Plant functional types and traits as biodiversity indicators for tropical forests: two biogeographically separated case studies including birds, mammals and termites.

For Biodiversity and Conservation

Online Resources

Authors and contacts

Andrew N. Gillison*, David E. Bignell*, Kenneth R.W. Brewer, Erick C.M. Fernandes, David T. Jones, Douglas Sheil, Peter H. May, Allan D.Watt, Reginaldo Constantino, Eduardo G. Couto, Kurniatun Hairiah, Paul Jepson, Agus P. Kartono, Ibnu Maryanto, Germano G. Neto, Meine van Noordwijk, Elton A. Silveira, Francis-Xavier Susilo, Stephen A. Vosti

* Corresponding authors

Prof David Bignell, School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, UK E1 4NS

Dr Andy Gillison, Center for Biodiversity Management, P.O. Box 120, Yungaburra 4884 Queensland, Australia

Email: <u>d.bignell@qmul.ac.uk</u> <u>andygillison@gmail.com</u>

Appendix S1 Methods

Study areas. A DOMAIN map (Fig. S1) is used to provide a broadscale (0.5 degree grid) visual display of similarities and differences between the two ecoregions surveyed in this study. The map provides a climate-based, geographic range of other forested ecoregions with similar climate values where output from this study has potential application. For this study additional climate data were obtained from the Federal University of Mato Grosso, Cuiabá Brazil (Nunes 2003) and the Meteorological and Geophysical Agency, Indonesia (BMG: Badan Meteorologi dan Geofisika)

Figure S1. Ecoregional baseline locations in (a) Mato Grosso, Brazil and (b) Sumatra, Indonesia. DOMAIN map illustrates representative coverage of global environmental domains based on elevation, minimum temperature of the coldest month, mean annual precipitation and total annual actual evapotranspiration (data at 0.5 deg. grid) Ecoregional baseline sites (a,b,) occur within Domains with > 97% similarity. The Brazilian Amazon basin contains about 40% of the world's remaining tropical rain forest and the entire basin is considered to be the richest source of terrestrial biodiversity (Fearnside 2005). Indonesia contains almost 10% of the world's remaining humid tropical forests, much of it formerly on lowland Sumatra that, as with Mato Grosso, is under extreme threat from deforestation and land use intensification (Critical Ecosystem Partnership Fund 2001)

Gradsects. Gradsect survey design is now well established internationally (Grossman et al. 1998; Wessels et al. 1998; USGS-NPS 2003; FAO 2005). Where the central aim is to maximise information about the distribution of biota, it is a proven low-input, high-return alternative to traditionally high-input, low-return surveys based on random sampling. As the sampling approach is gradient- rather than area-based it is not subject to sample bias associated with the comparison of widely differing area sizes (e.g. Brazil vs Sumatra). Because gradsects avoid the need for standard survey methods based primarily on random or systematic (e.g. grid-based) design, they greatly reduce logistic demands while improving outcomes for spatial modelling of taxa under known or assumed environmental determinants. Where quantitative estimates of numbers of items (e.g. species) per unit area are required, then standard survey designs incorporating random sampling should be used. In our case, by sampling gradients of environmental variables considered to be important ecoregional determinants of both species and PFTs, we aimed to capture spatially referenced information that could be used to detect correlations between environment and biota and help identify appropriate biodiversity indicators. Once acquired, such information can be used directly in extrapolating and testing actual and potential spatial distributional patterns of biota under different management scenarios.

Vegetation. Software for the VegClass protocol used in this study is available via the public domain at <u>www.cbmglobe.org</u> and <u>www.cifor.org</u>.

Invertebrate fauna. We selected termites because of their acknowledged role as 'soil ecosystem engineers' conditioning soil, and because they are both readily observable and taxonomically tractable, as well as being a key invertebrate group already known to respond sensitively along perceived land use intensity gradients (Constantino 1992; Martius 1994; Bignell et al. 1997; Lavelle et al. 1997; Jones et al. 2003). Our analysis indicates that the termite faunas of both continents are amenable to comparison although the sampling methods were not quite the the same in both. However, our goal is not to compare the termite faunas of Brazil and Sumatra, but to demonstrate cross-correlations with other elements of the biota. Phylogenetic differences at the family level are small between the two regions. While fungus growers (Macrotermitinae) do not occur in Brazil they represent only 5 out of 53 species in Table S11 and are a subfamily. Transect-based methods are designed to identify functional groups, which are distributed as follows (proportion of species):

Group	Brazil	<i>Sumatr</i> a
wood-feeding	29%	49%
soil-feeding	40%	40%
intermediate	22%	9%
litter-feeding	9%	-
epiphyte	-	2%

The proportion of soil-feeders is the same, and this is usually the most sensitive group in terms of response to habitat disturbance. In terms of families, the proportions are:

Family	Brazil	Sumatra
Kalotermitidae	-	2%
Rhinotermitinae	6%	15%
Termitidae	94%	83%

In Sumatra, termites were extracted from plant litter, mounds, above-ground runways and soil monoliths along a 100x2m line intercept centred on a vegetation transect, following an established protocol (Jones et al. 2002). In Mato Grosso, termites were sampled intensively mainly aboveground by two people for two hours inside the same transects used for vegetation (40x5m). In both Brazil and Sumatra we found high correlations between different termite feeding groups, plant-based biodiversity features and specific soil properties.

Soil. Although soil and vegetation samples were co-located for all sites in each region actual methods of soil sampling differed in several minor respects. In Brazil we sampled the 0-10 cm surface horizon by compositing three collections taken from the center and both ends of each transect. In Sumatra we sampled both 0-5 and 5-10 cm depths (consolidated from 8 sample points within each transect). For the purposes of this study we took the mean of analytical results from the combined Sumatran 0-5 and 5-10 cm data. In Brazil soil sampling in extreme environments on exposed granitic and sandstone pavements restricted samples to < 5 cm. While only the surface 0-10 cm data were used in the analysis in the present study, correlative analyses with soil data from deeper samples generally reflected those from the upper horizon (not reported here). Variation in laboratory procedures in each region meant that several elemental analyses (B, Fe, Mn, S, Zn) were completed in Brazil but not Sumatra, while total N and soil bulk density were measured only in Sumatra. A standard method of field survey was conducted in Brazil (EMBRAPA 1997) in which the methods for most soil analyses are specified to a set laboratory protocol (Soil Survey Division Staff 1993). In Sumatra, laboratory analyses were conducted at Brawijaya University, broadly following Anderson and Ingram (1993) and Hairiah and van Noordwijk (2000) Soil samples for the 0-5, 5-10, 10-20, 20-30 cm depth zone below the litter layer were passed through a 2 mm sieve and air-dried for analysis of texture (% sand, silt, clay), pH (1N KCl), pH(H₂O), P Bray_{II}, C_{org} (Walkey and Black), N_{tot} (Kjeldahl), exchangeable K, Ca, Mg, Na, Al and H, and effective cation exchange capacity (ECEC) by summation. Soil bulk density was measured for the 0-5 cm top soil layer (8 replicates per sampling point), by inserting a 165 cm³ ring from the mineral soil surface, just below the litter layer.

Total and aboveground carbon (Sumatra). Methods for quantifying carbon stocks were used as specified in the Alternatives to Slash and Burn protocol (Palm et al., 1994). All tree diameters above 5 cm in the forest transects were converted into aboveground biomass with an allometric equation modified from (Brown 1997) on the basis of additional data collected in the Jambi area (Ketterings et al. 2001):

Y (kg tree⁻¹) = 0.092 Diam $^{2.60}$

where tree diameter is measured in cm.

Understorey and herb layer vegetation was measured in eight 0.25 m² quadrat samples (or four $1-m^2$ samples for non-forest plots); total fresh weight was measured and subsamples were collected for determining dry matter content. Diameter and length of dead wood (> 5 cm diameter) were measured within the 40x5m transect and converted to volume on the basis of a cylindrical form; three apparent density classes were used and ring samples were taken to assess the dry weight bulk density (g cm⁻³) of the partly decayed wood. Surface litter (including wood < 5 cm diameter) was collected down to

the surface of the mineral soil in eight 0.25 m^2 samples. To remove mineral soil particles, the litter samples were washed and sundried; subsamples were taken for dry matter content.

- Anderson JM, Ingram, JSI (eds) (1993) Tropical soil biology and fertility: a handbook of methods, 2nd edn. CAB International, Wallingford
- Bignell DE, Eggleton P, Nunes L, Thomas KL (1997) Termites as mediators of carbon fluxes in tropical forest: budgets for carbon dioxide and methane emissions. In: Watt AD, Stork NE, Hunter MD (eds) Forests and insects, Chapman and Hall, London, pp 109-134
- Brown S (1997) Estimating biomass change of tropical forest: a primer. FAO Forestry Paper 134. FAO, Rome
- Critical Ecosystem Partnership Fund (2001) Sumatra forest ecosystems of the Sundaland biodiversity hotspot. <u>http://www.cepf.net</u> (accessed 3 Febtruary 2013)
- Constantino R (1992). Abundance and diversity of termites (Isoptera) in two sites of primary rain forest in Brazilian Amazonia. Biotropica 24:420-430
- EMBRAPA (1997) Manual de métodos de análise de solo. 2a edição ed. NPS/EMBRAPA, Rio de Janeiro
- FAO (2005) Food and Agriculture Organization of the United Nations, Statistical Databases. [WWW Document]. URL (<u>http://apps.fao.org/page/form?collection=Production.Crops.Primary&Domain=Production&servlet=1&language=EN&hostname=apps.fao.org&version=default</u>) (accessed April 2005)
- Fearnside PM (2005) Deforestation in Brazilian Amazonia: history, rates and consequences. Conserv Biol 19:680-688
- Grossman DH, Faber-Langendoen D, Weakley AS, Anderson M, Bourgeron P, Crawford R, Goodin K, Landaal S, Metzler K, Patterson K, Pyne M, Reid M, Sneddon L (1998) International classification of ecological communities: Terrestrial vegetation of the United States. Volume I: The national vegetation classification system: development, status, and applications. The Nature Conservancy, Arlington, Virginia, USA
- Hairiah K, van Noordwijk M (2000) In: Above-ground Biodiversity assessment
 Working Group Summary Report 1996-99 Impact of different land uses on
 biodiversity. (ed Gillison AN). Alternatives to Slash and Burn project. ICRAF,
 Nairobi, Kenya, pp. 143-154
- Jones DT, Susilo FX, Bignell DE, Hardiwinoto S, Gillison AN, Eggleton P (2003) Termite assemblage collapse along a land-use intensification gradient in lowland central Sumatra, Indonesia. J Appl Ecol 40:380-391
- Ketterings QM, Coe R, Van Noordwijk M, Ambagu Y, Palm CA (2001) Reducing uncertainty in the use of allometric biomass equations for predicting above-ground tree biomass in mixed secondary forests. Forest Ecol Manag 146:199-209
- Lavelle P, Bignell DE, Lepage M (1997) Soil function in a changing world: the role of ecosystem engineers. Eur J Soil Biol 33:159-193
- Martius C (1994) Diversity and ecology of termites in Amazonian forests. Pedobiologia 38:407-428
- Nunes PC (2003) Influência do efluxo de CO₂ do solo na produção de forragem numa pastagem extensiva e num sistema agrosilvipastoril. Cuiabá, Mestrado em Agricultura Tropical. Universidade Federal de Mato Grosso, Cuiabá, Brazil
- Palm C, Hairiah K, van Noordwijk M (1994) Methods for sampling above and belowground organic pools for ASB sites. In: D.M. Murdiyarso, K. Hairiah and M.

Van Noordwijk (Eds) Modelling and measuring soil organic matter dynamics and greenhouse gas emissions after forest conversion. Proceedings of Workshop/ Training Course 8-15. August 1994, Bogor/Muara Tebo. ASB-Indonesia publication No. 1. pp 57-71

- Soil Survey Division Staff (1993) Soil survey manual. USDA Handbook No. 18. U.S. Government Print Office, Washington DC
- USGS-NPS, United States Geological Survey National Parks Service (2003) Vegetation mapping program 5.0. Field methods
- Wessels KJ, Van Jaarsveld AS, Grimbeek JD, Van der Linde MJ (1998) An evaluation of the gradsect biological survey method. Biodivers Conserv 7:1093-1121

Appendix S2 Further discussion

Biodiversity and soils. The high correlation between vegetation and soil chemical elements raises questions about cause and effect especially with respect to soil chemistry. For this reason, we focus on fixed soil structural features that are largely independent of plants and other biota. In the Brazilian study correlations between soil texture and PFT diversity and certain of their functional elements indicate a plant adaptive response to gradients of soil texture. Other studies in the Peruvian Amazon basin (Tuomisto et al. 2003) indicate soils determine vegetation type, rather than the dispersal by diaspores. In both regions, we found chamaephytic (shrub-like) life-forms to be closely associated with soil texture (% sand, silt, clay) indicating a possible adaptive response to seasonal water availability.

Application to tropical forest environments. The similarity patterns in the DOMAIN map (Fig. S1, Appendix S1 above) are based on a range of key climate attributes and suggest that the results from this study are at least broadly applicable to forested landscapes areas with > 95% similarity in the climatic domain envelope. Other scale-related climate factors as well as variation in soil substrate, hydrology and land use history all play a potential role in determining the relevance of the indicators identified in this study. The level of spatial resolution of ground data and the availability of adequate computerised potential distribution mapping procedures and geographic information systems are also key factors in determining the extent to which such indicators can be successfully extrapolated for both science and management-related purposes. Experience in the Congo basin (Kotto-Same et al. 2000), India (Gillison 2004) and Thailand (Gillison and Liswanti 1999) using the same vegetation-based rapid survey methodology suggests that the core bioindicators identified in the present paper can be applied to these and probably most lowland tropical forests.

