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A Technical Background

In the following section, we briefly review the Bayesian filtering
algorithms that we use as basis for our differentiable filters.

A.1 Kalman Filter

The Kalman filter (Kalman, 1960) is a closed-form solution
to the filtering problem for systems with a linear process and
observation model and Gaussian additive noise:

f(xt,ut) = Axt + But + qt qt ∼ N(0,Qt) (S1)

h(xt) = Hxt + rt rt ∼ N(0,Rt) (S2)

The belief about the state x is represented by the mean
µ and covariance matrix Σ of a normal distribution. At each
timestep, the filter predicts µ̂t and Σ̂t using the process model.
The innovation it is the difference between the predicted
and actual observation and is used to correct the prediction.
The Kalman Gain K trades-off the process noise Q and the
observation noise R to determine the magnitude of the update.

Prediction Step:

µ̂t = Aµt−1 + But (S3)

Σ̂t = AΣt−1A
T + Qt−1 (S4)

Update Step:

St = HΣ̂tH
T + Rt (S5)

Kt = Σ̂tH
TS−1

t (S6)

it = zt −Hµ̂t (S7)

µt = µ̂t + Ktit (S8)

Σt = (In −KtH)Σ̂t (S9)

A.2 Extended Kalman Filter (EKF)

The EKF (Sorenson, 1985) extends the Kalman filter to sys-
tems with non-linear process and observation models. It re-
places the linear models for predicting µ̂ in Equation S3 and
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the corresponding observations ẑ in Equation S7 with non-
linear models f(·) and h(·). For predicting the state covariance
Σ and computing the Kalman Gain K, these non-linear mod-
els are linearized around the current mean of the belief. The
Jacobians F|µt and H|µt replace A and H in Equations S4 -
S6 and S9. This first-order approximation can be problematic
for systems with strong non-linearity, as it does not take the
uncertainty about the mean into account (Van Der Merwe,
2004).

A.3 Unscented Kalman Filter (UKF)

The UKF (Julier and Uhlmann, 1997; Van Der Merwe, 2004)
was proposed to address the aforementioned problem of the
EKF. Its core idea, the Unscented Transform (Julier and
Uhlmann, 1997), is to represent a Gaussian random variable
that undergoes a non-linear transformation by a set of specifi-
cally chosen points in state space, the so called sigma points
χ ∈ X.

λ = α2(κ+ n)− n (S10)

χ0 = µ

χi = µ± (
√

(n+ λ)Σ)i ∀i ∈ {1...n} (S11)

w0
m =

λ

λ+ n
w0
c =

λ

λ+ n
+ (1− α2 + β)

wim = wic =
0.5

λ+ n
∀i ∈ {1...2n} (S12)

Here, n is the number of dimensions of the state x. Each
sigma point χi has two weights wim and wic. The parameters α
and κ control the spread of the sigma points and how strongly
the original mean χ0 is weighted in comparison to the other
sigma points. β = 2 is recommended if the true distribution
of the system is Gaussian.

The statistics of the transformed random variable can
then be calculated from the transformed sigma points. For
example, in the prediction step of the UKF, the non-linear
transform is the process model (Eq. S13) and the new mean
and covariance of the belief are computed in Equations S14
and S15.
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X̂t = f(Xt−1,ut) (S13)

µ̂t =
∑
i

wimχ̂it (S14)

Σ̂t =
∑
i

wic(χ̂
i
t − µ̂t)(χ̂

i
t − µ̂t)

T + Qt (S15)

In the observation update step, S, K and i from Equations
S5, S6 and S7 are likewise replaced by the following:

ẑt =
∑
i

wimh(χ̂it) (S16)

St =
∑
i

wic(h(χ̂it)− ẑt)(h(χ̂it)− ẑt)
T + Rt (S17)

Kt =
∑
i

wic(χ̂
i
t)− µ̂t)(h(χ̂it)− ẑt)

TS−1
t (S18)

it = zt −Hµ̂t (S19)

In theory, the UKF conveys the nonlinear transformation
of the covariance more faithfully than the EKF and is thus
better suited for strongly non-linear problems (Thrun et al.,
2005). In contrast to the EKF, it also does not require com-
puting the Jacobian of the process and observation models,
which can be advantageous when those models are learned.

In practice, tuning the parameters of the UKF can, how-
ever, sometimes be challenging. If α2(κ + n) is too big, the
sigma points are spread too far from the mean and the predic-
tion uncertainty increases. However, for 0 < α2(κ+ n) < n,
the sigma point χ0, which represents the original mean, is
weighted negatively. This not only seems counter-intuitive, but
strongly negative w0 can also negatively affect the numerical
stability of the UKF(Wu et al., 2006), which sometimes causes
divergence of the estimated mean. In addition, if κ

n+κ
< 0,

the estimated covariance matrix is not guaranteed to be posi-
tive semi definite any more. This problem can be solved by
changing the way in which Σ is computed (see Appendix III
in Julier et al. (2000)).

