &

be.outgoing->includes(nx) ) & outgoing->excludes(nx)

The default semantics for exists is used here, to create distinct edges between distinct pairs of
expressions, instead of least-change semantics. Again, it is possible to define an update-in-place
QVT-R version based on the UML-RSDS rules. For basic expressions we have:

top relation SplitBasicExpr

{ checkonly domain source be : BasicExpression

{ value = val, name = nme, outgoing = nx : Edge {} } { be.outgoing->size() > 1 };

enforce domain target be1 : BasicExpression { value = val, name = nme };

enforce domain target be : BasicExpression { };

where

{ be1.incoming->includes(nx) & be.outgoing->excludes(nx) }

}

top relation CopyBasicExpr

{ checkonly domain source be : BasicExpression { };

enforce domain target be : BasicExpression { };

when

{ be.outgoing@pre.size <= 1 }

}

Table 5 gives the execution times of the forward and reverse transformations in batch mode. We
give both the UML-RSDS and QVT-R via UML-RSDS results, and the results of the original QVT-
R version executed in Medini. The forward update-in-place QVT-R solution is less efficient than
the pure UML-RSDS version, because of the additional trace management and complexity involved
in QVT-R implicit deletion (the UML-RSDS version immediately discards spurious additional
copies of expressions, but the QVT-R version retains these until the Cleanup phase). The Con
phase of the QVT-R version takes between 10 to 20 times longer to execute than the Cleanup
phase in this case. Only a single iteration of the transformation is required. Similarly in the
reverse direction there is greater overhead of trace testing and management in the QVT-R via
UML-RSDS version. Both directions seem to have approximately quadratic time complexity in
all versions.

E.1.6 Gantt diagrams and CPM networks

This case involves a combination of two patterns: (1) Entity merging/splitting (horizontal) –
both Gantt activities and dependencies map to CPM activities; (2) Introduce intermediate class
(CPM Event). In the case of end-to-start dependencies of activities, the association Activity ::
incomingDependencies is refined to the composition Activity1 :: sourceEvent .incomingActivities,
andActivity :: outgoingDependencies is refined to the compositionActivity1 :: targetEvent .outgoingActivities.
Similarly for other forms of dependency. This transformation was automatically generated (for
the end-to-start case) using the techniques of [1, 4], except for the assignment to Activity1 :: name
for mapped dependencies, and the use of the least-change operator <:=.
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Expression 500 1000 5000 10000 50000 100000
elements

UML-RSDS 11.3 16 135.7 521.3 13568.7 51893.7
Forward
QVT-R/UML-RSDS 62.3 213.7 4539 18685 467,492 –
Forward
UML-RSDS 15.7 47 667 2498.7 59,430 253,103
Reverse
QVT-R/UML-RSDS 31 65.7 1235.7 4773.3 118,792 –
Reverse
Medini batch 634 1426 25,898.3 151,066.3 – –
Forward
Medini batch 893.7 1784.7 23,220 164,488.7 – –
Reverse

Table 5: Execution times (ms) for trees and dags

Figure 4: Gantt to CPM metamodels
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Figure 4 shows the metamodels of the case.
The QVT-R specification is:

top relation GanttDiagram2CPMNetwork

{ enforce domain source ganttdiagram$x : GanttDiagram

{ name = ganttdiagram$x_name$value };

enforce domain target cpmnetwork$x : CPMNetwork

{ name = ganttdiagram$x_name$value };

}

abstract top relation Element2Element1

{ enforce domain source element$x : Element

{ diagram = d : GanttDiagram {} };

enforce domain target element1$x : Element1

{ network = n : CPMNetwork {} };

when { GanttDiagram2CPMNetwork(d,n) }

}

top relation Activity2Activity1 overrides Element2Element1

{ enforce domain source activity$x : Activity

{ name = activity$x_name$value,

duration = activity$x_duration$value };

enforce domain target activity1$x : Activity1

{ activity1Flag = "Activity",

duration = activity$x_duration$value,

name = activity$x_name$value

};