- Gillison AN (2004) Biodiversity Assessment in the North Bank Landscape, North East India. WWF-India, New Delhi
- Gillison, A.N. & Liswanti, N. (1999) Biodiversity and productivity assessment for sustainable agroforest ecosystems. Mae Chaem, Northern Thailand: Preliminary Report. Alternatives to Slash and Burn project, International Centre for Research in Agroforestry, Nairobi, Kenya
- Kotto-Same J, Moukam A, Njomgang R, Tiki-Manga T, Tonye J, Diaw C, Gockowski J, Houser S, Weise S, Nwaga D, Zapfack L, Palm C, Woomer P, Gillison AN, Bignell D, Tondoh J (2000) Summary report and synthesis of Phase II in Cameroon. ICRAF, Nairobi, Kenya
- Tuomisto H, Ruokolainen K, Yli-Halla M (2003) Dispersal, environment and floristic variation of western Amazonian forests. Science 299: 241-244

Fig. S2 Litter and species relationship along tropical forested landscape gradients. Points are 40x5m transects. (**a**) North Queensland, Australia. Two outlying transects enclosed in dotted line are wet sclerophyll forests dominated by *Eucalyptus* spp. If these are removed then RSq = 0.69%. (**b**) Cameroon, Central West Africa, Congo basin. Both areas include gradsects ranging from fired savanna woodlands through transitional forest to closed humid forest. In fired areas data were collected at a minimum of six months following fire allowing rebuilding of the litter base

Appendix S3 Data analysis

Multidimensional scaling. Attempts to identify bioindicators using alternative analyses approaches may prove valuable. Our own initial efforts with multidimensional scaling suggest that the added complexity compromises the ease of ecological interpretation. But these and other multivariate approaches require further examination.

Correlation and regression analyses. We calculated Pearson product-moment correlation using Minitab (v.14.2) software. In the tables presented in this study, correlations were sorted according to most significant P values and then r values. For linear regression, we used simple Ordinary Least Squares (OLS) as this appeared consistent with our goal of finding simple indicators to use in the field. Since in general, OLS regression is relatively robust against non-normality (except in the presence of extreme outliers; Lumley et al. 2002), no test was considered necessary to detect non-normality in the residuals. In situations involving ecological outliers such as vegetation on upland sandstone pavements in Brazil, these sites were removed to facilitate comparative analysis (Table S16, Appendix S4 below). In certain cases where the residuals were clearly heteroskedastic, and the line of best fit was required to pass through the origin, OLS regression was relinquished in favour of weighted regression through the origin and the Satterthwaite approximation (Satterthwaite 1946).

Thus, for Fig. 2, we assumed heteroskedasticity and compared the regression slopes using the Satterthwaite approximation as follows: the OLS plot of species diversity against PFT diversity for the Brazil survey indicated a straight line relationship. The intercept on the species axis was insignificant, indicating the relationship can pass through the origin. By contrast, the comparable Sumatra OLS plot had a negative intercept on the species axis. Since negative values for species are unrealistic, we still adjusted the regression to pass through the origin. To test whether the Brazil and Sumatra slopes have significantly different variances, the means of ratios were compared using the Satterthwaite approximation to the regular t-test. Using Satterthwaite's approximation we calculate t^2 as as that fraction which has the numerator {(Sumatra mean of ratios) minus (Brazil mean of ratios)}² or {(1.9481 - 1.4006)}² and the denominator (w₁ + w₂) where in our case,

$$\begin{split} &w_1 = \{(s_1)^2\}/n_1 = 0.48630/16 = 0.030394 \text{ and} \\ &w_2 = \{(s_2)^2\}/n_2 = 0.05350/32 = 0.001672. \end{split}$$

 Thus $t^2 = \{(1.9481 - 1.4006)\}^2/(0.030394 + 0.001672) = 0.5475^2/0.032066$
 and $t = 0.5475/\{(0.032066)^{0.5}\} \\ &= 0.5475/0.1791 \\ &= 3.057. \end{split}$

For the degrees of freedom (df), Satterthwaite uses

$$\begin{split} df &= (w_1 + w_2)^2 / [\{(w_1)^2\}/(n_1 - 1)\} + \{(w_2)^2\}/(n_2 - 1)\}] \\ &= (0.030394 + 0.001672)^2 / [\{(0.030394^2)/15\} + \{(0.001672^2)/31\}] \\ &= (0.032066^2)^2 / (0.000061586 + 0.000000090) \\ &= 0.0010282 / 0.000061676 \\ &= 16.67. \end{split}$$

The critical values for 16 and 17 degrees of freedom and (two-tailed) $P \le 0.01$ are 2.921 and 2.898 respectively, thus the difference between the regions is significant at the 1 per cent level.

t Tests. We conducted two-tailed t tests for small sample sizes (n < 10) for all correlated pairs of dependent variables where $P \le 0.05$. These tests were restricted to termites (Tables S13, S14, S16, below) and confirmed that the sample sizes in each case were statistically acceptable. The results of these tests are not reported here.

Iterative modelling and other indicator assessment methods. To be consistent with our initial aim, that the final choice of indicators should be driven by practical as well as scientific criteria, we eliminated multiple and polynomial regressions as well as multi-dimensional-scaling and a suite of ecological diversity indices including a measure of plant functional complexity (PFC) (Gillison 2002) although initial investigations showed many were highly significant. Iterative modelling approaches for predicting species distribution (and related biodiversity indicators) can generate theoretically desirable outcomes but often frequently fail in practice, whereas predictive, information-theoretic models that take into account existing knowledge about species and ecosystem behaviour may be closer to reality (Rushton et al. 2004).

Addressing false discovery rates. It is common practice to regard estimated regression coefficients (the slopes of the lines of best fit) as significant if their *P*-statistics fall in the range P < 0.05. However, falling in this range means only that if the true value of the coefficient is zero, an observed value equally or more extreme than the actual one will only be achieved less than five per cent of the time. It is usually more useful to ask, "Given the observation, what is the probability that the true value of the coefficient is either zero, or very close to zero?" The answer to this question is indicated by the False Discovery Rates (EFDRs) displayed in Table S23 (below). It is shown there that those observed slopes for which 0.05 > P > 0.01 actually have about a 30 per cent probability of being "rare events", occurring only by chance, and not indicative of any appreciable departure from zero. Observed slopes with 0.01 > P = 0.001 and 0.001 > P = 0.0001, however, are predominantly in the "real difference" category and those with P < 0.0001 overwhelmingly so.

Soriç's original definition of a False Discovery Rate (FDR), or as we describe it here, an EFDR, has been used in preference to later versions for several reasons (Soriç 1989). First, it is substantially simpler to describe and to understand. Secondly, it is easier to apply to specified ranges of *P*-values. Thirdly, a previous objection by Benjamini and Hoffberg (1995), that it is "a mixture of expectations and realizations" remains unsettled. Finally, the "False Nondiscoveries" mentioned by Sankar (2006), are by definition undetectable, and even if they could be detected they would still tend to be small and in our context thus likely to be unimportant. Moreover, to take them into account would reduce the reported FDR. In our view it is preferable to desist from claiming a few genuine but marginal discoveries, and thereby to avoid attributing additional false discoveries as real.

Tables S21 and S22 (below) display both the *P*-values and other regression slopes. S21 relates to significantly positive observations, and S22 to significantly negative observations. Table S23 (below) displays the numbers of those observations, positive and negative separately, in each of the twenty 5% segments of *P*-values. S21 and S22 indicate that the transition from significant to insignificant observations occurs relatively suddenly

when the relevant False Discovery Rate (FDR) is close to 0.05, which value was suggested by Fisher (1925) as being a sensible choice for defining "significance". In S23, the most relevant figures in that table are the following:

1. The numbers of positive and negative regression slopes in the supposedly "significant" range, namely 0.05>P>0.00, which numbers are 271 and 103 respectively; and 2. The numbers of undeniably significant positive and negative regression slopes in the range 0.0025>P>0.00, which are 148 and 12 respectively.

If we now ask ourselves which of these two sets of observations is the more convincingly significant, there is an unambiguous answer. When the *P*-value is 0.00256 (to five decimal places), or roughly 1/390, the relevant ratio of significant to insignificant is a mere 19 to one. Consequently there is no way that any of the 271 positives and 103 negatives in the range 0.05>P>0.0025 can be convincingly regarded as "significant". Our favoured alternative is therefore that of defining "significance" to mean "roughly in the range 0.0025>P>0.00"

Benjamini Y, Hoffberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Statist Soc B 57:289-300

Fisher RA (1925) Statistical methods for research workers. Oliver and Boyd, Edinburgh Gillison AN (2002) A generic, computer-assisted method for rapid vegetation

- classification and survey: tropical and temperate case studies. Conserv Ecol, 6, 3 [WWW document]. URL <u>http://www.consecol.org/vol6/iss2/art3</u> (accessed 3 February 2013)
- Lumley T, Diehr P, Merson S, Chen L (2002) The importance of the normality assumption in large public health datasets. Annu Rev Publ Health 23:151-169
- Rushton SP, Ormerod SJ, Kerby G (2004) New paradigms for modelling species distributions? J Appl Ecol 41:193-200
- Satterthwaite FE (1946) An approximate distribution of estimates of variance components. Biometrics Bull 2:110-114
- Soriç, B. Statistical "Discoveries" and effect size estimation (1989) J Amer Statist Assoc 84:608-610
- Sankar SK (2006) False discovery and false nondiscovery rates in single-step multiple testing Procedures. Ann Statist 34:394-415

Appendix S4 Supplementary Tables

Table S1.	Plant functional attributes and elements used to construct PFTs
Table S2.	Site location, physical environment and land use type NW Mato Grosso
Table S3.	Site location, physical environment and land use type Jambi, Sumatra,
	Indonesia
Table S4.	Vegetation summary data for NW Mato Grosso
Table S5.	Vegetation summary data for Jambi, Sumatra
Table S6.	List of vascular plant species and PFTs collected in the Mato Grosso
	study area (sample page).
Table S7.	List of vascular plant species and PFTs collected in the Jambi, Sumatra study area (sample page).
Table S8.	Vertebrate fauna listed according to Class and transect in NW Mato
	Grosso
Table S9.	Vertebrate (mammal) fauna listed according to family and transect in
	Jambi, Sumatra, Indonesia
Table S10.	Vertebrate (bird) fauna listed acording to family and transect in Jambi,
	Sumatra, Indonesia
Table S11.	Invertebrate fauna (termites) in Mato Grosso listed according to feeding
	group and transect
Table S12.	Invertebrate fauna (termites) recorded in Jambi, Sumatra according to
	taxa, feeding group and transect
Table S13.	larget groups and significant indicators occurring in at least one region (excluding PEFs for fauna)
Table S14	Significant PFF indicators common to both regions
Table S15.	Vegetation structure and soil properties
Table S16.	Species and PFT diversity and soil correlates using combined regional
	data
Table S17.	Soil analyses for Mato Grosso (0-10 cm depth only)
Table S18.	Soil and carbon analyses for Jambi, Sumatra (averaged 0-10 depth only)
Table S19.	Indicators of aboveground and total carbon - Sumatran baseline
Table S20.	Data variables recorded for each 40x5 m transect (VegClass)
Table S21.	Significant and close-to significant positive regression slopes
Table S22.	Significant and close-to significant negative regression slopes
Table S23.	Empirical false discovery rates from an analysis of 1307 regressions

Attribute	Element	Description	
[Photosynthetic e	envelope]		
Leaf size class	nr	no repeating leaf units	
	pi	picophyll	$< 2 \mathrm{mm}^2$
	le	leptophyll	2 - 25
	na	nanophyll	25 - 225
	mi	microphyll	225 - 2025
	no	notophyll	2025 - 4500
	me	mesophyll	4500 - 18200
	pl	platyphyll	18200 - 36400
	ma	macrophyll	$36400 - 18 \times 10^4$
	mg	megaphyll	$> 18 \text{ x } 10^4$
Leaf inclination	ve	vertical	>30° above horizontal
	la	lateral	$\pm 30^{\circ}$ to horizontal
	pe	pendulous	>30° below horizontal
	со	composite	
Chlorotype	do	dorsiventral	
	is	isobilateral or isocentric	
	de	deciduous	
	ct	cortic	(photosynthetic stem)
	ac	achlorophyllous	(without chlorophyll)
Morphotype	ro	rosulate or rosette	
	SO	solid 3-D	
	su	succulent	
	pv	parallel-veined	
	fi	filicoid (fern)	(Pteridophytes)
	ca	carnivorous	(e.g. Nepenthes)
[Supporting vasc	ular structur	e]	
Life form	ph	nhaneronhyte	
	ph ch	chamaenbyte	
	bo	hemicryptophyte	
	or	cryptophyte	
	th	therophyte	
	1;	liane	
Poot type	n ad	adventitious	
Koot type	au	auventitious	(e.g. pneumatonhore)
	at en	eninhytic	(c.g. pheumatophote)
	by	bydrophytic	
	na	narasitic	
	pa	parasitic	

 Table S1. Plant functional attributes and elements used to construct PFTs

PFTs are constructed from PFEs according to a rule-based grammar²². For example the PFT for an individual plant of *Brosimum guianensis* would be recorded as a combination of six PFEs no-co-do-de-ct-ph (i.e. with <u>no</u>tophyll-sized leaves, <u>co</u>mposite leaf inclination, <u>do</u>rsiventral leaf, <u>de</u>ciduous with green stem or photosynthetic subrhytidome or cortex <u>ct</u> and a <u>ph</u>anerophytic life form (woody plant with perennating organs > 2m above ground)).