A.4 Monte Carlo Unscented Kalman Filter (MCUKF)

The UKF represents the belief over the state with as few
sigma points as possible. However, finding the correct scaling
parameters α, κ and β can sometimes be difficult, especially
if the state is high dimensional. Instead of relying on the
Unscented Transform to calculate the mean and covariance of
the next belief, we can also resort to Monte Carlo methods,
as proposed by Wüthrich et al. (2016).

In practice, this means replacing the carefully constructed
sigma points and their weights in Equations S11 and S12 with
uniformly weighted samples from the current belief. The rest
of the UKF algorithm remains the same, but more sampled
pseudo sigma points are necessary to represent the distribution
of the belief accurately.

A.5 Particle Filter (PF)

In contrast to the different variants of the Kalman filter ex-
plained before, the Particle filter Gordon et al. (1993) does not
assume a parametric representation of the belief distribution.
Instead, it represents the belief with a set of weighted particles.

Table S1: Sensor model and heteroscedastic observation

noise architecture. Both fully connected output layers

(for z and diag(R)) get fc 2’s output as input.

Layer Output Size Kernel Stride Activation

Input D 100× 100× 3 - - -
conv 1 50× 50× 4 9× 9 2 ReLU
conv 2 25× 25× 8 9× 9 2 ReLU
fc 1 16 - - ReLU
fc 2 32 - - ReLU

z 2 - - -
diag(R) 2 - - -

This allows the filter to track multiple hypotheses about the
state at the same time and makes it a popular choice for tasks
like localization or visual object tracking (Thrun et al., 2005).

An initial set of particles χi0 ∈ X0 is drawn from the
initial belief and initialized with uniform weights π. In the
prediction step, new particles are generated by applying the
process model to the old particle set and sampling additive
process noise:

Xt = f(Xt−1,ut,qt) (S20)

In the observation update step, the weight πit of each
particle χit is updated using current observation zt by

πit = πit−1p(zt|χit) ∀χit ∈ Xt (S21)

A potential problem of the PF is particle deprivation:
Over time, many particles will receive a very low likelihood
p(zt|χit), and eventually the state would be represented by
too few particles with high weights. To prevent this, a new
set of particles with uniform weights can be drawn (with
replacement) from the old set according to the weights. This
resampling step focuses the particle set on regions of high
likelihood and is usually applied after each timestep.

B Extended Experiments: Simulated Disc

Tracking

In the following, we present additional information about
the experiments we performed for evaluating the DFs. This
includes detailed information about the network architectures
for each task, extended results and additional experiments.

B.1 Network Architectures and Initialization

The network architectures for the sensor model and het-
eroscedastic observation noise model are shown in Table S1.
Tables S2 and S3 show the architecture for the learned process
model and the heteroscedastic process noise. We denote fully
connected layers by fc and convolutional layers by conv.

For the initial belief, we use Σinit = 25∗I4. When training
from scratch, we initialize Q and R with Q = 100 ∗ I4 and
R = 900 ∗ I2, reflecting the high uncertainty of the untrained
models.
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Table S2: Learned process model architecture

Layer Output Size Activation

Input x 4 -
fc 1 32 ReLU
fc 2 64 ReLU
fc 3 64 ReLU

∆x (fc) 4 -

Table S3: Heteroscedastic process noise model architec-

ture

Layer Output Size Activation

Input x 4 -
fc 1 32 ReLU
fc 2 32 ReLU

diag(Q) (fc) 4 -

B.2 Implementation and Parameters

All experiments for evaluating different design choices and
filter-specific parameters are performed on a dataset with 15
distractors and constant process noise (σp = 0.1, σv = 2). The
filters are trained end-to-end on LNLL and learn the sensor
and process model as well as heteroscedastic observation and
constant process noise models. We repeat each experiment
two times to account for different initializations of the weights
and report mean and standard errors.

B.2.1 dUKF

Experiment: The original version of the UKF by Julier and
Uhlmann (1997) uses a simple parameterization where α = 1
and β = 0 are fixed and only κ varies. The authors recommend
setting κ = 3−n. α and β are used in the later proposed scaled
unscented transform (Julier, 2002), for which Van Der Merwe
(2004) suggest setting κ = 0, β = 2 and α to a small positive
value.

We evaluate the original, simple parameterization as well
as the one for the scaled transform. For the first, we test
training the dUKF with κ values in [−10, 10]. In the second
case, we evaluate α ∈ {0.001, 0.1, 0.5} but do not vary β, for
which the value 2 is optimal when working with Gaussians.

Results: As discussed in Section 6.2.1 of the main document,
the results show no significant differences between the different
parameter settings or between using the original parameteriza-
tion from Julier and Uhlmann (1997) and the scaled transform.
Only for κ < −n, the training failed due to a non-invertible
matrix in the calculation of the Kalman Gain.

B.2.2 dMCUKF

The results discussed in Section 6.2.2 of the main document
are visualized in Figure S1.