}

top relation Dependency2Activity1 overrides Element2Element1

{ enforce domain source dependency$x : Dependency

{ offset = dependency$x_offset$value };

enforce domain target activity1$x : Activity1

{ activity1Flag = "Dependency",

duration = dependency$x_offset$value };

where

{ activity1$x.name =

dependency$x.predecessor.name + "-->" + dependency$x.successor.name

}

}

top relation MapActivity2Activity1incoming

{ enforce domain source activity$x : Activity

{ incomingDependencies = activity$x_incomingDependencies$x : Dependency { } };

enforce domain target activity1$x : Activity1

{ sourceEvent = activity1$x_sourceEvent$x <:= Event

{ incomingActivities = activity1$x_sourceEvent_incomingActivities$x :

Activity1 { } } };

when

{ Activity2Activity1(activity$x,activity1$x) and

Dependency2Activity1(activity$x_incomingDependencies$x,

activity1$x_sourceEvent_incomingActivities$x) }

}
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top relation MapActivity2Activity1outgoing

{ enforce domain source activity$x : Activity

{ outgoingDependencies = activity$x_outgoingDependencies$x : Dependency { } };

enforce domain target activity1$x : Activity1

{ targetEvent = activity1$x_targetEvent$x <:= Event

{ outgoingActivities = activity1$x_targetEvent_outgoingActivities$x :

Activity1 { } } };

when

{ Activity2Activity1(activity$x,activity1$x) and

Dependency2Activity1(activity$x_outgoingDependencies$x,

activity1$x_targetEvent_outgoingActivities$x) }

}

The variable activity1Flag is introduced by the Entity merging horizontal pattern, and records
the origin of the Activity1 element as either a Gantt Activity or Dependency . This enables the
transformation to be correctly reversed.

Correctness conditions (a) and (e) hold by construction. Condition (b) holds becauseActivity2Activity1
and Dependency2Activity1 update disjoint sets of Activity1 elements. Likewise for
MapActivity2Activity1incoming/outgoing . (c) holds because the outgoingActivities and incomingActivities
of events are sets and hence additions of an Activity1 instance to these features by different rule
applications are non-interfering. Least-change existsLC semantics is used for the Event instantia-
tions, to ensure that single source and target Event instances are maintained for eachActivity in the
source model. For (d), for each Element/Element1, the mandatory link to the diagram/network
of the element is established by the transformation. However, source events are not necessarily
created for activities if they have no incoming dependencies, likewise target events may be omitted
for activities without outgoing dependencies. To correct this, the events would need to be created
by Activity2Activity1 and looked up by the MapActivity rules.

Table 6 shows execution times for the batch and incremental modes of this case study. The
batch transformations have approximately quadratic time complexity. We attempted to execute
the original transformation of [12] in Medini, however the forward transformation could not be
executed for more than 100 elements (with execution time 59,254ms) without producing a stack
overflow error, and the reverse could not execute a case of 50 elements.

Activity/Activity1 500 1000 5000 10000 50000 100000
elements

Batch 0 20.7 237 796 17437 68,892.3
Forward
Batch 10.7 21 222 734.7 16778.3 69,693.7
Reverse
Incremental 5.3 5.3 19.7 17.7 95.3 803
Forward
Incremental 5.3 10.3 10.3 24 115.7 2485
Reverse

Table 6: Execution times for Gantt to CPM

E.1.7 Ecore models and relational schemas

This transformation combines horizontal entity merging and vertical entity splitting. For example,
in the forward direction an EClass maps to a Table and a linked PrimaryKey (vertical entity split-
ting), and in the reverse direction a Column may map to either an EAttribute or an EReference.
Auxiliary metamodel is also used to add an Annotation class in the schema metamodel to record
specific Ecore model information which is discarded by the main forward translation [12]. Intro-
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duce intermediate class is used in the forward direction to represent Ecore inheritance via SQL
foreign keys.

E.2 Incremental bidirectional transformations

We consider three incremental bx cases which illustrate the application of MT design patterns to
QVT-R:

• Trees to graphs [5]

• UML to Python

• Hsm2nhsm [10]

E.2.1 Trees to graphs

This case is an example of introducing/removing an intermediate class (Edge) into/from a self-
association. Figure 5 shows the metamodels of this transformation. The transformation was
automatically generated from these metamodels using the techniques of [1].