Site No.	MT code.	Fauna site	Location	Municip- ality.	Latitude deg.min.sec.	Longitude deg.min.sec.	Elev. (m)	Slope %	Aspect Deg.
1	PN01		Vale do Amenhecer L8	Juruena	10-22-27 S	58-27-11 W	259	0	0
2	PN05	TF	Manejo florestal, Rhoden	Juruena	10-32-55 S	58-30-30 W	230	0	0
3	PN06	TF	Chapada Dardanelos	Juruena	10-23-36 S	58-53-11 W	281	10	125
4	PN07	TF	Chapada Dardanelos	Juruena	10-23-40 S	58-53-03 W	285	1	210
5	PN08	TF	Chapada Dardanelos	Juruena	10-23-33 S	58-53-15 W	270	2	60
6	PN09	TF	Manejo florestal, Rhoden	Juruena	10-28-10 S	58-34-55 W	232	0	0
7	PN10		Pastagem do Rizzieri	Juruena	10-31-41 S	58-35-28 W	265	0	0
8	PN11	F	Manejo florestal, Rhoden	Juruena	10-33-47 S	58-25-55 W	239	0	0
9	PN12		Linha Parana	Cotriguaçu	09-57-55 S	58-31-00 W	266	0	0
10	PN14		Fazenda Imburana	Castanheira	10-55-21 S	58-24-57 W	260	10	98
11	PN15		Fazenda Imburana	Castanheira	10-55-21 S	58-24-52 W	263	5	280
12	PN16	F	Vale do Amenhecer L8	Juruena	10-26-13 S	58-27-10 W	265	0	0
13	PN17	F	Vale do Amenhecer L8	Juruena	10-27-08 S	58-27-05 W	265	0	0
14	PN18		Vale do Amenhecer L8	Juruena	10-26-08 S	58-27-02 W	265	0	0
15	PN19	F	Vale do Amenhecer L8	Juruena	10-26-10 S	58-27-01 W	263	0	0
16	PN20	F	Vale do Amenhecer L8	Juruena	10-26-09 S	58-26-54 W	266	0	0
17	PN21		Alcalinas Canamá	Juruena	10-04-52 S	58-47-49 W	225	40	255
18	PN22	TF	Pronatura Res. Stn. Bxa.	Juruena	10-21-26 S	58-27-49 W	260	25	275
19	PN23	TF	Km 3 Estrada	Juruena	10-21-34 S	58-29-25 W	241	0	0
20	PN24	F	Alcalinas Canamá	Juruena	10-04-06 S	58-46-00 W	180	0	0
21	PN25	Т	S. Reserva indígena	Cotriguaçu	09-46-29 S	58-40-40 W	285	5	90
22	PN26	TF	Fazenda Sào Nicolao	Cotriguaçu	09-51-33 S	58-17-16 W	242	5	275
23	PN27	TF	Fazenda Sào Nicolao	Cotriguaçu	09-51-38 S	58-13-38 W	237	3	5
24	PN28	F	Fazenda Sào Nicolao	Cotriguaçu	09-51-26 S	58-14-27 W	247	5	180
25	PN29		Vale do Amenhecer L2	Juruena	10-22-20 S	58-27-06 W	268	0	0
26	PN30	Т	Research Stn Pronatura	Juruena	10-21-04 S	58-27-15 W	253	7	210
27	PN31		Fazenda Coroado	Castanheira	10-55-06 S	58-21-22 W	208	0	0
28	PN32		Fazenda Coroado	Castanheira	10-55-11 S	58-22-34 W	241	10	61
29	PN33		Vale do Seringal	Castanheira	10-43-03 S	58-33-34 W	242	0	0
30	PN34		Vale do Seringal	Castanheira	10-44-48 S	58-34-16 W	264	6	99
31	PN35		Fazenda Cruzeiro do Sul	Castanheira	10-51-22 S	58-38-59 W	295	45	148
32	PN36		Fazenda Cruzeiro do Sul	Castanheira	10-51-21 S	58-39-59 W	300	15	55

 Table S2. Site location, physical environment and land use type NW Mato Grosso

(Continued next page)

			(commue	u)	
Site	МТ	Parent	Soil	Soil Funct.	Land- scape	Land Use Type
NO.	code.	rock	Type	type	type	(LUI)
1	PN01	Granite, sedim.	Ultisol	2	III	Primary forest, logged
2	PN05	Granite, sedim.	Ultisol	2	III	Primary forest, logged
3	PN06	Granite, coarse	Entisol	1	Ι	Campina cerrado
4	PN07	Granite, coarse	Entisol	1	Ι	Campina cerrado
5	PN08	Granite, coarse	Oxisol	3	Ι	Campinarana
6	PN09	Granite	Ultisol	3	III	Campinarana, disturbed
7	PN10	Granite	Oxisol	2	III	Pasture with termitaria
8	PN11	Granite	Ultisol	2	III	Primary forest, logged
9	PN12	Granite	Ultisol	2	II	Primary forest, logged
10	PN14	Granite	Ultisol	2	III	Pasture with termitaria
11	PN15	Granite	Ultisol	2	III	Pasture with termitaria
12	PN16	Granite comp.	Ultisol/oxisol	2	III	Primary forest, logged
13	PN17	Granite comp.	Ultisol/oxisol	2	III	Secondary forest, Cercropia
14	PN18	Granite comp.	Ultisol/oxisol	2	III	Subsistence garden > 1 yr old
15	PN19	Granite comp.	Ultisol/oxisol	2	III	Subsistence garden < 1 yr old
16	PN20	Granite comp.	Ultisol/oxisol	2	III	Cassava garden 2 years old
17	PN21	Granite	(Shallow soil)	2	Π	Primary forest, semi-deciduous
18	PN22	Granite	Ultisol	2	III	Pasture, degraded
19	PN23	Granite	Ultisol	2	III	Teak plantation 5 years old
20	PN24	Granite	Ultisol	3	Π	Primary forest, logged
21	PN25	Granite	Ultisol	2	Π	Primary forest, logged
22	PN26	Granite	Ultisol	2	III	Primary forest, disturbed
23	PN27	Granite	Ultisol	2	III	Secondary forest (Capoéira 5 yrs)
24	PN28	Granite	Ultisol	2	III	Teak plantation and pasture
25	PN29	Granite	Ultisol	2	III	Coffea plantation, 20 months old
26	PN30	Granite	Ultisol	2	III	Primary forest logged 11 years
27	PN31	Granite	Ultisol	2	II	Primary forest, disturbed
28	PN32	Granite	Ultisol	2	II	Pasture > 5 years old
29	PN33	Granite	Ultisol	2	II	Coffea plantation 4 yrs old
30	PN34	Granite A	(Shallow soil)	4	II	Primary forest, logged
31	PN35	Granite B	(Shallow soil)	3	Π	Cerradão with succulents
32	PN36	Granite B	(Shallow soil)	3	II	Cerradão, deciduous

 Table S2. Site location, physical environment and land use type NW Mato Grosso

 (continued)

MT code = Pró-Natura site No., (Fauna site, \mathbf{T} = Termites, \mathbf{F} = other fauna); **Elev.**: Elevation; **Parent rock: Granite comp.** = granite and sedimentary complex, A = intermediate, B = intermediate to basic (apatitebiotite); **Soil type** (USDA soil taxonomy- Order); **Soil functional type**: 1= Sandstone derived, 2 = Welldrained - formed in acid igneous material,3 = Poorly drained, 4 = High base status; **Landscape type**: I = Upland sandstones, II = Exposed granite outcrops and footslopes, III = Lowland plains with sediments

Transect	Location in	Latitude	Longitude	Elev'n	Slope	Aspect	Parent	Soil	Land Use Type
No.	Jambi Province	deg.min.sec.	deg.min.sec.	(m)	%	Deg.	rock	type	(LUT)
1	Pasir Mayang	01 04 47 S	102 06 02 E	76	25	7	Sedim.	Ultisol	Intact primary rain forest
2	Pasir Mayang	01 04 45 S	102 05 53 E	60	36	115	Sedim.	Ultisol	Intact primary rain forest
3	Pasir Mayang	01 04 43 S	102 05 55 E	85	12	150	Sedim.	Ultisol	Secondary forest logged 1984
4	Pasir Mayang	01 04 53 S	102 06 09 E	90	45	130	Sedim.	Ultisol	Secondary forest logged 79/80
5	Pasir Mayang	01 04 56 S	102 06 05 E	75	25	75	Sedim.	Ultisol	Logged over primary forest
6	Pasir Mayang	01 04 59 S	102 06 43 E	65	20	202	Sedim.	Ultisol	Paraserianthes plantation (3.5 yrs)
7	Pasir Mayang	01 03 09 S	102 08 10 E	55	12	202	Sedim.	Ultisol	Paraserianthes plantation (3.5 yrs)
8	Pasir Mayang	01 05 25 S	102 07 05 E	53	3	183	Sedim.	Ultisol	Rubber plantation 8 yrs
9	Pasir Mayang	01 05 27 S	102 06 56 E	53	3	188	Sedim.	Ultisol	Rubber plantation 8 yrs
10	Pancuran Gading	01 10 12 S	102 06 50 E	30	0	0	Sedim.	Ultisol	Jungle rubber agroforest
11	Pancuran Gading	01 10 13 S	102 06 46 E	30	0	0	Sedim.	Ultisol	Jungle rubber agroforest
12	Kuamang Kuning	01 35 58 S	102 21 11 E	40	5	225	Sedim.	Ultisol	Imperata degraded grassland
13	Kuamang Kuning	01 35 56 S	102 21 12 E	40	5	130	Sedim.	Ultisol	Imperata degraded grassland
14	Kuamang Kuning	01 36 05 S	102 21 22 E	48	0	0	Sedim.	Ultisol	Cassava plantation 10 yrs
15	Kuamang Kuning	01 36 05 S	102 21 21 E	48	9	311	Sedim.	Ultisol	Cassava plantation 10 yrs
16	Pancuran Gading	01 10 13 S	102 06 58 E	30	0	0	Sedim.	Ultisol	Chromolaena, Clibadium regrowth

Table S3 Site location, physical environment and land use type, Jambi, Sumatra, Indonesia

				•		С	С							
Transect No.	MT code	Spp.	PFTs	Spp.: PFTs	Ht	C C T	C C W	CC nwdy	Litt.	FI	B. area	Bryo.	Wdy plts	PFC
1	DNO1	44	27	1.63	26.00	00	<u>uy</u>	0	5.00	25 75	58.00	1	7	324
1	PINUI DNO5	44 25	21	1.05	20.00	90	90	0	2.00	25.75	20.00	4 5	5	324 275
2	PINUS DNO6	20	22	1.15	2 50	95	95 65	15	2.50	20.00	1.00	1	5 7	224
5	PINU0 DN07	39 10	33	1.10	2.30	60 60	20	13	2.30	02.40	1.00	1	7	554 92
4 5	PINU/ DN/09	10 57	9 21	1.11	1.80	00	50 85	50	12.00	92.40	1.00	1	7	00 205
5	PINU8 DN00	27	51 10	1.04	9.00	90	00	5	12.00	20.75	20.07	5	2	505 160
0	FINU9 DN10	27	19	1.42	0.50	90	90 20	70	0.50	20.55	27.55	4	2 1	100
/	PINIU DN11	23 56	14	1.04	25.00	00 05	20	/8	6.00	40.23	20.67	5	1	104
0	PINIT DN12	50	21	1.70	25.00	93	93	0	0.00	29.75	20.07	3	0	204
9	PIN12 DN14	50 14	12	1.01	23.00	90	90 5	0	7.00	21.73	25.55	4	0	524
10	PIN14 DN15	14	12	1.17	0.50	85 05	5	80	0.50	59.50 62.00	0.01	0	1	90
11	PINI5	22	1/	1.29	0.50	95	2	90	0.50	03.00	0.01	1	1	129
12	PINIO DN17	00 71	40	1.50	30.00	90	90	0	7.00	25.50	32.07	2		300 456
13	PN1/	/1	47	1.51	4.00	98	95 40	3	7.00	32.40	4.67	2	6	456
14	PN18	54	33 15	1.64	1.50	85	40	45	0.30	/9./0	0.10	1	0	275
15	PN19	23	15	1.55	2.30	80	15	5	0.50	85.00	0.67	1	1	88
10	PN20	43	34	1.20	1.50	80	15	5	2.00	30.80	1.00	I	8	3/9
1/	PN21	50	30	1.39	15.00	60	60 75	0	12.00	41.25	10.07	0	/	308
18	PN22	23	15	1.//	0.60	80	15	5	0.50	80.00	0.01	1	1	81
19	PN23	25	15	1.6/	7.00	70	65	5	18.00	39.00	14.67	1	7	106
20	PN24	75	54	1.39	20.00	80	70	10	5.00	16.25	24.67	1	8	596
21	PN25	55	42	1.31	35.00	98	95	3	7.00	14.75	22.67	6	5	436
22	PN26	44	28	1.57	25.00	90	90	0	3.00	26.50	27.33	4	5	249
23	PN27	52	37	1.41	7.00	85	75	10	6.00	58.65	11.33	1	6	388
24	PN28	24	24	1.00	1.00	95	5	90	7.00	10.00	1.00	1	1	239
25	PN29	21	19	1.11	0.80	45	45	0	0.30	30.40	0.10	I	8	148
26	PN30	57	39	1.46	25.00	95	95	0	8.00	21.00	32.00	6	8	423
27	PN31	42	31	1.35	32.00	90	90	0	5.00	30.50	28.00	3	6	345
28	PN32	8	7	1.14	0.30	85	0	85	0.20	100.00	0.00	1	1	40
29	PN33	46	31	1.48	1.00	95	15	80	3.00	24.35	0.50	1	6	292
30	PN34	53	35	1.51	30.00	85	85	0	7.00	17.75	20.67	4	9	419
31	PN35	11	11	1.00	2.50	15	5	10	0.01	10.00	0.33	1	0	111
32	PN36	23	21	1.10	4.50	60	60	0	5.00	65.00	58.00	3	1	214

Table S4. Vegetation summary data for NW Mato Grosso*

*Spp. = plant species diversity; **PFTs** = plant functional type diversity; **spp.:PFTs** = ratio; **Ht** = mean canopy height (m); **CCTot** = canopy cover % total; **CCwdy** = canopy cover % woody plants; **CCnwdy** = canopy cover % non-woody plants; **Litt** = plant litter depth (cm); **FI** = mean furcation index; **B.area** = basal area all woody plants ($m^2 ha^{-1}$) **Bryo** = Domin scale cover-abundance of bryophytes; **Wplts** = Domin scale cover-abundance of woody plants < 1.5 m tall; **PFC** = Plant Functional Complexity. Compiled using VegClass.