B.2.3 dPF: Belief Representation

The results discussed in Section 6.2.3 are visualized in Fig-
ure S2.
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Fig. S1: Results on disc tracking: Tracking error and

negative log likelihood of the dMCUKF and dPF-M for

different numbers of sampled sigma points or particles
during training and 500 sigma points / particles for

testing.
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Fig. S2: Results on disc tracking: Tracking error and

negative log likelihood of the dPF-M and dPF-G, each

with using the analytical or learned (-lrn) observation

update. The dPF-M and dPF-M-lrn are also evaluated

for different values of the fixed per-particle covariance

matrix Σ = σ2I in the GMM.

B.2.4 dPF: Observation Update

The likelihood for the observation update step of the dPF
can be implemented with an analytical Gaussian likelihood
function (dPF-(G/M)) or with a neural network (dPF-(G/M)-
lrn) as in Jonschkowski et al. (2018) and Karkus et al. (2018).

Jonschkowski et al. (2018) predict the likelihood based on
an encoding of the sensory data and the observable compo-
nents of the (normalized) particle states. Our implementation,
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too, takes the 64-dimensional encoding of the raw observations
(fc 3 in Table S1) and the observable particle state components
as input. However, we decide not to normalize the particles,
since having prior knowledge about the mean and standard
deviation of each state component in the dataset might give
an unfair advantage to the method over other variants.

Results: Results for comparing the learned and analytical
observation update can be found in Figure S2. Using a learned
instead of an analytical likelihood function for updating the
particle weights improves the tracking error of the dPF-M from
10.3±0.1 to 8.3±0.1 and the NLL from 29.6±0.2 to 28.7±0.1.
For the dPF-G, the difference is even more dramatic, with an
RMSE of 23.3±1.1 vs. 8.0±0.3 and an NLL of 31.0±0.05 vs.
27.5±0.1.

B.2.5 dPF: Resampling

The results for Section 6.2.5 of the main document are visual-
ized in Figure S3.

B.2.6 dPF: Number of Particles

The results discussed in Section 6.2.6 of the main document
are visualized in Figure S1.

B.3 Noise Models

B.3.1 Heteroscedastic Observation Noise

Table S4 extends Table 1 in the main document. It contains
results for the dPF-G and on additional datasets with differ-
ent numbers of distractors and different magnitudes of the
positional process noise.

B.3.2 Heteroscedastic Process Noise

Table S5 extends Table 2 in the main document. It contains
results for the dPF-G and on additional datasets with different
magnitudes of the positional process noise.

B.3.3 Correlated Noise

So far, we have only considered noise models with diagonal
covariance matrices. In this experiment, we want to see if DFs
can learn to identify correlations in the noise.

Experiment: We create a new dataset with 30 distractors and
constant, correlated process noise. The ground truth process
noise covariance matrix is

Qgt =


9. −3.6 1.2 5.4
−3.6 9. −0.6 0.
1.2 −0.6 4. 0.
5.4 0. 0. 4.


We compare the performance of DFs that learn noise

models with diagonal or full covariance matrix on datasets with
and without correlated process noise. Both the learned process
and the observation noise model are also heteroscedastic.

Results: Results are shown in Table S6. Overall, we note that
learning correlated noise models has a small but consistent
positive effect on the tracking performance of all DFs, even
when the ground truth noise is not correlated. On the dataset
with correlated ground truth process noise, we also observe
an improvement of the likelihood scores.

In terms of the Bhattacharyya distance between true and
learned Q, learning correlated models leads to a slight im-
provement for correlated ground truth noise and to slightly
worse scores otherwise. This indicates that the models are able
to uncover some, but not all correlations in the underlying
data.

In summary, while learning correlated noise models does
not influence the results negatively, it also does not lead to a
very pronounced improvement over models with diagonal co-
variance matrices. Uncovering correlations in the process noise
thus seems to be even more difficult than learning accurate
heteroscedastic noise models.

B.4 Benchmarking

Table S7 extends Table 3 from the main document. It con-
tains results for the dPF-G and dPF-G-lrn and on additional
datasets with lower positional process noise and heteroscedas-
tic process noise.

C Extended Experiments: KITTI Visual

Odometry

C.1 Network Architectures and Initialization

Sensor Network The network architectures for the sensor
model and the heteroscedastic observation noise model are
shown in Table S8. At each timestep, the input consists of
the current RGB image and the difference image between the
current and previous image. The network architecture for the
sensor model is the same as was used in Haarnoja et al. (2016)
and Jonschkowski et al. (2018).

Process Model Tables S9 and S10 show the architecture for
the learned process model and the heteroscedastic process
noise. For both models, we found it to be important not
to include the absolute position of the vehicle in the input
values: The value range for the positions is not bounded, and
especially for the dUKF variants, novel values encountered at
test time often lead to a divergence of the filter.

Excluding these values from the network inputs for pre-
dicting the state update also makes sense intuitively, since
they are not required for computing the update analytically,
either. For the state-dependent process noise, we not only
exclude the position, but also the orientation of the car, as
any relationships between vehicle pose and noise that could
be learned would be specific to the training trajectories.