Figure 5: Tree and graph metamodels

The conceptual mapping here is from Tree features parent and children to the Node composed
features outgoing .dest and incoming .source.

The Map objects before links pattern is used to map source elements in one relation, with
element links mapped in a second relation:

top relation Tree2Node

{ enforce domain source treex : Tree

{ n = treex_n$value };

enforce domain target nodex : Node

{ name = treex_n$value };

}

For each tree, the link to its parent tree is mapped to the graph node outgoing edge, this edge
is also added to the incoming edges for the node representing the parent:

top relation MapTree2Node

{ enforce domain source treex : Tree

{ parent = treex_parent$x : Tree { } };

enforce domain target nodex : Node

{ outgoing = nodex_outgoing$x : Edge

{ dest = nodex_outgoing_dest$x : Node { } } };

when
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{ Tree2Node(treex,nodex) and

Tree2Node(treex_parent$x,nodex_outgoing_dest$x) }

}

Correctness properties (a), (b) and (e) are clearly true. (c) holds since incoming and children
are set-valued with unbounded multiplicity and hence addition updates to them in one relation
application cannot invalidate positive membership properties established for them in another re-
lation. (d) holds since source and dest are set for each edge on its creation, and parent is set when
a tree is defined from a node.

The transformation is bijective, with tree instances corresponding 1-1 to nodes, and tree to
tree parent links corresponding 1-1 to edges. The reverse transformation only produces valid tree
models if executed on a graph model where each node has outgoing→size() ≤ 1. We permit ‘trees’
to have cycles in the parent relation. The root tree is its own parent. The transformation is
incremental in both directions for creation/deletion and addition changes. Example scenarios are
included in the qvt2umlrsds dataset.

Table 7 gives efficiency results for the forward and reverse transformations. The time complex-
ity appears to be approximately linear in both directions.

Tree/Node 500 1000 5000 10000 50000 100000
elements

Batch 5 10.3 31.3 68 219 502
Forward
Batch 5.3 11.7 22.3 59.3 212.7 427.3
Reverse
Incremental 0 0 5.3 15.3 52.3 94
Forward
Incremental 0 5 5 15.3 52.3 101
Reverse

Table 7: Execution times (ms) for tree2graph

E.2.2 UML to Python

An example case of the flattening pattern is the flattening of class inheritance hierarchies when
mapping from UML to Python (Figure 7): each class e in UML is represented in Python by a
class c that owns all direct and inherited attributes of e, and the inheritance relation is discarded.

This is an example of Recursive *-accumulation (Figure 6) of the UML attribute sets into the
Python attribute sets. This form of flattening maps an association closure in the source model to
a single association in the target model, in this case the set

Set{self }→closure(general)→unionAll(ownedAttribute)

evaluated on Entity is mapped to PythonClass :: attributes.
This transformation can be reversed by reconstructing UML inheritance based on the idea that

class e1 is a subclass of e2 iff the collection of attributes of the flattened class c1 is a superset of
those of the flattened class c2. The Auxiliary metamodel pattern [7] is used to introduce a new
attribute for each UML class, so that no two different classes have the same owned or accumulated
attributes.

UML properties are copied 1-1 to Python attributes by a top relation Property2Attribute, and
UML classes are copied 1-1 to Python classes by a top relation Entity2PythonClass:

top relation Entity2PythonClass

{ enforce domain design e : Entity { name = n };

enforce domain py c : PythonClass { name = n };

}
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Figure 6: Recursive *-accumulation

name is a unique key for Entity and PythonClass, and elementId for Property and Attribute.

Figure 7: Extracts of UML design and Python metamodels

The Map objects before links pattern then applies to connect Python attributes to classes in
the py direction, and UML properties to classes in the design direction:

top relation LinkAttributes2PythonClasses

{ enforce domain design e : Entity { ownedAttribute = prop : Property {} };

enforce domain py c : PythonClass { attributes = a : Attribute {} }

{ a.owners@pre->selectMinimals(attributes@pre->size())->includes(c) };

when { Property2Attribute(prop,a) and Entity2PythonClass(e,c) }

}

In the py direction only features of c and a can be modified to make the relation true. The
owned attributes of e are copied to c. Any other c′ that already contains these attributes must be
less abstract than c, ie., it corresponds to a subclass of e, and hence the additional condition of the
c domain is automatically true. The condition is not effective as an update in the py direction and
is not included in the Conτ rule succedent in this direction – otherwise it would break correctness
condition (a). The @pre suffix on target data in the condition is required because otherwise the
condition would violate property (a): target data being read in the py direction.