Transect No.	Spp.	PFTs	Spp.: PFTs	Ht	CC Tot	CC wdy	CC nwdy	Litt.	FI	B. area	Bryo.	Wdy plts	PFC
1	102	37	2.76	21.0	75	70	5	10.0	13.50	27.33	2	7	182
2	101	36	2.81	20.0	65	60	5	10.0	15.50	32.67	5	5	214
3	50	20	2.50	10.0	35	20	15	15.0	10.25	13.33	3	6	122
4	108	39	2.77	24.0	80	70	10	6.0	9.50	32.67	3	7	192
5	113	38	2.97	28.0	70	65	5	8.0	9.75	27.33	4	6	210
6	42	27	1.56	6.0	85	40	45	3.0	43.75	6.00	1	4	144
7	46	33	1.39	16.0	75	30	45	6.0	16.50	8.00	2	5	192
8	65	36	1.81	11.0	85	65	20	5.0	39.25	14.67	4	4	194
9	54	29	1.86	12.0	75	60	15	5.0	41.50	15.33	4	4	150
10	112	47	2.38	14.0	80	65	15	8.0	38.50	18.00	3	6	236
11	98	41	2.39	14.0	75	65	10	6.0	40.25	20.67	3	7	198
12	10	10	1.00	1.0	90	5	85	0.1	0.00	0.33	1	1	86
13	7	7	1.00	1.0	90	5	85	0.1	0.00	0.33	1	0	66
14	14	11	1.27	1.8	50	35	15	0.5	98.75	0.33	1	5	50
15	19	13	1.46	1.8	40	30	10	0.2	98.00	0.33	1	4	92
16	42	34	1.24	2.0	95	75	20	4.0	71.50	0.33	1	9	176

Table S5. Vegetation summary data for Jambi, Sumatra*

***Spp.** = plant species diversity; **PFT** = plant functional type diversity; **spp.:PFTs** = ratio; **Ht** = mean canopy height (m); **CCTot** = canopy cover % total; **CCwdy** = canopy cover % Woody plants; **CCnwdy** = canopy cover % non-woody plants; **Litt** = plant litter depth (cm); **FI** = mean furcation index; **B.area** = basal area all woody plants ($m^2 ha^{-1}$) **Bryo** = Domin scale cover-abundance of bryophytes; **Wplts** = Domin scale cover-abundance of woody plants < 1.5 m tall; **PFC** = Plant Functional Complexity. Compiled using VegClass[©]

Transect	PFT	Family	genus	species	quadrat
PN01	na-la-do-fi-hc-ad	Adiantaceae	Adiantum	104	1
PN01	me-la-do-ch-li	Bignoniaceae	Arabidaea	107	1
PN01	no-co-do-de-ct-ph	Moraceae	Brosimum	auianensis	1
PN01	no-la-do-ct-ph	Celastraceae	Cheiloclinium	cognatum	1
PN01	nl-la-do-ph	Meliaceae	Guarea	106	1
PN01	no-la-do-ph	Funhorbiaceae	Indet	100	1
PN01	no-la-do-ct-ph	Fabaceae	Indet	109	1
PN01	me-la-do-ph	Rutaceae	Metrodoria	flavida	1
PN01	me-la-do-ph	Lauraceae	Ocotea	111	1
PN01	nl-la-do-ph	Cercropiaceae	Pouroma	108	1
PN01	ma-la-do-ro-py-ph	Arecaceae	Socratea	exorhiza	1
PN01	no-la-do-fi-hc-li-ad-en	Fern	Stenochlaena	110	1
PN01	me-la-do-ch	Loganiaceae	Strychnos	113	1
PN01	me-la-do-ch-li	Bignoniaceae	Arabidaea	115	2
PN01	nl-la-do-ro-ny-nh	Arecaceae	Astrocaryum	115	2
PN01	no-la-do-py-bc-ad	Poaceae	Rambusa?	110	2
PN01	no-la-do-ph-li	Indet	Indet	114	2
PN01	me-la-do-ph	Tiliaceae	Indet	119	2
PN01	me-ve-do-su-hc-li-ad-ep	Araceae2	Indet	121	2
PN01	na-la-do-fi-hc-ad	Fern	Indet	122	2
PN01	pi-la-do-ph	Rubiaceae	Isertia	117	2
PN01	me-la-do-ph	Sapotaceae	Pouteria	120	2
PN01	pi-la-do-ph	Lauraceae	Aniba	126	3
PN01	pl-la-do-ch-li	Bignoniaceae	Bignonia	125	3
PN01	me-la-do-ch-li	Bignoniaceae	Cuspidaria	128	3
PN01	me-la-do-ch-li	Mimosaceae	Indet	127	3
PN01	pl-la-do-pv-hc-ad	Marantaceae	Maranta	124	3
PN01	me-la-do-ph-ad	Quiinaceae	Quiina	123	3
PN01	pl-la-do-ch-li	Fabaceae	~ Indet	129	4
PN01	me-la-do-ch	Lauraceae	Nectandra	130	4
PN01	ma-la-is-ro-pv-hc-ad	Bromeliaceae	Ananas	144	5
PN01	no-la-do-ph	Chrysobalanaceae	Hirtella	ciliata	5
PN01	mi-la-do-hc-ad	Rubiaceae	Indet	134	5
PN01	mi-la-do-ch-li	Fabaceae	Indet	136	5
PN01	ma-la-do-ct-ph	Cercropiaceae	Pourouma	131	5
PN01	mi-la-do-ph	Burseraceae	Protium	pilosa	5
PN01	no-la-do-ct-ph	Meliaceae	Trichilia	132	5
PN01	no-la-do-su-hc-ad	Piperaceae	Piper	138	6
PN01	no-co-do-pv-hc-ad	Cyperaceae	Scleria	corymbosa	6
PN01	me-pe-do-pv-hc-li-ad-ep	Araceae	Indet	142	7
PN01	na-ve-do-de-ph	Mimosaceae	Parkia	multijuga	7
PN01	me-la-do-ch	Rubiaceae	Psychrotria	141	7
PN01	pl-la-do-ph	Sterculiaceae	Theobroma	sylvestris	7

 Table S6. List of vascular plant species and PFTs collected in the Mato Grosso study area (sample page).*

* Full tables are available on request from contact author

Transect number	PFT	Family	genus	species	authority
BS01	no-co-do-ph	Sapindaceae	Xerospermum	noronhianum	Blume
BS01	no-la-do-ct-ph	Burseraceae	Dacryodes	rugosa	(Blume) H.J. Lam
BS01	mi-ve-do-ph	Fabaceae	Sindora	leiocarpa	Backer ex. K. Heyne
BS01	no-la-do-ph	Myristicaceae	Knema	cinerea	(Poir.) Warb.
BS01	no-co-do-ph	Myrtaceae	Eugenia	ochneocarpa	Merr.
BS01	me-co-do-ph	Myristicaceae	Knema	mandahoran	(Miq.) Warb.
BS01	me-la-do-de-ph	Sterculiaceae	Scaphium	macropodum	(Miq.) Beumee
BS01	me-la-do-ph	Annonaceae	Polyalthia	lateriflora	(Blume) King.
BS01	no-co-do-ph	Sapotaceae	Palaquium	gutta	(Hook.f.) Baillon
BS01	pl-la-do-ph	Myristicaceae	Horsfieldia	grandis	(Blume) Warb
BS01	no-ve-do-ph	Burseraceae	Santiria	graffithii	(Hook.f.) Engl.
BS01	no-ve-do-ph	Myrtaceae	Eugenia	palembanica	(Miq.) Merr.
BS01	no-co-do-ph	Theaceae	Gordonia	sp13	(empty)
BS01	mi-ve-do-ph	Fabaceae	Koompassia	malaccensis	Maing. ex Benth.
BS01	mi-la-do-ph	Trigoniaceae	Trigoniastrum	hypoleucum	Miq.
BS01	no-la-do-ph	Ulmaceae	Gironniera	hirta	Ridl.
BS01	no-ve-do-ph	Dipterocarpaceae	Shorea	macropera	Dyer
BS01	no-la-do-ph	Moraceae	Artocarpus	anisophyllus	Miq.
BS01	no-la-do-ct-ph	Euphorbiaceae	Drypetes	longifolia	Pax. & Hoffm.
BS01	no-la-do-ct-ph	Fabaceae	Fordia	johorensis	T.C. Whitm.
BS01	no-la-do-ct-ph	Thymelaeaceae	Gonystylus	maingayi	Hook.f.
BS01	mi-la-do-ct-ph	Connaraceae	Agelaea	borneensis	(Hook.f.) Merr.
BS01	no-la-do-ph	Lecythidaceae	Barringtonia	scortechinii	King
BS01	me-la-do-ph	Rubiaceae	Timonius	stipulosus	(Scheff.) Boerl.
BS01	me-la-do-ph-li	Dilleniaceae	Tetracera	scandens	(L.) Merr.
BS01	no-la-do-ph-li	Connaraceae	Connarus	monocarpus	L.
BS01	ma-la-do-ro-pv-ph	Arecaceae	Licuala	spinosa	Wurmb.
BS01	me-la-do-ph	Burseraceae	Dacryodes	incurvata	(Engler.) H.J. Lam
BS01	no-la-do-ph	Flacourtiaceae	Hydnocarpus	polipetala	(v. Sloot.) Sleumer
BS01	no-la-do-ph	Sapotaceae	Madhuca	sandakaensis	van Royen
BS01	me-la-do-ph	Celastraceae	Bhesa	paniculata	Arn.
BS01	no-la-do-ph	Annonaceae	Polyalthia	beccarii	King
BS01	me-la-do-ph-li	Connaraceae	Agelaea	macrophylla	(Zoll.) Leenh.
BS01	na-la-do-ph-li	Fabaceae	Derris	sp34	(empty)
BS01	me-la-do-ro-pv-hc	Arecaceae	Licuala	ferruginea	Becc.
BS01 BS01	no-la-do-ph mi-la-do-ph-li	Thymelaeaceae Connaraceae	Gonystylus Rourea	velutinus minor	Airy Shaw (Gaertn.) Leenh.
BS01	no-la-do-ph	Euphorbiaceae	Aporusa	subcaudata	Merr.
BS01	mi-la-do-su-hc-ad-ep	Piperaceae	Piper	sp39	(empty)
BS01	mi-la-do-ph-li	Annonaceae	Desmos	chinensis	Lour.

Table S7. List of vascular plant species and PFTs collected in the Jambi, Sumatra study area (sample page).*

* Species contained in quadrat 1. Complete list available from contact author

Class	Family	Species	MT Code	Tran- sect No.
AVES	Falconidae	Daptrius ater (Vieillot, 1816)	PN 05	2
AVES	Cracidae	Pipile cajubi (Pelzen, 1858)	PN 05	2
AVES	Emberizidae	Psarocolius decumanus (Pallas, 1769)	PN 05	2
AVES	Ramphastidae	Ramphastos vitellinus (Lichtenstein, 1823)	PN 05	2
AVES	Psittacidae	Amazona aestiva (Linnaeus, 1758)	PN 05	2
AVES	Psittacidae	Ara ararauna (Linnaeus, 1758)	PN 05	2
AVES	Psittacidae	Ara macao (Linnaeus, 1758)	PN 05	2
AVES	Psittacidae	Deroptyus acciptinus (Linnaeus, 1758)	PN 05	2
AVES	Psittacidae	Pionus menstruus (Linaeus, 1766)	PN 05	2
AVES	Caprimulgidae	Caprimulgus nigrescen (Cabanis, 1848)s	PN 06/07	3/4
AVES	Falconidae	Harnetheteres agehinnans (Linneus, 1758)	PN 06/07	5/4 2/4
AVES	Emberizidae	<i>Europeinoleres cuchinnuns</i> (Linnaeus, 1756)	PN 06/07	3/4
AVES	Tyrannidae	Megarynchus nitangua (Linnaeus, 1766)	PN 06/07	3/4
AVES	Tyrannidae	Myjozetetes cavenensis (Linnaeus, 1766)	PN 06/07	3/4
AVES	Tyrannidae	Tyrannus melancholicus (Vieillot, 1819)	PN 06/07	3/4
AVES	Psittacidae	Ara macao (Linnaeus, 1758)	PN 06/07	3/4
AVES	Tinamidae	Rhynchotus rufescens (Temminck, 1815)	PN 06/07	3/4
AVES	Emberizidae	Cacicus cela (Linnaeus, 1758)	PN 08	5
AVES	Emberizidae	Sporophila caerulescens (Vieilot, 1823)	PN 08	5
AVES	Emberizidae	Tangara chilensis (Vigor, 1832)	PN 08	5
AVES	Muscicapidae	Turdus amaurochalinus (Cabanis, 1851)	PN 09	6
AVES	Columbidae	Columbina talpacoti (Temminck, 1811)	PN 11	8
AVES	Hirundinidae	Reinarda squamata (Cassin, 1853)	PN 11	8
AVES	Bucconidae	Monasa morphoeus (Hahn & Kuster, 1823)	PN 11	8
AVES	Trogonidae	Trogon curucui (Linnaeus, 1766)	PN 11	8
AVES	Trochilidae	Phaethornis ruber (Linnaeus, 1758)	PN 16	12
AVES	Columbidae	Leptotila verreauxi(Bonaparte, 1855)	PN 16	12
AVES	Corvidae	Cyanocorax crysops (Vieillot, 1818)	PN 16	12
AVES	Cotigidae	Lipaugus vociferans (Wied, 1820)	PN 16 DN 16	12
AVES	Bucconidae	Cheliaoptera tenebrosa (Pallas, 1782)	PN 16 DN 16	12
AVES	Rampnasudae	(Hellmour, 1006)	PN 10 DN 16	12
AVES	Psittacidae	(Hellillayi, 1900) Amazona aastiva (Linnaeus, 1758)	PN 10 PN 16	12
AVES	Psittacidae	Ara ararauna (Linnaeus, 1758)	PN 16	12
AVES	Psittacidae	Ara macao (Linnaeus, 1758)	PN 16	12
AVES	Psittacidae	Brothogeris chrysopteris (Linnaeus, 1766)	PN 16	12
AVES	Columbidae	Columbina talpacoti (Temminck, 1811)	PN 17	13
AVES	Cuculidae	Crotophaga ani (Linnaeus, 1758)	PN 17	13
AVES	Emberizidae	Thraupis palmarum (Weid, 1821)	PN 17	13
AVES	Troglodytidae	Campilorhynchus turdinus (Weid, 1821)	PN 17	13
AVES	Psittacidae	Ara macao (Linnaeus, 1758)	PN 17	13
AVES	Columbidae	Columbina talpacoti (Temminck, 1811)	PN 19	15
AVES	Cuculidae	Crotophaga ani (Linnaeus, 1758)	PN 19	15
AVES	Formicariidae	Formicarius colma	PN 19	15
AVES	Phasianidae	Gallus gallus (Linnaeus, 1758)**	PN 19	15
AVES	Thamnophilidae	Thamnophilus doliatus (Linnaeus, 1764)	PN 19	15
AVES	Columbidae	Columbina talpacoti (Temminck, 1811)	PN 20	16
AVES	Cuculidae	Crotophaga ani(Linnaeus, 1758)	PN 20	16
AVES	Emberizidae	Cissops leveriana (Gmelin, 1788)	PN 20 DN 20	10
AVES	Emberizidae	Corypnospingus cuculatus (Muller, 1776) Ramphocolus carbo (Pollos, 1764)	PN 20 PN 20	10
AVES	Emberizidae	Scaphidura orginora (Lippons, 1704)	FIN 20 PN 20	10
AVES	Emberizidae	Volating igcaring (Linnaeus, 1756)	PN 20	10
AVES	Tyrannidae	Myiarchus tyrannulus Müller (1776)	PN 20	16
AVES	Charadriidae	Vanellus chilensis (Gmelin 1789)	PN 22	18
AVES	Scolopacidae	Tringa solitaria (Wilson, 1813)	PN 22	18
AVES	Ardeidae	Bubulcus ibis (Linnaeus, 1758)	PN 22	18
AVES	Cuculidae	Crotophaga ani (Linnaeus, 1758)	PN 22	18
AVES	Emberizidae	Leistes militaris (Linnaeus, 1758)	PN 22	18
AVES	Emberizidae	Ramphocelus carbo (Pallas, 1764)	PN 22	18
AVES	Psittacidae	Ara ararauna (Linnaeus, 1758)	PN 22	18