In addition, we provide the process model with the sine
and cosine of θ as input instead of using the raw orientation,
to facilitate the learning. In general, dealing with angles in the
state vector requires special attention: First, we correct angles
to the range between [−π, π] after every operation on the
state vector. Second, it is important to correctly calculate the
difference between angles (e.g. in the loss function) to avoid
differences over 180deg. And third, computing the mean of
several angles, e.g. for the particle mean in the dPF, requires
converting the angles to a vector representation.
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Fig. S3: Results on disc tracking: Tracking error and negative log likelihood of the two dPF-M variants for different

resampling rates and values of the soft resampling parameter αre.

Table S4: Results for disc tracking: End-to-end learning of the noise models through the DFs on datasets with 5

or 30 distractors and different levels of process noise. While Q is always constant, we evaluate learning constant
(const.) or heteroscedastic (hetero) observation noise R. We show the tracking error (RMSE), negative log likelihood

(NLL), the correlation coefficient between predicted R and the number of visible pixels of the target disc (corr.)

and the Bhattacharyya distance between true and learned process noise model (DQ). The best results per DF are

highlighted in bold.

σqp = 0.1 σqp = 3.0 σqp = 9.0
R RMSE NLL corr. DQ RMSE NLL corr. DQ RMSE NLL corr. DQ

5
d

is
tr

a
ct

o
rs

dEKF
const. 14.1 13.6 - 2.722 16.3 14.1 - 0.081 28.8 15.7 - 0.019
hetero. 9.8 11.9 -0.71 1.204 9.8 11.5 -0.74 0.007 18.7 13.2 -0.66 0.007

dUKF
const. 14.3 13.7 - 2.828 17.1 14.2 - 0.071 30.2 15.8 - 0.026
hetero. 9.9 11.8 -0.70 0.557 9.6 11.3 -0.74 0.011 21.7 14.2 -0.66 0.013

dMCUKF
const. 14.5 13.7 - 2.389 16.5 14.2 - 0.258 30.7 15.8 - 0.02
hetero. 9.9 11.8 -0.71 0.272 9.9 11.6 -0.73 0.016 21.0 14.4 -0.65 0.004

dPF-G
const. 14.6 13.7 - 3.318 17.3 14.1 - 0.257 29.2 15.7 - 0.04
hetero. 12.0 12.8 -0.47 3.348 13.8 13.4 -0.47 0.297 23.2 14.6 -0.63 0.064

dPF-M
const. 13.1 34.7 - 3.408 15.2 40.8 - 0.279 27.7 52.9 - 0.745
hetero. 10.3 19.8 -0.7 3.361 11.3 23.1 -0.67 0.424 18.0 36.1 -0.74 0.147

3
0

d
is

tr
a
ct

o
rs

dEKF
const. 14.5 13.9 - 2.543 16.2 14.0 - 0.121 28.6 15.6 - 0.010
hetero. 7.8 10.4 -0.72 1.429 8.8 10.7 -0.78 0.002 22.4 14.7 -0.75 0.008

dUKF
const. 15.3 13.9 - 2.047 16.8 14.1 - 0.161 30.2 15.7 - 0.024
hetero. 7.8 10.4 -0.71 1.565 8.8 10.7 -0.78 0.013 20.6 14.8 -0.85 0.010

dMCUKF
const. 14.8 13.9 - 2.955 16.7 14.1 - 0.152 29.8 15.7 - 0.022
hetero. 7.8 10.4 -0.71 1.533 9.0 10.9 -0.78 0.006 22.1 15.1 -0.78 0.016

dPF-G
const. 15.2 13.8 - 3.433 17.3 14.1 - 0.224 29.1 15.6 - 0.047
hetero. 10.4 11.9 -0.71 3.103 12.1 12.6 -0.53 0.277 20.8 14.4 -0.86 0.090

dPF-M
const. 14.1 33.6 - 3.396 16.1 34.3 - 0.435 27.7 49.9 - 1.240
hetero. 8.7 14.4 -0.70 3.223 9.6 20.8 -0.77 0.280 13.9 21.8 -0.81 0.084
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Table S5: Results on disc tracking: End-to-end learning of constant or heteroscedastic process noise Q on datasets

with 30 distractors and different heteroscedastic or constant (σqp = 3.0, σqv = 2.0) process noise. DQ is the

Bhattacharyya distance between true and learned process noise.

hetero. σqv , σqp = 0.1 hetero. σqv , σqp = 3.0 σqp = 3.0, σqv = 2.0 hetero. σqv , σqp = 9.0
Q RMSE NLL DQ RMSE NLL DQ RMSE NLL DQ RMSE NLL DQ

dEKF
const. 4.3 8.2 1.335 8.1 11.6 0.879 8.8 10.7 0.002 19.6 14.1 1.108
hetero. 3.8 7.2 0.479 7.4 11.3 0.402 8.8 10.7 0.033 18.5 13.7 0.805

dUKF
const. 4.23 8.3 1.288 7.8 11.3 0.874 8.8 10.7 0.013 20.3 14.2 1.061
hetero. 3.8 7.2 1.008 7.6 11.2 0.391 8.7 10.7 0.030 20.1 14.0 0.900

dMCUKF
const. 4.2 8.3 1.184 8.1 11.5 0.891 9.0 10.9 0.006 20.7 14.2 1.057
hetero. 3.8 7.2 0.932 7.5 11.3 0.464 8.7 10.7 0.044 20.3 13.9 0.904

dPF-G
const. 7.2 10.9 3.888 9.0 11.9 1.104 12.1 12.6 0.277 20.9 14.3 1.229
hetero. 6.8 10.8 3.990 9.0 11.5 0.808 11.8 12.4 0.347 21.3 14.3 1.096

dPF-M
const. 5.0 10.7 3.902 8.5 15.2 1.072 9.6 20.8 0.280 19.7 29.1 0.799
hetero. 5.2 11.1 3.853 8.2 14.7 0.787 9.8 19.8 0.413 17.8 27.8 1.074