In the design direction only features of prop and e are writable. Attributes a are only copied
from c to e if they do not exist in a more abstract Python class, ie., they are owned by e instead
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of being inherited. In a similar manner, UML inheritance can be reconstructed on the basis of
subsetting of attribute sets in the Python model:

top relation LinkGeneralisations

{ enforce domain design e1 : Entity { };

enforce domain design e2 : Entity { } { e1.general->includes(e2) };

enforce domain py c1 : PythonClass { };

enforce domain py c2 : PythonClass { }

{ c1.attributes->includesAll(c2.attributes@pre) and

PythonClass->forAll( cx |

c1.attributes@pre->includesAll(cx.attributes@pre) and

cx.attributes@pre->includesAll(c2.attributes@pre) implies

(cx = c1 or cx = c2)) };

when { LinkAttributes2PythonClasses(e1,c1) and

LinkAttributes2PythonClasses(e2,c2) and

e1 <> e2 and c1 <> c2 }

}

The condition of c2 states that c2 represents a direct superclass of c1 – there is no strictly
intermediate class cx in the ordering induced by subsetting of class attribute sets. The use of
attributes@pre in the effective update (first predicate) of the where clause is necessary to avoid
breaking correctness condition (a). The second predicate is not effective for update (cx cannot be
updated within the expression) and is used only as a test, in the design direction.

Correctness condition (b) holds in the forward direction since the three relations either write
to separate features of PythonClass, or add elements to the set-valued owners and attributes
features. In the reverse direction the same applies for ownedAttribute and general features of
Entity . (d) is satisfied since there are no mandatory references. Example scenarios can be found
in the qvt2umlrsds dataset.

Table 8 gives efficiency results for the forward and reverse transformations. The relatively
high execution times are due to the complex conditions involved in the transformation relations,
particularly in the reverse direction, which reconstructs inheritance information. However the time
complexity appears to be approximately quadratic in both directions.

Property/Attribute 500 1000 5000 10000 50000 100000
elements

Batch 93.7 336.3 7800.3 29843.7 879,615 –
Forward
Batch 213.7 767.3 18617.3 74922.3 – –
Reverse
Incremental 0 5 16 15.3 83.3 –
Forward
Incremental 5 0 16 26 – –
Reverse

Table 8: Execution times (ms) for UML2Python

Given the restriction that p1 ̸= p2 ⇒ p1.attributes ̸= p2.attributes, the transformation is
bijective. We have used a similar strategy to rewrite the classic UML to RDBMS example as a
bx, without the quality flaws of excessive coupling and mutually-recursive relations present in the
original version [11]. The revised version uses only when dependencies, with no where clauses.

Other types of flattening are an extension of this situation, where the discarded nodes need to
be reconstructed. For example, if only leaf Python classes had been retained, other classes could
be reconstructed based on finite sets ps of leaf classes such that ps→intersectAll(attributes) is non-
empty. In the design direction a UML class would be constructed for each such set. Inheritance
would be based on the subsetting of these sets.
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E.2.3 Hsm2nhsm

Another example of flattening is the hierarchical to non-hierarchical state machine transformation
of [10]. Figure 8 shows the source and target metamodels of our version of this case. The forward
transformation was derived from the metamodels using the approach of [1], together with the use
of the recursive *-accumulation flattening pattern.