Table S8. Vertebrate fauna listed according to Class and transect in NW Mato Grosso*

			МТ	Tran-
Class	Family	Species	MI	sect
	·	L	Code	No.
AVES	Psittacidae	Pionus menstruus (Linaeus, 1766)	PN 22	18
AVES	Columbidae	Columbina talpacoti (Temminck, 1811)	PN 23	19
AVES	Acciptridae	Buteo magnirostris (Gmelin, 1758)	PN 23	19
AVES	Emberizidae	Thraunis palmarum (Wied 1821)	PN 23	19
AVES	Cotigidae	Lingugus vociferans (Wied, 1820)	PN 26	22
AVES	Dendrocolantidae	Sittasomus ariseicanillus (Vieillot 1818)	PN 26	$\frac{22}{22}$
AVES	Emberizidae	Thraunis palmarum (Weid 1821)	PN 26	22
AVES	Muscicapidae	Turdus amaurochalinus (Cohonis, 1851)	DN 26	22
AVES	Troglodytidae	Cynhorhinus arada (Hermann, 1783)	IN 20 DN 26	22
AVES	Trannidaa	Mujaratatag amanangig (Linnagua, 1765)	IN 20 DN 26	22
AVES	Disidas	Mylozetetes cayenensis (Linnaeus, 1700) Molan arma armantatus (Daddaart, 1782)	PIN 20 DN 26	22
AVES	Tragonidaa	Tragon gurugui (Linnogue 1766)	FIN 20 DN 26	22
AVES	Consistentation	<i>Creative Level</i> (Linnaeus, 1700)	PIN 20	22
AVES	Caprimulgidae	<i>Caprimulgus maculicauaus</i> (Lawrence, 1862)	PN 27	23
AVES	Emberizidae	<i>Ramphocelus carbo</i> (Pallas, 1764)	PN 27	23
AVES	Thamnophilidae	Myrmeciza atrotorax (Boddaert, 1783)	PN 27	23
AVES	Tinamidae	Crypturellus parvirostris (Wagler, 1827)	PN 27	23
AVES	Charadriidae	Vanellus chilensis (Gmelin, 1789)	PN 28	24
AVES	Columbidae	Columba cayennensis (Bonnaterre, 1792)	PN 28	24
AVES	Cuculidae	Crotophaga ani (Linnaeus, 1758)	PN 28	24
AVES	Psittacidae	Ara auricolis (Cassin, 1853)	PN 28	24
MAMMALIA	Tayassuidae	Tayassu pecari (Link, 1795)	PN 05	2
MAMMALIA	Tapiridae	Tapirus terrestris (Linnaeus, 1758)	PN 05	2
MAMMALIA	Dasyproctidae	Dasyprocta azarae (Lichtenstein, 1823)	PN 05	2
MAMMALIA	Cervidae	Mazama americana (Erxleben, 1777)	PN 06/07	3/4
MAMMALIA	Tayassuidae	Tayassu pecari (Link, 1795)	PN 06/07	3/4
MAMMALIA	Hidrochaeridae	Hydrochaeris hydrochaeris (Linnaeus, 1766)	PN 06/07	3/4
MAMMALIA	Tayassuidae	Tayassu pecari (Link, 1795)	PN 08	5
MAMMALIA	Myrmecophagidae	Tamandua tetradactyla (Linnaeus, 1758)	PN 08	5
MAMMALIA	Cervidae	Mazama americana (Erxleben, 1777)	PN 09	6
MAMMALIA	Tayassuidae	Pecari tajacu (Linnaeus, 1758)	PN 09	6
MAMMALIA	Canidae	Cerdocyon thous (Linnaeus, 1766)	PN 09	6
MAMMALIA	Myrmecophagidae	Tamandua tetradactyla (Linnaeus, 1758)	PN 09	6
MAMMALIA	Tapiridae	Tapirus terrestris (Linnaeus, 1758)	PN 09	6
MAMMALIA	Tavassuidae	Pecari tajacu(Linnaeus, 1758)	PN 11	8
MAMMALIA	Dasypodidae	Dasypus novemcinctus (Linnaeus, 1758)	PN 11	8
MAMMALIA	Tapiridae	Tapirus terrestris(Linnaeus, 1758)	PN 11	8
MAMMALIA	Suidae	Sus scrofa domesticus	PN 16	12
MAMMALIA	Tavassuidae	Tavassu pecari (Link, 1795)	PN 16	12
MAMMALIA	Canidae	<i>Canis familiaris</i> Linnaeus (1758)	PN 16	12
MAMMALIA	Felidae	Felis catus Linnaeus (1758)	PN 16	12
MAMMALIA	Dasynodidae	Dasynus kappleri(Krauss 1862)	PN 16	12
MAMMALIA	Dasypodidae	Dasynus sn	PN 16	12
MAMMALIA	Tapiridae	Tanirus terrestris (Linnaeus, 1758)	PN 16	12
MAMMALIA	Cebidae	Lagotrix lagotricha (Humboldt 1812)	PN 16	12
MAMMALIA	Dasyproctidae	Dasyprocta azarae (Lichtenstein 1823)	PN 16	12
ΜΔΜΜΔΙΙΔ	Dasyprocidae	Dasyprocia azarac (Elencensieni, 1023) Dasypus novemcinctus (Linnaeus, 1758	PN 19	15
ΜΔΜΜΔΙΙΔ	Muridae	Orvzonnys spp	PN 19	15
MAMMALIA	Deservedidee	Dammus sp	DN 20	15
	Carridaa	Dasypus sp Mazama amarinana (Erylahan, 1777)	PN 20 DN 24	10
	Tarrage	Tructure and the second (El Xiebell, 1777)	PIN 24 DN 24	20
	Tayassuidae	Tayussu pecari (Link, 1/95) Taying tomostris (Lingang, 1759)	FIN 24 DN 24	20
	Cabidae	<i>Lapirus terrestris</i> (Linnaeus, 1758)	PIN 24	20
		Lagoirix lagoiricna (Humboldt, 1812)	PIN 24 DN 24	20
MAMMALIA	Agoutidae	Agoun paca (Linnaeus, 1/66)	PIN 24	20
MAMMALIA	Cedidae	Lagotrix lagotricha (Humboldt, 1812)	PIN 26	22
MAMMALIA	Agoutidae	Agoun paca (Linnaeus, 1/66)	PIN 26	22
MAMMALIA	Dasyproctidae	Dasyprocta azarae (Lichtenstein, 1823)	PN 26	22
MAMMALIA	Suidae	Sus scrofa domesticus	PN 27	23
MAMMALIA	Tapiridae	Tapirus terrestris (Linnaeus, 1758)	PN 27	23

* Source: I.C.L Assumpção, D.M. de Oliveira, R.J.V. Neto

No.	Family	Species	Tr														
			1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	Cercopithecidae	Macaca fascicularis	1	1	1	0	1	0	0	0	0	0	0	0	0	0	0
2	Cercopithecidae	Presbytis melalophos	1	1	1	1	1	1	0	1	1	1	1	0	0	0	0
3	Cercopithecidae	Trachyphitecus cristatus	0	0	1	0	0	0	0	0	0	1	1	0	0	0	0
4	Cervidae	Cervus unicolor	0	0	0	0	0	0	1	0	0	1	1	0	0	1	1
5	Cervidae	Muntiacus muntjak	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
6	Felidae	Felis bengalensis	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0
7	Hylobatidae	Hylobates lar agilis	1	0	1	1	1	1	1	0	0	0	0	0	0	0	0
8	Muridae	Maxomys rajah	1	1	0	1	1	0	0	0	0	0	0	0	0	0	0
9	Muridae	Maxomys whiteheadi	0	0	1	1	1	1	0	1	1	1	1	0	0	0	0
10	Muridae	Rattus rattus	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
11	Muridae	Rattus exulans	0	0	0	0	0	1	1	1	1	0	0	1	1	0	0
12	Muridae	Rattus tiomanicus	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0
13	Pteropodidae	Pteropus vampirus	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
14	Pteropodidae	Balionycteris maculata	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
15	Pteropodidae	Cynopterus brachyotis	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0
16	Pteropodidae	Rousettus amplexicaudatus	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
17	Rhinolophidae	Rhinolophus lepidus	0	0	0	1	1	0	0	0	0	0	0	0	0	0	0
18	Sciuridae	Callosciurus prevostii	1	0	0	1	0	1	0	1	1	1	1	0	0	0	0
19	Sciuridae	Petinomys genigarbis	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
20	Sciuridae	Ratufa affinis	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
21	Sciuridae	Sundasciurus hippurus	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
22	Sciuridae	Callosciurus notatus	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
23	Sciuridae	Sundasciurus lowii	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
24	Suidae	Sus barbatus	1	1	0	1	0	1	1	1	1	1	1	0	0	0	0
25	Suidae	Sus scrofa	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1
26	Tragulidae	Tragulus javanicus	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
27	Tupaidae	Tupaia tana	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
28	Tupaidae	Tupaia glis	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0
29	Ursidae	Helarctos malayanus	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0
30	Vespertilionidae	Pipistrellus javanicus	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
31	Viverridae	Hemigalus derbyanus	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0

