Online Resource

Methane Preconcentration by Adsorption A methodology for materials and conditions selection

Simon Eyer, Nicholas P. Stadie, Andreas Borgschulte, Lukas Emmenegger, and Joachim Mohn

Simon Eyer, Lukas Emmenegger, Joachim Mohn Empa, Laboratory for Air Pollution & Environmental Technology,

Überlandstrasse 129,

8600 Dübendorf, Switzerland

Nicholas P. Stadie, Andreas Borgschulte

Empa, Laboratory of Hydrogen & Energy,

Überlandstrasse 129,

8600 Dübendorf, Switzerland

Corresponding author (Simon Eyer):

Tel.: +41 58 765 42 59

Fax: +41 58 765 42 59

E-mail: simon.eyer@empa.ch

Adsorption

In the supplementary material, selection and optimization of fitting procedures (adsorption model and parameterization) for experimentally measured adsorption isotherms (Figure 1 – 6) are discussed. Methane and nitrogen adsorption isotherms were collected in two temperature regions: at "high" temperatures (T= 196, 273, and 296 K) to calculate the isosteric enthalpy of adsorption and evaluate the selectivity for CH_4 over N_2 , and at "low" temperature (T = 77 K) to determine the adsorbent surface area. Details on the applied fitting procedures and the derived parameters are given in the following sections.

High temperature adsorption isotherms (196, 273, 296 K)

Adsorption isotherms of CH_4 and N_2 were collected in the pressure range from 0 to 100 kPa at three temperatures (196, 273 and 296 K). Based on this data, the selectivity of CH_4 over N_2 and the isosteric enthalpy of adsorption were calculated for all six candidate adsorbents, as presented in the "Results and discussion" section of the manuscript. Isotherms were fitted by both a second order virial equation (Eq. 1) and a Langmuir equation, and the goodness of fit was compared (as shown in Figure O1).

Figure O1: Root-mean square deviation (RMSD) of CH₄ isotherms from Langmuir and virial equation fits for all candidate materials at different adsorption temperatures.

$$RMSD = \sqrt{\sum_{k=0}^{n} (y_i - f_i)^2} / n$$
 (Eq. O1)

The goodness of fit was determined by summing the least square residuals for each point, according to Eq. O1. Figure O1 reveals that the agreement of the virial equation with the experimental data is superior to the Langmuir model especially at higher temperatures. In Table O1 the respective error

values are given and in Table O2 the optimized fit parameters for a second order virial equation for each candidate material are given.

CH ₄	Т	HayeSep D	MWCNT	HKUST-1	ZIF-8	Z5A	Z13X
Langmuir	196 K	0.0067022	0.0067880	0.0374812	0.0176922	0.0112182	0.0211841
	273 K	0.0007018	0.0017387	0.0278759	0.0048329	0.0061464	0.0158652
	296 K	0.0003203	0.0023366	0.0044858	0.0041373	0.0041196	0.0031918
Virial	196 K	0.0011105	0.0047162	0.0320524	0.0042345	0.0148083	0.0232007
	273 K	0.0003261	0.0006095	0.0054833	0.0002609	0.0004430	0.0004663
	296 K	0.0001979	0.0004289	0.0016017	0.0002049	0.0001780	0.0002803

Table O1: Root-mean square deviation (RMSD) (mmol/g) of CH_4 isotherms from Langmuir and virial equation fits for all candidate materials at different adsorption temperatures.

	Material	aterial a ₀		a ₂	b ₀	b1	b ₂	ΔH_0	
								(kJ mol ⁻¹)	
CH_4	HayeSep D	-2397.720	1052.420	-1906.380	14.515	-3.916	9.454	19.935	
	MWCNT	-1899.880	-1238.260	4554.410	12.556	7.724	-23.561	15.796	
	HKUST-1	-1882.530	-130.870	-8.977	10.958	0.633	0.056	15.651	
	ZIF-8	-1676.200	-51.416	52.072	11.650	0.263	-0.258	13.936	
	Zeolite 5A	-2547.020	-292.460	7.361	13.711	1.138	0.292	21.176	
	Zeolite 13X	-2206.770	-488.529	419.245	13.248	2.020	-1.842	18.347	
N ₂	HayeSep D	-1519.140	-105.573	-10420.700	12.865	0.226	54.753	12.630	
	MWCNT	-1696.560	-1579.990	-10000.000	13.049	10.115	50.408	14.105	
	HKUST-1	-1698.160	21.277	-476.111	11.463	0.033	2.425	14.119	
	ZIF-8	-1365.400	1675.840	-13963.400	11.738	-8.398	71.200	11.352	
	Zeolite 5A	-3140.820	443.578	-16.857	16.041	-0.828	0.067	26.113	
	Zeolite 13X	-2201.770	781.992	-3238.400	13.811	-3.541	16.597	18.306	

Table O2: Fit parameters for second order virial-type equation and the derived isosteric enthalpy of adsorption for the studied candidate adsorbents.

Low temperature adsorption isotherms (77 K)

Adsorption isotherms of CH_4 and N_2 at liquid nitrogen temperature (77 K) were determined for all candidate adsorbents and fitted with both the BET and Langmuir model to determine the surface area of each material. The quality of each fit was assessed based on the R^2 value. In Table O3, the specific surface areas (SSA) calculated using the BET and the Langmuir model, as well as the number of data points included in the fit and the R^2 values are given. Numbers in bold correspond to a better model fit (R^2 values). The model selection agrees well with the qualitative evaluation as discussed in the section "surface area" of the main manuscript. For the metal-organic frameworks (HKUST-1 and ZIF-8), the calculated surface area was highly dependent on the selected model For methane adsorption on HayeSep D both models agreed similarly well, but resulted in very different surface areas. Based on its slightly higher R^2 value and better consistency with the macroporous structure of HayeSep D the BET model was selected.

	N ₂						CH4					
	BET			Langmuir			BET			Langmuir		
	No. Points	R^2	SSA	No. Points	R^2	SSA	No. Points	R^2	SSA	No. Points	R^2	SSA
			(m²/g)			(m²/g)			(m²/g)			(m²/g)
HSD	11	0.995	609	11	0.996	640	9	0.999	856	9	0.996	1300
	18	0.999	692				7	0.999	887	7	0.998	1181
CNT	11	0.999	390	6	0.999	385	7	1.000	481	7	0.998	547
HKUST-	5	1.000	361				16	1.000	501			
1	16	0.997	1532	40	1.000	1690	54	0.816	2183	54	0.552	5178
	7	1.000	1462				57	0.770	1505	57	0.931	2526
ZIF-8	28	0.986	1473	34	1.000	1702	48	0.784	1240	22	0.977	1988
	24	0.953	1619				32	0.936	1753			
Z5A	14	1.000	462	40	1.000	537	10	0.965	552	57	0.999	622
Z13X	6	1.000	540	29	0.999	628	17	0.812	510	18	0.973	794

Table O3: Fitting parameters of the BET and the Langmuir model for N_2 and CH_4 adsorption isotherms of different candidate adsorbents, including the number of fitted points, R^2 values and the specific surface area (SSA). The numbers in bold indicate a better model fit (R^2 value).