Table S6: Results on disc tracking: End-to-end learning of independent (diagonal covariance matrix) or correlated
(full covariance matrix) process and observation noise models. We evaluate on one dataset with independent,

constant process noise (σqp = 3.0, σqv = 2.0), one with independent heteroscedastic process noise (σqp = 3.0), and

one with correlated constant process noise. DQ is the Bhattacharyya distance between true and learned Q.

covariance independent const. noise independent hetero. noise correlated const. noise
matrix RMSE NLL DQ RMSE NLL DQ RMSE NLL DQ

dEKF
diagonal 8.8 10.7 0.033 7.4 11.3 0.402 8.9 10.6 1.249

full 8.6 10.7 0.089 7.6 12.2 0.591 8.4 10.1 1.003

dUKF
diagonal 8.7 10.7 0.030 7.6 11.2 0.391 8.7 10.6 1.345

full 8.6 10.7 0.126 7.6 10.8 0.523 8.7 10.4 0.994

dMCUKF
diagonal 8.7 10.7 0.044 7.5 11.3 0.464 8.8 10.6 1.248

full 8.6 10.7 0.143 7.6 10.8 0.507 8.7 10.3 1.026

dPF-G
diagonal 11.8 12.4 0.347 9.0 11.5 0.808 11.7 12.4 1.646

full 11.5 12.3 0.421 8.8 11.5 0.942 11.4 12.5 1.565

dPF-M
diagonal 9.8 19.8 0.413 8.2 14.7 0.787 9.3 22.1 1.649

full 8.9 18.5 0.693 7.3 15.7 1.463 8.4 18.2 2.005

Table S7: Results on disc tracking: Comparison between the DFs and LSTM models with one or two LSTM layers

on two different datasets with 30 distractors and constant process noise with increasing magnitude. Each experiment

is repeated two times and we report mean and standard error.

σqp = 0.1 σqp = 0.1 hetero. σqp = 3.0 σqp = 9.0
RMSE NLL RMSE NLL RMSE NLL RMSE NLL

dEKF 6.1±0.54 9.1±0.42 4.9±1.04 8.3±0.91 6.3±0.12 9.2±0.10 11.8±0.28 11.1±0.20
dUKF 5.8±0.21 8.9±0.25 4.1±0.09 7.6±0.06 6.5±0.20 9.3±0.26 11.5±0.18 10.8±0.16
dMCUKF 5.5±0.30 8.6±0.23 5.0±0.86 8.4±0.77 6.5±0.18 9.2±0.17 11.6±0.10 10.8±0.11
dPF-G 12.9±0.29 12.3±0.05 10.4±0.06 11.4±0.02 13.3±0.45 12.4±0.10 18.7±0.35 13.5±0.07
dPF-M 6.2±0.34 11.7±0.16 5.0±0.40 10.7±0.45 6.7±0.07 12.3±0.09 11.5±0.07 20.5±0.36
dPF-G-lrn 4.9±0.11 9.2±0.12 3.6±0.13 8.4±0.04 5.7±0.06 9.8±0.01 10.6±0.17 11.9±0.03
dPF-M-lrn 5.3±0.17 10.8±0.22 4.4±0.09 9.9±0.10 5.9±0.15 11.4±0.15 10.0±0.13 19.2±0.18
LSTM-1 5.9±0.20 9.0±0.21 14.2±9.33 10.5±2.52 9.4±0.77 10.6±0.25 14.6±0.70 11.8±0.22
LSTM-2 5.7±0.40 9.2±0.62 6.3±2.73 8.9±1.51 7.1±0.86 9.8±0.56 13.9±0.51 11.9±0.07
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Table S8: Sensor model and heteroscedastic observation noise architecture. Both output layers (for z and diag(R))

get fc 2’s output as input.