 Table S9. Vertebrate (mammal) fauna recorded in Jambi, Sumatra, Indonesia*

*Source: I. Maryanto

Jumpi, Jum	atra, maonesia	_											
Family	Species	Tr											
		1	2	3	4	5	6	7	8	10	12	13	16
Accipitridae	Accipiter gularis	0	0	0	0	0	0	1	1	0	0	0	0
Accipitridae	Accipiter trivirgatus	0	0	1	0	1	0	0	0	0	0	0	0
Alcedinidae	Cevy erithacus	1	1	0	Õ	1	Õ	Ő	Ő	Õ	Õ	Ő	Ő
Alcedinidae	Halovon smyrnensis	0	0	õ	0	0	Ő	1	1	0	1	1	0
Anceulliluae	Day due any newsis	0	0	0	0	0	0	1	1	0	1	1	0
Anatidae	Denarocygna arcuaia	0	0	1	1	0	1	0	0	0	1	0	0
Apodidae	Aeroaramus fucipnagus	0	0	1	1	0	1	0	0	0	0	0	0
Apodidae	Cypsiurus balasiensis	0	0	0	0	0	I	0	0	0	0	0	0
Apodidae	Hirundapus caudacutus	0	0	0	0	0	1	0	0	0	0	0	0
Ardeidae	Ardea cinerea	0	0	0	0	0	0	0	0	0	0	1	0
Bucerotidae	Anthracoceros albirostris	0	0	1	0	0	0	0	0	1	0	0	0
Bucerotidae	Anthracoceros malayanus	0	0	0	1	1	0	1	0	1	0	0	0
Bucerotidae	Buceros rhinoceros	1	0	0	1	0	0	0	0	1	0	0	0
Bucerotidae	Rhinoplax vigil	1	1	1	1	1	0	0	0	0	0	0	0
Campephagidae	Coracina striata	1	0	0	0	0	0	0	0	0	0	0	0
Campephagidae	Heminus hirundinaceus	0	1	1	Ő	Ő	õ	Õ	Ő	Ő	Ő	õ	õ
Campenhagidae	Paricrocotus ignaus	0	0	0	0	1	0	0	0	0	0	0	0
Campephagidae	Demonocotus igneus	0	1	1	0	1	0	0	0	0	0	0	0
Campephagidae	Pericrocolus spp.	0	1	1	0	0	0	0	0	1	0	0	0
Capitonidae	Catornampnus futiginosus	0	0	0	0	0	0	0	0	1	0	0	0
Capitonidae	Megalaima australis	0	0	I	1	0	0	0	0	1	0	0	1
Capitonidae	Megalaima rafflesi	1	1	1	1	1	0	0	0	0	0	0	0
Columbidae	Chalcophaps indica	0	0	1	1	1	0	0	1	1	0	0	1
Columbidae	Ducula aenea	0	0	0	0	0	0	0	0	1	0	0	0
Columbidae	Geopelia striata	0	0	0	0	0	0	0	0	0	1	0	0
Columbidae	Ptilinopus (jambu)	0	0	0	0	0	0	0	0	0	0	0	1
Columbidae	Streptopelia chinensis	0	0	0	0	0	0	0	0	0	1	1	1
Columbidae	Treron curvirostra	0	0	0	0	0	0	0	0	0	1	1	0
Columbidae	Treron vernans	0	1	0	0	0	0	0	0	0	0	0	0
Coraciidae	Eurystomus orientalis	0	0	0	0	0	0	0	0	0	1	0	1
Corvidae	Corvus enca	Ő	1	Õ	Õ	Õ	1	1	1	1	0	Ő	0
Corvidae	Platysmurus leucopterus	Ő	0	Õ	Õ	Õ	0	0	1	1	Õ	Ő	Õ
Cuculidae	Cacomantis merulinus	Ő	Ő	Ő	Ő	Ő	1	1	0	0	1	1	ĩ
Cuculidae	Cacomantis sonneratii	1	Ő	Ő	1	Ő	0	0	Ő	1	0	0	Ô
Cuculidae	Cantronus hangalansis	0	0	0	0	0	1	1	1	1	1	1	1
Cuculidae	Contropus sinonsis	0	0	0	0	1	0	0	0	0	0	0	0
Cuculidae	Cualus micronterus	0	0	0	0	0	0	1	0	0	0	0	1
Cuculidae	Cuculus micropierus	0	0	0	1	1	0	1	0	0	0	0	1
Cucultuae		0	0	0	1	1	0	0	0	0	0	0	0
Cucundae	Rhamphococcyx curvirostris	0	0	0	0	1	0	0	0	0	0	0	0
Cuculidae	Rhopodytes sumatranus	0	0	0	0	0	0	0	0	1	0	0	0
Cuculidae	Surniculus lugubris	0	0	0	0	0	0	I	0	1	0	0	l
Dicaeidae	Dicaeum spp.	0	0	1	1	1	0	0	0	0	0	0	0
Dicaeidae	Dicaeum trigonostigma	1	1	1	1	1	0	0	0	1	0	0	1
Dicaeidae	Prionochilus percussus	0	0	0	0	0	0	0	1	1	0	0	0
Dicruridae	Dicrurus aeneus	0	0	1	0	1	0	0	0	0	0	0	0
Dicruridae	Dicrurus paradiseus	1	1	1	1	1	0	1	0	1	0	0	1
Estrildidae	Lonchura leucogastra	0	0	0	0	0	0	0	0	0	0	0	1
Estrildidae	Lonchura maja	0	0	0	0	0	0	0	0	0	1	1	1
Estrildidae	Lonchura punctulata	0	0	0	0	0	1	0	0	0	1	1	0
Eurylaimidae	Corvdon sumatranus	0	0	1	0	0	0	0	0	0	0	0	0
Eurvlaimidae	Eurylaimus ochromalus	0	0	1	1	1	0	1	1	1	0	0	0
Falconidae	Microhierax fringillarius	ŏ	Ő	0	0	0	ĩ	1	0	0	Ő	Õ	ŏ
Hemiprocnidae	Heminrocne comata	Õ	1	1	1	1	0	0	Ő	Õ	Ő	Ő	Ő
Hirundinidae	Hirundo rustica	0	0	0	0	1	1	1	0	0	1	1	1
Innununnuae	A saithing tiphig	0	0	0	0	0	0	0	0	0	0	0	1
Irenidae	Aeginnina lipnia	0	0	0	0	1	0	0	0	0	0	0	1
Irenidae	Aegiinina viriaissima	0	0	1	0	1	0	0	0	0	0	0	0
Irenidae	Chioropsis cochinchinensis	0	U	1	0	0	0	0	0	U	U	0	0
Irenidae	Chioropsis cyanopogon	0	0	0	1	1	0	0	0	0	0	0	U
Irenidae	Chloropsis sonnerati	1	1	1	0	0	0	0	0	0	0	0	Ű
Irenidae	Irena puella	0	1	0	0	0	1	0	0	0	0	0	0
Laniidae	Lanius tigrinus	0	0	0	0	0	0	0	0	0	0	0	1
Meropidae	Merops viridis	0	1	0	1	1	1	1	1	1	1	1	l

Table S10. Vertebrate (bird) fauna listed according to family and transect in Jambi, Sumatra, Indonesia*

Family	Species	T.	T.	T.	Т.,	Т.,	Т.,	T.	T.	T.	T.	Tw	T.
Family	Species		1r	1r 2			Ir 6		lr e	1r 10	1r 12	1r 12	1r 16
Mananidaa	Nu otu o mia ami otu a	0		<u> </u>	4	1	0		0	0	12	15	
Monorahidaa	Nyciyornis amicius	0	1	1	0	1	0	0	0	1	0	0	0
Monarchidae	Philantoma pyrhoptarum	0	0	0	0	1	0	0	0	0	0	0	0
Monarchidae	Rhinidura parlata	0	0	0	1	1	0	0	0	0	0	0	0
Monarchidae	Ternsinhone paradisi	0	1	0	0	1	0	0	0	0	0	0	0
Muscicapidae	Culicicana contonansis	1	0	0	0	0	0	0	0	0	0	0	0
Muscicapidae	Curreicapa ceytonensis Cvornis tickelliae	1	1	1	1	1	0	0	0	0	0	0	0
Muscicapidae	(Unidentified flycatcher)	0	0	0	0	1	Ő	0	0	0	0	0	0
Nectariniidae	Aethonyga sinaraja	Ő	Ő	1	1	1	Ő	Ő	Ő	Ő	Ő	õ	Ő
Nectariniidae	Anthrentes malacensis	1	Ő	0	1	1	Ő	1	Ő	1	Ő	Ő	1
Nectariniidae	Anthreptes simplex	Ô	Ő	Ő	0	1	Ő	0	Ő	0	Ő	Ő	0
Nectariniidae	Arachnothera affinis	1	1	1	Ő	1	Ő	Ő	Ő	Ő	Ő	Õ	Ő
Nectariniidae	Arachnothera longirostra	1	0	1	1	1	Õ	0	0	Õ	Õ	0	Õ
Nectariniidae	Hypogramma	0	Õ	0	0	1	Õ	Õ	0	Õ	Õ	0	Õ
Nectariniidae	hypogrammicum	0	0	0	0	0	0	1	1	0	0	0	0
Oriolidae	Nectarinia jugularis	0	0	0	1	1	0	0	0	1	0	0	0
Orthonychidae	Oriolus xanthonotus	0	1	0	0	0	0	0	0	0	0	0	0
Phasianidae	Eupetes macrocerus	0	0	0	0	0	0	0	0	0	1	1	0
Picidae	Gallus gallus	0	0	0	1	0	0	0	0	0	0	0	0
Picidae	Blythipicus rubiginosus	0	0	0	0	0	0	0	0	0	0	1	0
Picidae	Chrysocolaptes lucidus	1	0	0	0	0	0	0	0	0	0	0	0
Picidae	Dinopium rafflesii	1	1	1	1	0	0	0	0	0	0	0	0
Picidae	Dryocopus javensis	0	0	1	0	1	0	0	0	0	0	0	0
Picidae	Hemicircus concretus	1	0	0	0	0	0	0	0	0	0	0	0
Picidae	Meiglyptes tukki	0	0	1	1	0	0	0	1	1	0	0	0
Picidae	Picus puniceus	0	0	0	0	0	0	0	0	1	0	0	0
Psittacidae	Sasia abnormis	1	1	1	1	1	1	0	1	0	0	0	0
Psittacidae	Loriculus galgulus	0	0	0	0	0	0	0	0	0	1	1	0
Psittacidae	Psittacula longicauda	1	1	1	1	1	1	0	1	0	0	0	0
Pycnonotidae	Psittinus cyanurus	1	1	1	0	1	0	0	0	0	0	0	0
Pycnonotidae	Criniger phaeocephalus	0	0	1	0	0	0	0	0	0	0	0	0
Pycnonotidae	Hypsipetes criniger	0	0	0	1	1	0	0	1	1	0	0	0
Pycnonotidae	Pycnonotus atriceps	0	0	0	0	0	0	0	0	0	1	1	0
Pycnonotidae	Pycnonotus aurigaster	0	0	1	1	1	1	1	1	1	0	0	1
Pycnonotidae	Pycnonotus brunneus	0	0	0	0	0	1	1	0	0	1	1	1
Pycnonotidae	Pycnonotus goiavier	0	0	0	0	0	0	0	1	1	0	0	0
Pycnonotidae	Pycnonotus melanicterus	0	0	0	1	0	1	0	0	1	0	0	0
Pycnonotidae	Pycnonotus simplex	1	1	0	1	0	0	0	0	0	0	0	0
Rallidae	Pycnonotus spp.	0	0	0	0	0	0	0	0	0	0	1	0
Sturnidae	Amaurornis phoenicurus	l	1	1	l	1	0	0	0	0	0	0	0
Sturnidae	Aplonis panayensis	0	1	1	0	1	l	l	l	0	0	l	1
Sylviidae	Gracula religiosa	0	0	0	0	0	0	0	0	1	0	0	0
Sylviidae	Cettia vulcania	0	0	0	0	0	0	0	0	0	1	0	1
Sylviidae	Cisticola exilis	0	0	0	0	0	0	0	0	0	1	I	0
Sylviidae	Cisticola juncidis	0	1	1	1	1	1	1	1	1	1	1	1
Sylviidae	Orthotomus atrogularis	1	1	1	1	1	1	1	0	0	1	1	1
Sylviidae	Orthotomus ruficeps	0	1	1	1	1	1	1	0	0	0	1	0
Sylviidae	Drinin franklinnin	0	0	0	0	0	1	1	1	1	1	1	1
Timeliidee	Prinia familiaris	0	0	0	0	1	1	0	1	0	1	1	1
Timaliidaa	Alainna huunaiaguda	0	1	0	0	1	0	0	0	0	0	0	0
Timaliidaa	Alcippe brunneicauda	0	1	0	1	0	1	1	0	1	1	1	1
Timaliidaa	Kenopia siriaia Maananaya aylaria	0	1	0	1	0	1	1	0	1	1	1	1
Timaliidae	Malaconteron cineraum	1	1	0	0	1	0	0	0	0	0	0	0
Timaliidae	Malacopteron magnirostra	1	1	0	0	1	0	0	0	0	0	0	1
Timaliidae	Malaconteron magnum	1	0	0	0	1	0	0	0	0	0	0	1
Timaliidae	Pollornoum conjetratum	0	0	0	0	1	0	0	1	0	0	0	0
Timaliidae	Pomatorhinus montanus	0	0	1	1	1	0	0	0	1	0	0	ñ
Timaliidae	Stachvris erythrontera	0	0	0	1	0	0	0	0	0	0	0	1
Timaliidae	Stachyris er yntopieru Stachyris maculata	0	0	1	0	0	0	0	0	0	0	0	0
Timaliidae	Stachyris nioricollis	1	1	0	0	õ	õ	1	0	Ő	õ	0	Ő
Timaliidae	Stachyris ngricouis Stachyris sp	0	1	0	0	Ő	0	0	0	0	Ő	0	0
1 manuae	similyins sp.	U	1	U	U	v	U	U	U	v	v	U	U

Family	Species	Tr											
1 uning	Species	1	2	3	4	5	6	7	8	10	12	13	16
Timaliidae	Trichastoma abbotti	0	0	0	0	1	0	0	0	0	0	0	0
Timaliidae	Trichastoma bicolor	0	0	1	0	0	0	0	0	1	0	0	0
Timaliidae	Trichastoma malaccense	1	1	0	0	0	0	0	0	0	0	0	0
Trogonidae	Trichastoma sepiarium	1	1	0	0	1	0	0	0	0	0	0	0
Trogonidae	Harpactes kasumba	0	0	0	1	0	0	0	0	0	0	0	0
Turdidae	Harpactes oreskios	0	1	0	1	0	1	0	0	0	0	0	0
Turdidae	Copsychus malabaricus	0	0	0	0	0	1	1	0	0	1	1	1
Turdidae	Copsychus saularis	0	0	0	0	0	1	1	0	0	0	0	0
Turnicidae	Turdus obscurus	0	0	0	0	0	0	0	0	0	1	1	1
Zosteropidae	Turnix suscitator	0	0	1	0	1	0	0	0	0	0	0	0
Species A	Zosterops palpebrosus	1	0	0	0	0	0	0	0	0	0	0	0
Species B	-	1	0	0	0	0	0	0	0	0	0	0	0
Species C	-	0	1	0	0	0	0	0	0	0	0	0	0
Species D	-	0	1	0	0	0	0	0	0	0	0	0	0
Species E	-	0	1	0	0	0	0	0	0	0	0	0	0
Species F	-	0	1	0	0	0	0	0	0	0	0	0	0
Species G	-	0	1	0	0	0	0	0	0	0	0	0	0
Species H	-	0	0	1	0	0	0	0	0	0	0	0	0
Species I	-	0	0	1	1	0	0	0	0	0	0	0	0
Species J	-	0	0	0	0	1	0	0	0	0	0	0	0
-	_												