Figure 8: Hierarchical to flat state machine metamodels

States and transitions are copied from the source to the target model, with all state inclusion
structure being discarded. There is horizontal entity merging of CompositeState and BasicState
into FlatState, and a new flag attribute is used to distinguish these cases:

abstract top relation State2FlatState

{ enforce domain source state$x : State

{ name = v };

enforce domain target flatstate$x : FlatState

{ name = v };

}

top relation CompositeState2FlatState overrides State2FlatState

{ enforce domain source compositestate$x : CompositeState { };

enforce domain target flatstate$x : FlatState

{ flatstateFlag = "CompositeState" };

}

top relation Transition2FlatTransition

{ enforce domain source transition$x : Transition

{ id = v };

enforce domain target flattransition$x : FlatTransition

{ id = v };

}

top relation BasicState2FlatState overrides State2FlatState

{ enforce domain source basicstate$x : BasicState

{ };

enforce domain target flatstate$x : FlatState

{ flatstateFlag = "BasicState" };

}

The outgoing and incoming transitions of a flattened state are all its direct outgoing/incoming
transitions, together with those from all its recursively containing states:

top relation MapCompositeState2FlatStateincoming
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{ checkonly domain source v1 : Transition {};

enforce domain source compositestate$x : CompositeState { }

{ Set{compositestate$x}->closure(superstate)->unionAll(incoming)->includes(v1) };

enforce domain target flatstate$x : FlatState

{ incoming = flatstate$x_incoming$x : FlatTransition { } };

when

{ CompositeState2FlatState(compositestate$x,flatstate$x) and

Transition2FlatTransition(v1,flatstate$x_incoming$x) }

}

top relation MapCompositeState2FlatStateoutgoing

{ checkonly domain source v0 : Transition {};

enforce domain source compositestate$x : CompositeState { }

{ Set{compositestate$x}->closure(superstate)->unionAll(outgoing)->includes(v0) };

enforce domain target flatstate$x : FlatState

{ outgoing = flatstate$x_outgoing$x : FlatTransition { } };

when

{ CompositeState2FlatState(compositestate$x,flatstate$x) and

Transition2FlatTransition(v0,flatstate$x_outgoing$x) }

}

top relation MapBasicState2FlatStateincoming

{ checkonly domain source v1 : Transition {};

enforce domain source basicstate$x : BasicState

{ Set{basicstate$x}->closure(superstate)->unionAll(incoming)->includes(v1) };

enforce domain target flatstate$x : FlatState

{ incoming = flatstate$x_incoming$x : FlatTransition { } };

when

{ BasicState2FlatState(basicstate$x,flatstate$x) and

Transition2FlatTransition(v1,flatstate$x_incoming$x) }

}

top relation MapBasicState2FlatStateoutgoing

{ checkonly domain source v1 : Transition {};

enforce domain source basicstate$x : BasicState

{ Set{basicstate$x}->closure(superstate)->unionAll(outgoing)->includes(v1) };

enforce domain target flatstate$x : FlatState

{ outgoing = flatstate$x_outgoing$x : FlatTransition { } };

when

{ BasicState2FlatState(basicstate$x,flatstate$x) and

Transition2FlatTransition(v1,flatstate$x_outgoing$x) }

}

The transformation follows the standard template for recursive *-accumulation. Conditions (a)
and (e) hold by construction. Condition (b) holds since basic and composite states are mapped
to disjoint sets of flat states (since name is a key for states). (c) holds since the features incoming
and outgoing are set-valued and hence successive additions to these are non-interfering. (d) holds
since there are no mandatory references. Separate inverse rules for the Map∗ relations are needed
for the reverse transformation, to reconstruct superstate and the incoming and outgoing references
of the hierarchical model from the flattened model. These are defined as a reverse of recursive
*-accumulation (Figure 6). The reverse direction is specified by two linking relations, which
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reconstruct g and f based on r , according to the mappings:

F→select(a |
r→includesAll(a.r) and
r ̸= a.r)→selectMaximals(r .size) 7−→ g

r − F→select(a |
r→includesAll(a.r) and
r ̸= a.r)→unionAll(r) 7−→ f

These are valid if a1 ̸= a2 ⇒ a1.r ̸= a2.r , so that g has no cycles, where F is the owner of r
and is the image of the class on which g is a self-association. The idea of the reverse mapping
is that gx : F represents a g-ancestor of fx : F iff fx .r→includesAll(gx .r) and gx ̸= fx . The gx
representing immediate g-parents of fx are those g-ancestors with maximal gx .r size. In the state
machine example, both incoming and outgoing of flat states need to be considered in reconstructing
superstate: the idea is that flat state sx represents a containing state of flat state fx iff

fx ̸= sx and
fx .outgoing→includesAll(sx .outgoing) and
fx .incoming→includesAll(sx .incoming)

Table 9 shows the performance data for this case. The time complexity is approximately
quadratic in both directions. As with the UML to Python case, the reverse transformation is
significantly more costly than the forward direction, because these reverse transformations involve
reconstruction of model structure, compared to the flattening forward transformations, which
discard model structure.