Layer Output Size Kernel Stride Activation Normalization

Input D 50× 150× 6 - - - -
conv 1 50× 150× 16 7× 7 1× 1 ReLU Layer
conv 2 50× 75× 16 5× 5 1× 2 ReLU Layer
conv 3 50× 37× 16 5× 5 1× 2 ReLU Layer
conv 4 25× 18× 16 5× 5 2× 2 ReLU Layer
dropout (0.3) 25× 18× 16 - - - -
fc 1 128 - - ReLU -
fc 2 128 - - ReLU -

z (fc) 2 - - - -
diag(R) (fc) 2 - - - -

Table S9: Learned process model architecture. We use

a modified version of the previous state x as input:

x̄ = (v, θ̇, cos θ, sin θ)

Layer Output Size Activation

Input x̄ 4 -
fc 1 32 ReLU
fc 2 64 ReLU
fc 3 64 ReLU

∆x (fc) 5 -

Table S10: Heteroscedastic process noise model archi-

tecture. We use a modified version of the previous state

x as input: x̄ = (v, θ̇, cos θ, sin θ)

Layer Output Size Activation

Input
(
v, θ̇
)

2 -

fc 1 32 ReLU
fc 2 32 ReLU

diag(Q) (fc) 5 -

Initialization When creating the noisy initial states, we do
not add noise to the absolute position and orientation of
the vehicle, since the DFs have no way of correcting them.
We use diag(Σinit) =

(
0.01 0.01 0.01 25 25

)
for the initial

covariance matrix. When training the DFs from scratch, we
initialize the covariance matrices Q and R with diag(Q) =(
0.01 0.01 0.01 100 100

)
and R = 100I2. This reflects the

high uncertainty of the untrained models, but also the fact
that the process noise should be higher for the velocities (to
account for the unknown driver actions) than for the absolute
pose.

C.2 Training Sequence Length and Filter Parameters

One special feature of the Visual Odometry task is that the the
error on the estimated absolute vehicle pose will inevitably
grow during filtering. As this could have an effect on the
ideal training sequence length, we repeat the experiment from
Section 6.4 in the main document.

For the dPF-M, we also evaluate different values of the
fixed per-particle covariance Σ for calculating the GMM-
likelihood. We anticipate that this parameter, too, could be
sensitive to the accumulating uncertainty in the problem.

In addition, we also reevaluate different values for pa-
rameterizing the sigma point selection and weighting in the
dUKF.

C.2.1 Training Sequence Length and dPF-M

Experiment: We only test with the dEKF, dUKF, dPF-M
and dPF-M-lrn on KITTI-10. The filters learn the sensor
and process model as well as constant noise models. We train
them using LNLL on sequence lengths k ∈ {2, 5, 10, 25} while
keeping the total number of examples per batch (steps ×
batch size) constant.

For the dPF-M, we also evaluate two different values of
the per-particle covariance, Σ = I and Σ = 52I.

Results: The results shown in Figure S4 largely confirm the
results obtained for the simulation dataset in Section 6.4 of the
main document. We again see that longer training sequences
increase the tracking performance of all DFs up to a sequence
length of around k = 10.

The dUKF seems to be most sensitive to the sequence
length, with the highest tracking error and an extremely
bad NLL score for sequences of length 2. Different from the
simulation experiment, for both dEKF and dUKF, the NLL
keeps decreasing strongly over the full evaluated sequence
length range, despite the best RMSE already being reached
at k = 5. We attribute this to the accumulating uncertainty
about the vehicle pose. For the dPFs, in contrast, the likelihood
behaves similarly to the RMSE.

In light of the longer training times with higher sequence
lengths, we again decide to keep a training-sequence length of
10 when training the DFs from scratch. However, when only
the noise models are trained, longer sequences can be used to
improved results on the NLL.

For the dPF-M, the experiment also shows that the covari-
ance of the single distributions in the GMM is an important
tuning parameter. With Σ = I, we achieve the best tracking
error, however, the likelihood does not reach the performance
of dEKF and dUKF. The NLL values can be drastically im-
proved by using larger Σ, at the cost of a decreased tracking
performance. Visual inspection of the position estimates shows
that the particles remain relatively tightly clustered over the
complete sequence, such that the likelihood of the GMM is
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Fig. S4: Results on KITTI-10 : Tracking error and negative log likelihood (NLL with logarithmic y axis) of dEKF,

dUKF, dPF-M and dPF-M-lrn trained with different sequence lengths. For the dPF-M, we show two different

values for the covariance Σ of the single Gaussians in the mixture model, Σ = I and Σ = 52I. The cut-off NLL

value for the dUKF on sequences of length 2 is 2004.4±518.3.

not so different from the likelihood of the individual Gaussian
components.

This clustered particle distribution can be explained by
the characteristics of the task: The uncertainty in the system
mainly stems from the velocity components that are affected
by the unknown actions. However, by applying the observation
update and resampling the particles at every step, we keep the
variance in the velocity components small and thus prevent
a stronger diffusion of the unobserved position components.
This also explains why the dPF cannot profit as much as
the dUKF and dEKF from seeing longer sequences during
training.

The large influence of the tuning parameter Σ on the value
of the likelihood, independent of the tracking performance,
also shows that comparing likelihood scores between different
probabilistic models can be difficult. In light of this, we decide
to keep using Σ = I for the better tracking error.

C.2.2 dUKF

We also repeat the evaluation of different values of the param-
eters α, κ and β for the dUKF described in Experiment B.2.1.
The experiment confirms our finding from the simulation ex-
periment that the exact choice of the values does not have a
significant effect on the filter performance. We thus keep the
values at α = 1, κ = 0.5 and β = 0.