* Source P. Jepson, Djawardi

Family	Species	Feeding	Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr	Tr 24	Tr 25	Tr 20
(sublatting)	Contotarmas tastacaus	group v	2	<u> </u>	4	<u> </u>	0	10	- 19	1	24	25	1
Kimotermitidae	Dolichorhinotermes	X	0	0	0	2	0	0	1	2	0	0	0
	Heterotermes tenuis	Х	1	0	0	2	0	2	0	0	1	0	0
	Rhinotermes marginalis	Х	0	0	0	1	0	0	0	0	0	0	2
Termitidae	0												
Apicotermitinae:	Anoplotermes banksi	Н	0	0	0	0	1	0	0	0	0	0	0
(Anoplotermes-group)	Anoplotermes sp. A	Н	1	0	0	2	1	0	1	5	0	1	3
	Anoplotermes sp. B	Н	0	0	0	0	0	0	0	0	1	1	2
	Anoplotermes sp. C	Н	2	0	0	0	0	0	0	1	1	0	0
	Anoplotermes sp. D	Н	0	0	0	0	0	0	0	0	0	1	1
	Anoplotermes sp. E	Н	0	0	0	0	1	0	0	0	0	0	0
	Grigiotermes sp. A	Н	0	0	0	0	0	0	0	2	0	0	2
	Ruptitermes reconditus	L	0	0	0	0	0	0	0	0	0	0	1
	Ruptitermes sp. A	L	0	0	0	0	0	0	0	1	0	0	0
	Ruptitermes sp. B	L	0	0	0	0	0	0	1	1	0	0	0
	Tetimatermes sp. A	Н	0	0	0	0	0	0	1	0	0	0	0
(Termitinae)	Cavitermes parvicavus	Н	0	0	0	0	1	0	0	0	0	0	0
	Cavitermes tuberosus	Н	0	0	0	0	1	0	0	0	0	0	0
	Cornicapritermes mucronatus	Х	0	0	0	0	0	0	0	1	0	0	0
	Crepititermes verruculosus	Н	0	0	0	1	1	0	0	0	1	1	0
	Cylindrotermes flangiatus	Х	0	0	0	4	0	1	0	0	0	1	0
	Dentispicotermes	Н	0	0	0	0	0	0	1	0	0	0	0
	globicephalus	11	0	0	0	0	0	0	0	0	0	1	0
	Miene constant of structure chii	H V	1	0	0	0	0	0	0	1	0	1	0
	Microcerotermes strunckii	A I	1	0	0	0	0	0	0	1	1	0	0
	Neocapritermes opacus	I	0	0	0	0	2	0	0	0	1	0	0
	Neocapritermes unicornis	I V	0	0	0	2	2	0	0	0	0	0	0
	Fiunicaprilermes planiceps		0	0	0	2	0	0	0	0	0	1	0
	Termes medioculatus	I	0	0	1	0	2	0	0	1	0	0	0
(Nagutitermitinge)	Anhangatermes macarthuri	и Н	0	0	0	0	0	0	1	0	0	0	0
(Inasumermininae)	Annungalermes macarman Atlantitermes rarinilus	н	0	0	0	0	0	0	0	1	0	1	0
	Atlantitermes snyderi	н	0	0	0	0	0	0	1	0	0	0	0
	Atlantitermes sterconhilus	н	0	0	0	0	1	0	0	0	0	0	0
	Atlantitermes sp A	н	0	0	0	0	1	0	0	0	0	0	0
	Coatitermes clevelandi	Н	0	0	0	0	1	0	Ő	0	0	1	Ő
	Coatitermes sp. A	Н	0	0	0	0	1	Õ	0	0	0	0	0
	Diversitermes diversimiles	L	0	0	0	0	0	0	0	0	0	1	1
	Nasutitermes brevipilus	Ι	0	0	0	0	1	0	0	0	0	0	0
	Nasutitermes corniger	Х	2	0	0	0	0	0	0	0	0	2	1
	Nasutitermes coxipoensis	L	0	4	1	0	0	0	0	0	0	0	0
	Nasutitermes ephratae	Х	0	0	0	0	0	0	0	0	1	0	1
	Nasutitermes major	Х	0	0	0	5	0	0	0	0	0	0	0
	Nasutitermes octopilis	Х	0	0	0	1	0	0	0	0	0	0	0
	Nasutitermes similis	Х	0	0	0	2	0	3	3	0	1	0	2
	Nasutitermes surinamensis	Х	0	0	0	0	0	1	0	0	1	0	0
	Nasutitermes wheeleri*	Х	0	0	0	0	0	0	0	0	0	0	0
	Nasutitermes sp. A	Х	0	0	0	0	0	2	0	0	0	1	0
	Nasutitermes sp. B	Х	0	0	0	2	0	0	0	0	0	0	0
	Nasutitermes sp. C	Х	0	0	2	0	0	0	0	0	0	0	0
	Subulitermes microsoma	Н	0	0	0	0	0	0	4	0	0	2	0
	Triangularitermes	Ι	0	0	0	0	1	0	0	0	0	0	0
	triangulariceps	т	0	0	0	1	0	0	0	2	0	٥	٥
(Suntarmitinga)	Correitermes begugarti	L	1	0	0	0	0	2	0	2 1	1	3	0
(Syntermitmae)	Cornitermes Dequaerii	I T	1	0	0	1	0	2 0	0	1	1	0	0
	Cornitermes sp D	T	0	0	0	0	0	0	0	0	0	0	1
	Curvitermes odontoonathus	Н	0	0	0	0	0	0	1	0	0	1	0
	Embiratermes latidens	T	0	0	0	0	0	0	1	0	0	0	0
	Embiratermes neotenicus	ī	1	0	0	0	1	0	0	1	0	0	2
	Embiratermes cf. silvestrii	Ī	0	0	0	0	0	0	1	0	0	0	õ
	Labiotermes labralis	H	0	0	0	0	1	0	0	0	0	0	1
			-	-	-	-		-	-	-	-	-	

Table S11. Invertebrate fauna (termites) recorded in Mato Grosso according to taxa, feeding group and transect*

Abundance		9	4	4	26	20	12	19	21	11	20	23
Species richness		7	1	3	13	17	7	14	14	11	16	16
Silvestritermes holmgreni	Ι	0	0	0	0	2	1	0	0	1	0	1
Mapinguaritermes peruanus	Ι	0	0	0	0	0	0	0	0	0	0	1
Labiotermes orthocephalus	Н	0	0	0	0	0	0	1	0	0	0	0
Labiotermes pelliceus	Н	0	0	0	0	0	0	1	0	0	1	0

* Source: R. Constantino. Feeding groups: H= humus; X= wood; L= leaf-litter; I=

intermediate; E = epiphyte; abundance = number of colonies per species. Site numbers: top line = original MT listing; lower line =site number used in this study.

Family		Fooding	Tr	Tr	Tr	Tr	Tr	Tr	Tr
(subfamily)	Species	group	1	3	6	8	10	12	14
(Subrunnij) Kalotermitidae	Glyptotermes sp	X	0	0	0	1	0	0	0
Rhinotermitidae	Contotermes curvignathus	X	1	1	1	3	1	0	0
	Coptotermes sepangenis	X	0	0	4	0	0	0	Õ
	Coptotermes borneensis	X	0	0	1	Õ	Õ	0	Õ
	Heterotermes tenuior	Х	1	0	0	0	0	0	0
	Parrhinotermes near minor	Х	0	0	0	0	1	0	0
	Parrhinotermes near sp. C	Х	0	1	0	0	0	0	0
	Schedorhinotermes sarawakensis	Х	1	0	9	0	0	0	0
	Schedorhinotermes medioobscurus	Х	7	7	7	3	10	0	0
Termitidae	Ancistrotermes pakstanicus	Х	0	0	0	0	3	0	0
(Macrotermitinae)	Macrotermes gilvus	Х	0	0	0	0	0	0	1
	Macrotermes ahmadi	Х	1	0	0	0	0	0	0
	Odontotermes denticulatus	Х	0	0	0	0	5	0	0
	Odontotermes sarawakensis	Х	10	9	0	0	0	0	0
(Termitinae)	Coxocapritermes sp. A	Н	6	1	0	0	0	0	0
	Coxocapritermes sp. C	Н	2	3	0	0	0	0	0
	Coxocapritermes sp. D	Н	1	3	0	0	2	0	0
	Dicuspiditermes nemorosus	Н	11	18	0	12	12	0	0
	Dicuspiditermes santschii	Н	6	5	2	2	1	0	0
	Globitermes globosus	X	8	4	0	0	1	4	0
	Homallotermes eleanorae	l	1	0	0	3	0	0	0
	Homallotermes foraminifer	1	1	4	0	0	0	0	0
	Kemneritermes sarawakensis	H	4	1	0	0	0	0	0
	Labritermes buttelreepeni	H	0	0	0	2	10	0	0
	Malaysiocapritermes prosettger	H	0	2	0	0	10	0	0
	Microcerolermes hear navitanal		2	1	0	1	0	0	0
	Microcerolermes serrula Mino amitamon actana		5	2	0	1	10	0	0
	Mirocaprilermes connectans Paricapritarmas dolichocaphalus	п	0	2	0	0	10	0	0
	Pericapritermes nitobei	н	1	0	0	0	2	0	0
	Paricapritarmas samaranai	и Н	2	0	0	0	0	5	0
	Procapritarmas near minutus	и Н	4	0	0	0	1	0	0
	Procapritermes neosetiger	н	0	0	0	1	0	0	0
	Procapritermes sandakanensis	Н	õ	Ő	Ő	0	3	Ő	Ő
	Procapritermes setiger	Н	8	6	Ő	Ő	2	õ	Ő
	Procapritermes sp. A	Н	0	0	0	0	5	0	0
	Prohamitermes mirabilis	Ι	3	7	4	6	0	0	0
	Termes comis	Ι	4	1	1	0	0	0	0
	Termes propinquus	Ι	3	0	1	12	0	0	0
(Nasutitermitinae)	Bulbitermes germanus	Х	2	0	0	0	0	0	0
	Bulbitermes prabhae	Х	1	0	0	0	0	0	0
	Bulbitermes sp. A	Х	3	1	0	0	0	0	0
	Havilanditermes proatripennis	Х	0	0	0	6	0	0	0
	Hospitalitermes hospitalis	E	4	0	0	2	0	0	0
	Leucopitermes sp. A	Н	1	0	0	0	0	0	0
	Malaysiotermes malayanus	Н	1	3	0	0	0	0	0
	Malaysiotermes sp. B	Н	2	3	0	0	0	0	0
	Nasutitermes havilandi	Х	1	0	3	0	2	0	0
	Nasutitermes matangensis	Х	0	0	0	0	2	0	0
	Nasutitermes neoparvus	Х	0	0	0	1	0	0	0
	Nasutitermes sp. C	X	0	0	0	2	0	0	0
	Nasutitermes sp. D	X	1	0	2	0	0	0	0
a 	Oriensubulitermes inanis	Н	2	4	0	0	2	0	0
Species richness			34	23	11	15	21	2	1
Abundance			110	94	35	62	82	9	1

Table S12. Invertebrate fauna (termites) recorded in Jambi, Sumatra according to taxa, feeding group and transect*

* Source: Jones et al. (2003). Feeding groups: H = humus; X = wood; I = intermediate; E = epiphyte. Abundance = No. colonies per species.

Target group	Indicator	Br	azil	Sun	natra
		r	Р	r	Р
Plant species	PFT diversity	0.956	0.0001	0.900	0.0001
	Bryophyte cover/abundance	0.642	0.0001	0.716	0.002
	Woody plants $< 2m$ tall c/a	0.688	0.0001	0.614	0.011
	Mean canopy height	0.558	0.001	0.894	0.0001
	Basal area woody plants	0.499	0.004	0.925	0.0001
	Litter depth	0.359	0.043	0.674	0.004
	PFT-weighted PFEs	0.050	0.0001	0.000	0.0001
	Dorsiventral Is. (do)	0.958	0.0001	0.900	0.0001
	Mesophyll (me)	0.818	0.0001	0.837	0.0001
	Phanerophyte (ph)	0.816	0.0001	0.954	0.0001
	Lateral incl. ls.(la)	0.789	0.0001	0.921	0.0001
	Platyphyll (pl)	0.721	0.0001	0.840	0.0001
	Green p/s stem (ct)	0.687	0.0001	0.908	0.0001
	Composite incl. ls. (co)	0.507	0.003	0.838	0.0001
	Succulent (su)	0.488	0.005	0.826	0.0001
	Rosulate ls.(ro)	0.463	0.008	0.833	0.0001
	Lianoid life form (li)	0.822	0.0001	0.744	0.001
	Graminoid (pv)	0.578	0.001	0.734	0.001
	Notophyll (no)	0.815	0.0001	0.712	0.002
	Epiphyte (ep)	0.465	0.007	0.707	0.002
	Adventitious roots (ad)	0.722	0.0001	0.593	0.015
	Microphyll (mi)	0.399	0.024	0.503	0.047
	Hemicryptophyte (hc)	0.668	0.0001	0.500	0.048
	Filicoid ls. (fi)	0.788	0.0001	-0.300	*
	Chamaephyte (ch)	0.517	0.002	-0.166	*
Bird species	Litter depth	-0.695	0.003	0.619	0.032
1	Spp.:PFTs ratio	-0.173	*	0.771	0.003
	Mean canopy height	0.449	*	0.721	0.008
	Basal area woody plants	0.161	*	0.646	0.023
	Plant species	0.031	*	0.625	0.030
	Crown cover non woody plts	-0.101	*	-0.634	0.027
	Termite abundance	-0.898	0.001	0.623	*
	Termite species	-0.885	0.001	0.535	*
Mammal species	PFT diversity	0.293	*	0.847	0.0001
-	Plant species	0.262	*	0.782	0.001
	Crown cover woody plants	0.256	*	0.734	0.002
	Basal area woody plants	0.613	0.012	0.617	0.014
	Mean canopy height	0.597	0.015	0.615	0.015

 Table S13. Target groups and significant indicators occurring in at least one region (excluding PFEs for fauna)

Target group	Indicator	Bra	nzil	Sun	natra
		r	Р	r	Р
	Spp.:PFTs ratio	-0.112	*	0.606	0.017
	Bryophyte cover/abundance	0.608	0.012	0.378	*
Termite species	Spp.:PFTs ratio	0.441	*	0.970	0.0001
	Basal area woody plants	0.614	0.045	0.966	0.001
	Mean canopy height	0.356	*	0.963	0.001
	Litter depth	0.710	0.014	0.847	0.013
	Plant species	0.496	*	0.853	0.015
	Mean furcation index	-0.720	0.012	-0.453	*
Termite abundance	Spp.:PFTs ratio	0.586	*	0.977	0.0001
	Basal area woody plants	0.548	*	0.949	0.001
	Mean canopy height	0.260	*	0.929	0.003
	Litter depth	0.718	0.013	0.907	0.005
	Plant species	0.620	0.042	0.847	0.016
	Mean furcation index	-0.671	0.024	-0.483	*

Ranked in order of regional statistical significance; * (P > 0.05); 'species' indicates species richness or diversity (number of species recorded per sample). See Table S1 for PFE coding.