State/Transition 500 1000 5000 10000 50000 100000
elements

Batch 216.3 843.7 17307.7 73,618.3 – –
Forward
Batch 489.3 1907 43,533.7 199,853.3 – –
Reverse
Incremental 0 12.7 17.3 47 – –
Forward
Incremental 191.7 733.7 17,657.7 77,116 – –
Reverse

Table 9: Execution times (ms) for HSM2FSM

E.3 Comparison

The above cases can be evaluated in terms of the quality metrics of [8] and in terms of the bx
properties they support. Table 10 compares previous versions of the cases in QVT-R or ETL
(for the tree to graph case) with the QVT-R and UML-RSDS versions defined in this paper, with
regard to the number of quality flaws per LOC. For the tree to dag case the data of the update
in place QVT-R version is used in the forward direction, and data of the UML-RSDS version in
the reverse direction. We give the performance gain ratios of our versions relative to the original
versions (for the cases of [12]). In each case our solutions have the same or fewer flaws than
previous solutions, and are more efficient for batch mode execution.

Table 11 summarises the bx properties of our solutions.
We have therefore improved on the properties of the solutions of [12] in two cases: the mapping

of bags has been specified by a bidirectional transformation instead of by two separate forward and
reverse transformations, and for trees and dags we specified forward and reverse transformations
which are closely related and mutually inverse. We also provided incremental solutions for 4
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Case Original version Revised version Performance
Flaws/LOC Flaws/LOC gain

Tree to graph [5] 1/15 0/17 –
UML to Python – 0/30 –
Hsm2nhsm 2/48 1/70 –

Person migration 0/63 0/19 893 (forward)
575 (reverse)

Weighted/unweighted 2/115 1/60 228 (forward)
Petri nets 182 (reverse)
Unordered/ordered sets 1/121 0/29 563 (reverse)
Migration of bags 1/157 0/66 45,404 (forward)
Expression trees/dags 8/439 0/80 8.1 (forward)

34.5 (reverse)
Gantt2CPM 10/378 1/54 –

Table 10: Quality flaw and performance measures for cases

of the 6 cases of [12], and provided a deterministic solution for the sets/ordered sets case. We
improved the Hsm2nhsm transformation of [10] by eliminating the circular calling dependencies
of the previous solution. The application of patterns and ideas from UML-RSDS have helped to
simplify and systematise the transformation specifications.
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Case Bidirectionality Batch/Incremental Deterministic Patterns used

Tree to graph Bidirectional Incremental Yes Introduce/remove
intermediate class;
Map objects
before links

UML to Python Bidirectional Incremental Yes Recursive
*-accumulation;
Auxiliary
metamodel;
Map objects
before links

Hsm2nhsm Partly separate Incremental Yes Recursive
forward/reverse *-accumulation;

Entity merging/
splitting (horizontal);
Map objects
before links

Person migration Bidirectional Incremental Yes Lens
Weighted/ Bidirectional Incremental Yes Introduce/remove
unweighted intermediate classes;
Petri nets Map objects

before links
Unordered/ Bidirectional Incremental Yes Map objects
ordered sets before links;

Object indexing
Migration of bags Bidirectional Batch Yes Auxiliary models;

Object indexing;
Lens; Introduce/
remove intermediate
class; Map objects
before links

Expression trees/ Mutually inverse Batch No Deletion by
dags forward/reverse selective copy
Gantt2CPM Bidirectional Incremental Yes Entity merging

splitting (horizontal);
Introduce/remove
intermediate class;
Map objects
before links

Table 11: Bx properties for cases
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