C.3 Learning Noise Models

Experiment: The baseline model with constant, hand-tuned

noise uses diag(Q) =
(
10−4 10−4 10−6 0.01 0.16

)T and

diag(R) =
(
0.36 0.36

)T .

C.4 Benchmarking

Table S11 extends the results from Table 6 with data for
the dPF-G and dPF-G-lrn. Interestingly, we find that the
difference in performance between the dPF variants with
learned or analytical observation update is not as pronounced

as in the results we obtained for the simulation experiment
(Section B.2.4). In particular, the dPF-G-lrn performs similarly
bad as the dPF-G on this task.

D Extended Experiments: Planar Pushing

D.1 Network Architectures and Initialization

Sensor Network Our architectures for the sensor network is
very similar to the one used by Kloss et al. (2020), where only
the object position po is estimated from the full image while
the contact-related state components (r, n, s) are computed
from a smaller glimpse around the pusher location.

For predicting the orientation of the object, we extract
a second glimpse from the full image, this time centered on
the estimated object position. A small CNN then predicts the
change in orientation between the glimpse extracted from the
initial image in the sequence and the glimpse at the current
time step.

The sensor network predicts object position, contact point
and normal in pixel space because predictions in this space can
be most directly related to the input image and the predicted
feature maps. To this end, we also transform the action into
pixel space before using it (together with the glimpse encoding)
as input for predicting the contact point and normal. The pixel
predictions are then transformed back to to world-coordinates
using the depth measurements and camera information. The
resulting sensor network including the layers for computing the
heteroscedastic observation noise is illustrated in Figure S5.

Process Model Tables S12 and S13 show the architecture
for the learned process model and the heteroscedastic process
noise. One problem we noticed is that the estimates for l
sometimes diverge during filtering if the DFs estimate that
the pusher is in contact with the object while it is not. Just
as for the absolute position of the vehicle in the KITTI task,
we thus found it important for the stability of the dUKF and
dMCUKF to not make the heteroscedastic process noise model
dependent on l.

Note that in the filter state, we measure po and r in
millimeter and θ and αm in degree. To avoid having too large
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Table S11: Results on KITTI: Comparison between the DFs and LSTM (mean and standard error). Numbers for

prior work BKF*, LSTM* taken from Haarnoja et al. (2016) and DPF* taken from Jonschkowski et al. (2018).

BKF* and DPF* use a fixed analytical process model while our DFs learn both, sensor and process model. m
m

and deg
m denote the translation and rotation error at the final step of the sequence divided by the overall distance

traveled.

RMSE NLL m
m

deg
m

K
IT

T
I-
1
1

dEKF 15.8±5.8 338.8±277.1 0.24±0.04 0.080±0.005
dUKF 14.9±5.7 326.7±267.5 0.21± 0.04 0.079±0.008
dMCUKF 15.2±5.5 266.3±216.1 0.23±0.04 0.083±0.012
dPF-M 16.3±6.1 115.2±34.6 0.24±0.04 0.078± 0.006
dPF-G 21.1±5.7 121.9±80.5 0.33±0.04 0.175±0.036
dPF-M-lrn 14.3± 5.2 94.2± 33.3 0.22±0.04 0.088±0.013
dPF-G-lrn 19.1±5.3 197.8±125.3 0.31±0.06 0.168±0.049
LSTM 25.7±5.7 3970.6±2227.4 0.55±0.05 0.081±0.008

LSTM* - - 0.26 0.29
BKF* - - 0.21 0.08
DPF* - - 0.15±0.015 0.06±0.009

K
IT

T
I-
1
0

dEKF 10.1±0.8 61.8±7.7 0.21±0.03 0.079±0.006
dUKF 9.3±0.6 59.3±7.2 0.18± 0.02 0.080±0.008
dMCUKF 9.7±0.6 50.3± 8.1 0.2 ±0.03 0.082±0.013
dPF-M 10.2±0.9 82.4±12.2 0.21±0.02 0.077± 0.007
dPF-G 15.5±1.4 41.7±6.6 0.3 ±0.04 0.182±0.038
dPF-M-lrn 9.2± 0.7 61.3±6.1 0.19±0.03 0.090±0.014
dPF-G-lrn 14.4±2.4 73.6±17.9 0.29±0.06 0.179±0.053
LSTM 20.2±2.0 1764.6±340.4 0.54±0.06 0.079±0.008

Table S12: Learned process model architecture.

Layer Output Size Activation

Input (x,vu) 12 -
fc 1 256 ReLU
fc 2 128 ReLU
fc 3 128 ReLU

∆x (fc) 10 -

Table S13: Heteroscedastic process noise model archi-

tecture. We use a modified version of the previous state

x as input: x̄ does not include the latent parameter l.

Layer Output Size Activation

Input (x̄,vu) 11 -
fc 1 128 ReLU
fc 2 64 ReLU

diag(Q) (fc) 10 -

differences between the magnitudes of the state components,
we downscale l by a factor of 100. n is a dimensionless unit
vector and s should take values between 0 and 1.

To keep the filters stable during training, we found it
necessary to enforce maximum and minimum values for αm
and l. Both αm and l cannot become negative. The opening
angle of the friction cone, αm, should also not be larger
than 90◦, while we limit l to be in the range of [0.1, 5000] to
ensure that the computations in the analytical model remain
numerically stable.

Initialization For the initial covariance matrix, we use√
diag(Σinit) =

(
50 50 10−3 5 5 50 50 0.5 0.5 0.5

)T . When
training the noise models, we initialize Q and R with diag(Q) =
I10 and R = I8.

D.2 Learning Noise Models

Experiment: The diagonals of the hand-tuned models are√
diag(Q) =

(
0.23 0.23 0.37 0.01 0.01 0.7 0.7 0.1 0.1 0.13

)T
and√

diag(R) =
(
3.0 2.5 8.8 3.3 1.0 0.1 0.1 0.3

)T .

Results: Table S14 extends the results from Table 7 with
data for the dPF-G. In contrast to the other DF variants,
learning complex noise models for the pushing task is not
successful for the dPF-G. While the NLL can be further
decreased when the noise models are heteroscedastic instead
of constant, this comes at the cost of a significantly decreased
tracking performance.

D.3 Benchmarking

Table S15 extends the results from Table 8 with data for the
dPF-G and dPF-G-lrn. Note that their difference in perfor-
mance to the dPF-M variants is smaller here than for the
previous tasks because training on Lmix instead of LNLL

reduces the effect of how the belief is represented on the loss.
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Fig. S5: Architecture of the sensor network and heteroscedastic observation noise model for planar pushing. We use

6-channel RGBXYZ images as input for computing the object position and contact related state components. The

object orientation is estimated relative to the initial orientation by comparing the RGB glimpse centered on the

current estimated object position to the initial one.

White boxes represent tensors, green arrows and boxes indicate network layers, whereas black arrows represent

dataflow without processing. For convolution (conv) and deconvolution (deconv) layers, the numbers in each tensor

are the kernel size and number of output channels of the layer that produced it. For fully connected layers (fc), the

number corresponds to the number of output channels.

With the exception of the output layers, all convolution, deconvolution and fully connected layers are followed by

ReLU non-linearities. The (de)convolution layers also use layer normalization.
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Table S14: Results for planar pushing: Translation (tr) and rotation (rot) error and negative log likelihood for the

DFs with different noise models (mean and standard error). The hand-tuned DFs use fixed noise models whereas for

the other variants, the noise models are trained end-to-end through the DFs. Rc indicates a constant observation

noise model and Rh a heteroscedastic one (same for Q). The best result per DF and metric is highlighted in bold.

Hand-tuned
RcQc

RcQc RhQc RcQh RhQh

tr
[m

m
] dEKF 6.22 4.45 4.61 4.44 4.38

dUKF 4.87 4.44 5.25 4.43 4.45
dMCUKF 4.73 4.42 4.8 4.39 4.35
dPF-M 18.13 5.07 4.92 5.32 4.64
dPF-G 17.95 5.48 35.57 210.45 10.92

ro
t

[◦
] dEKF 10.49 10.00 9.71 10.15 9.97

dUKF 9.87 9.91 9.73 10.05 10.00
dMCUKF 9.78 9.95 9.93 10.04 9.85
dPF-M 16.18 10.18 9.92 10.39 10.06
dPF-G 16.56 10.27 11.27 43.41 10.25

N
L

L

dEKF 265.17 126.69 33.09 79.24 26.48
dUKF 378.08 84.12 33.06 81.55 27.61
dMCUKF 130.22 78.53 30.43 64.12 30.1
dPF-M 353.25 128.15 104.40 103.21 82.46
dPF-G > 16m 12,089.71 34.18 5,789.83 31.60

Table S15: Results on pushing: Comparison between the DFs and LSTM. Process and sensor model are pretrained

and get finetuned end-to-end. The DFs learn heteroscedastic noise models. Each experiment is repeated three times

and we report mean and standard errors.

RMSE NLL tr [mm] rot [◦]

dEKF 14.9±0.46 33.9±3.86 3.5± 0.02 8.8±0.22
dUKF 13.7± 0.15 31.1± 1.90 3.7±0.06 8.8±0.14
dMCUKF 13.8±0.10 34.1±3.57 3.7±0.06 8.8± 0.06
dPF-M 18.3±0.38 120.4±5.70 5.7±0.16 10.5±0.36
dPF-G 23.2±3.60 35.8±1.86 6.9±1.43 11.9±0.67
dPF-M-lrn 29.0±0.73 486.0±3.27 12.0±0.78 18.9±0.04
dPF-G-lrn 29.2±0.67 40.8±0.82 10.9±0.27 19.9±0.52
LSTM 27.36±0.2 35.4±0.24 8.8±0.17 19.0±0.001
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Wüthrich M, Garcia Cifuentes C, Trimpe S, Meier F, Bohg
J, Issac J, Schaal S (2016) Robust gaussian filtering using
a pseudo measurement. In: Proceedings of the American

Control Conference, Boston, MA, USA


	Technical Background
	Extended Experiments: Simulated Disc Tracking
	Extended Experiments: KITTI Visual Odometry
	Extended Experiments: Planar Pushing