Target group	Indicator	Br	azil	Sun	natra
		r	Р	r	Р
Plant species	Dorsiventral ls. (do) [†]	0.958	0.0001	0.900	0.0001
	Mesophyll (me) [†]	0.818	0.0001	0.837	0.0001
	Phanerophyte (ph) [†]	0.816	0.0001	0.954	0.0001
	Lateral incl. ls.(la) [†]	0.789	0.0001	0.921	0.0001
	Platyphyll (pl) [†]	0.721	0.0001	0.840	0.0001
	Green p/s stem (ct) \dagger	0.687	0.0001	0.908	0.0001
	Composite incl. ls. $(co)^{\dagger}$	0.507	0.003	0.838	0.0001
	Succulent (su) [†]	0.488	0.005	0.826	0.0001
	Rosulate ls.(ro) [†]	0.463	0.008	0.833	0.0001
	Lianoid life form (li) †	0.822	0.0001	0.744	0.001
	Graminoid (pv) [†]	0.578	0.001	0.734	0.001
	Notophyll (no) [†]	0.815	0.0001	0.712	0.002
	Epiphyte (ep) [†]	0.465	0.007	0.707	0.002
	Adventitious roots (ad) †	0.722	0.0001	0.593	0.015
	Microphyll (mi) [†]	0.399	0.024	0.503	0.047
	Hemicryptophyte (hc) [†]	0.668	0.0001	0.500	0.048
Mammal species	Succulent leaves (su)*	0.491	0.053	0.784	0.001
	Filicoid leaves (fi)*	0.625	0.010	0.569	0.027
	Filicoid leaves (fi) [†]	0.621	0.010	0.564	0.029
	Lateral incl. leaves $(la)^{\dagger}$	0.517	0.040	0.898	0.0001
	Adventitious roots (ad) [†]	0.616	0.011	0.537	0.039
Termite species	Lateral incl. leaves (la)*	0.669	0.024	0.838	0.019
Termite abundance	Lateral incl. leaves (la)*	0.721	0.012	0.839	0.018
	Lateral incl. leaves $(la)^{\dagger}$	0.606	0.048	0.763	0.046
	Dorsiventral leaves (do)*	0.623	0.040	0.839	0.018
	Mesophyll size leaves (me)*	0.735	0.010	0.765	0.045

Table S14. Significant PFE indicators common to both regions

* species-weighted PFTs; [†]unique PFT-weighted

Table 515. Vegetation structure and son properties										
PFE	Indicator	Braz	il	Sum	atra					
		r	Р	r	Р					
Mean canopy height	Silt%	0.355	0.046	-0.019	*					
Woody plants <2m tall	Silt%	0.423	0.016	0.540	0.031					
	Sand%	-0.404	0.022	-0.293	*					
Bryophyte cov./abund.	Silt%	0.432	0.013	-0.196	*					

Table S15. Vegetation structure and soil properties

* (*P* > 0.05)

 Table S16. Species and PFT diversity and soil correlates using combined regional data

Target group	Indicator	Brazil + Sumatr	
		r	Р
Plant species	Silt%	0.499	0.0001
	Sand%	-0.287	0.048
PFT diversity	Silt %	0.451	0.001
	Sand %	-0.411	0.004
Bird species	Silt%	0.380	0.046
Mammal species	Silt%	0.597	0.0001
Termite abundance	Silt%	0.554	0.017
All fauna species*	Silt%	0.624	0.013

* Based on joint occurrence of birds mammals and termites

Transect No.	Clay %	Silt %	Sand %	рН Н ₂ О	pH_1 CaCl ₂	C org %	P Melich mg kg ⁻¹	K cmol _c kg ⁻¹	Ca cmol _c kg ⁻¹	Mg cmol _c kg ⁻¹	Al cmol _c kg ⁻¹
1	24.0	5.0	71.0	4.4	3.7	0.9	1.4	0.08	0.30	0.20	1.00
2	32.3	6.7	61.0	6.1	5.2	2.4	2.3	0.20	5.10	1.50	0.00
3	14.0	3.3	82.7	4.3	3.6	1.5	3.2	0.07	0.30	0.20	1.80
4	11.6	3.3	85.1	4.3	3.6	0.9	0.8	0.05	0.20	0.00	1.00
5	11.6	3.3	85.1	3.6	3.0	5.7	5.4	0.07	0.20	0.00	4.00
6	15.7	3.3	81.0	4.7	3.0	3.4	1.7	0.12	0.20	0.10	2.80
7	18.0	7.0	75.0	5.6	4.9	0.8	1.4	0.10	1.00	0.30	0.00
8	32.3	30.0	37.7	4.3	3.6	2.0	5.1	0.20	0.90	0.40	2.30
9	19.0	6.7	74.3	4.7	4.0	0.1	2.9	0.08	1.10	0.80	0.30
10	17.3	3.3	79.4	6.1	5.2	0.1	10.2	0.08	2.90	2.30	0.60
11	12.3	3.4	84.3	5.3	4.5	0.1	18.0	0.01	1.00	0.70	0.30
12	63.3	18.3	18.4	4.3	3.8	1.8	1.1	0.11	0.20	0.10	2.40
13	61.6	13.3	25.1	4.5	3.9	1.8	0.8	0.10	0.50	0.30	2.00
14	64.9	13.4	21.7	4.8	4.2	2.1	1.4	0.16	1.40	0.70	1.10
15	66.6	11.7	21.7	5.7	4.9	2.5	9.8	0.17	2.80	1.30	0.00
16	68.3	11.6	20.1	4.7	4.1	1.9	1.4	0.10	1.00	0.50	1.10
17	41.6	13.3	45.1	6.4	5.7	6.1	272.0	0.30	14.40	2.20	0.00
18	21.6	6.7	71.7	6.3	5.4	1.5	6.8	0.14	3.30	0.60	0.00
19	68.3	10.0	21.7	4.7	4.1	1.9	1.1	0.09	1.50	0.50	0.90
20	38.3	20.0	41.7	4.8	4.2	1.6	1.1	0.15	1.20	0.70	0.60
21	30.6	15.1	54.3	4.4	3.7	1.3	2.3	0.19	0.50	0.30	1.10
22	22.3	6.7	71.0	5.7	5.0	1.0	2.0	0.17	1.80	0.70	0.00
23	19.0	6.7	74.3	5.4	4.7	1.0	1.4	0.13	1.20	0.40	0.20
24	15.7	3.3	81.0	6.2	5.3	0.8	1.7	0.19	1.40	0.50	0.00
25	52.3	6.7	41.0	4.7	4.1	1.5	2.6	0.08	1.30	0.50	0.80
26	29.0	8.3	62.7	4.6	3.9	1.1	1.4	0.16	0.40	0.20	1.00
27	19.0	10.0	71.0	6.5	5.7	2.7	6.1	0.27	8.50	1.10	0.00
28	15.7	3.3	81.0	6.1	5.3	0.9	3.8	0.15	2.10	0.60	0.00
29	39.0	20.0	41.0	4.6	4.0	1.7	1.7	0.14	1.40	0.80	0.90
30	57.3	11.7	31.0	6.5	5.7	4.2	1.4	0.31	11.50	2.60	0.00
31	29.0	6.7	64.3	6.8	6.3	6.6	230.9	0.44	29.10	1.50	0.00
32	29.0	6.7	64.3	5.2	6.0	5.7	5.2	0.26	10.60	1.00	0.00

Table S17. Soil analyses for Mato Grosso (0-10 cm depth only)*

(continued next page)

Н	ECEC	Base	Al	Zn	Cu	Fe	Mn	S	В
cmol _c	cmol _c	Sat	Sat	mg	mg	mg	mg	mg	mg
kg ⁻¹	kg ⁻¹	%	%	kg ⁻¹					
3.10	1.6	12.4	63.3	0.7	2.0	333.0	38.5	3.9	0.4
3.20	6.8	67.8	0.0	2.6	0.8	113.0	215.0	3.9	0.3
4.10	2.3	8.9	75.4	0.5	0.2	58.0	4.3	8.5	0.3
4.00	0.9	9.3	65.8	0.3	0.1	121.0	1.0	4.4	0.2
15.00	4.1	2.5	89.1	1.3	0.2	119.0	5.0	8.5	0.5
12.10	3.2	2.8	86.6	0.6	0.1	378.0	1.5	3.4	0.3
2.00	1.4	40.9	0.0	0.3	0.4	315.0	19.3	3.9	0.4
4.80	3.7	17.6	60.0	1.1	0.4	257.0	10.6	6.4	0.3
0.50	3.7	28.1	29.7	0.8	0.7	226.0	93.4	7.4	0.2
0.00	5.6	57.5	0.0	3.2	0.4	358.0	105.2	3.5	0.3
0.30	3.2	30.0	19.3	0.7	0.1	112.0	5.3	5.9	0.3
4.90	2.8	5.4	85.1	0.5	2.3	212.0	34.2	3.9	0.2
5.10	2.9	11.3	68.9	0.5	1.4	186.0	35.5	3.6	0.2
6.40	3.4	23.1	33.2	0.9	0.8	162.0	8.1	4.5	0.3
6.10	4.3	41.3	0.0	2.3	1.0	186.0	15.0	5.5	0.4
5.30	2.8	19.9	41.3	0.8	0.8	175.0	50.0	3.9	0.2
8.60	16.9	66.4	0.0	16.5	0.2	17.0	245.0	4.6	0.8
2.60	4.1	60.6	0.0	2.1	0.8	196.0	59.7	6.6	0.3
5.10	2.9	26.1	29.4	1.0	1.8	206.0	33.7	5.4	0.2
3.70	2.6	32.4	23.4	3.1	1.1	185.0	135.0	5.0	0.3
3.60	2.1	17.5	53.1	1.5	0.7	372.0	86.7	8.3	0.3
2.40	2.7	52.7	0.0	1.4	2.0	196.0	150.0	9.0	0.4
3.00	2	34.9	10.3	0.9	0.6	314.0	151.0	8.1	0.3
1.70	2	55.9	0.0	1.4	0.4	182.0	150.0	7.3	0.3
4.40	2.7	26.7	28.5	0.8	2.0	365.0	65.8	17.3	0.3
3.60	1.7	14.3	56.7	0.7	1.7	386.0	51.7	3.5	0.3
2.10	9.9	82.2	0.0	6.9	1.3	92.0	170.0	10.6	0.3
1.70	2.8	63.3	0.0	2.1	0.3	219.0	135.8	11.8	0.2
4.30	3.2	31.2	27.2	0.8	0.9	383.0	72.9	4.0	0.3
4.20	14.4	77.6	0.0	7.7	9.5	135.0	177.0	10.0	0.3
4.40	31	87.6	0.0	5.5	0.8	11.0	160.0	10.1	0.3
10.20	11.8	53.9	0.0	2.6	0.5	35.0	214.0	9.4	0.3

 Table S17. (continued)

* Source: E.G. Couto. Note: High P values in transects 17 and 31 are from ultrabasic outcrops. Complete profile data available from contact author

Transect number	Clay %	Silt %	Sand %	pH H ₂ O	pH KCl	C org %	N tot %	P Bray _{II} mg kg ⁻¹	K cmol _c kg ⁻¹
1	16.0	22.0	62.0	4.35	3.65	2.9	0.21	7.2	0.12
2	11.5	20.5	68.0	4.45	3.65	2.6	0.16	7.9	0.15
3	23.5	9.0	67.5	4.85	3.75	1.7	0.125	3.9	0.11
4	9.5	10.5	80.0	4.25	3.55	3.9	0.23	11.6	0.13
5	8.0	13.0	79.0	4.35	3.55	3.2	0.20	6.2	0.15
6	8.0	9.0	83.0	4.35	3.90	2.5	0.15	13.8	0.12
7	31.0	23.5	45.5	5.20	3.85	3.2	0.22	5.0	0.31
8	67.0	19.0	14.0	4.55	3.60	4.5	0.28	0.7	0.15
9	58.0	28.0	14.0	4.60	3.65	2.8	0.42	8.8	0.20
10	29.5	64.0	6.5	5.15	3.80	5.1	0.37	29.0	0.37
11	40.0	51.0	9.0	5.35	3.90	4.5	0.32	21.5	0.35
12	21.0	12.5	66.5	5.65	4.15	2.1	0.12	7.3	0.16
13	24.5	9.0	66.5	5.65	4.00	2.2	0.12	3.6	0.14
14	25.0	16.0	59.0	5.00	3.80	1.4	0.10	12.1	0.10
15	20.0	15.5	64.5	5.10	3.85	1.7	0.11	12.6	0.11
16	28.5	62.5	9.0	5.50	4.05	4.1	0.30	26.5	0.38

Table S18. Soil and carbon analyses for Jambi, Sumatra (averaged 0-10 cm depth only)

Table S18 continued..

Na	Ca	Mg	Al	Н	ECEC	Alcot	Ag	Tot
cmol _c kg ⁻	AI Sat.	С	С					
kg ⁻¹	1 -	70	kg m ²	kg m ²				
0.29	0.29	0.46	4.19	1.00	7.67	54.7	52.39	55.72
0.27	0.27	0.36	3.62	1.05	6.99	52.1	42.27	45.85
0.27	0.27	0.36	2.81	0.52	5.87	47.8	13.30	16.43
0.25	0.25	1.18	3.72	1.23	7.85	47.4	22.03	27.49
0.33	0.33	0.76	2.83	1.31	6.98	40.7	39.86	43.81
0.28	0.28	0.91	2.64	0.59	6.24	42.3	11.24	15.77
0.53	0.53	1.35	1.61	0.54	8.76	18.7	5.01	10.18
0.32	0.32	0.63	3.38	1.66	8.41	40.3	10.01	15.84
0.37	0.37	0.50	4.45	1.55	8.525	51.2	13.89	18.19
0.66	0.66	0.59	5.18	2.06	10.90	47.6	16.09	22.60
0.56	0.56	0.28	3.68	1.64	8.42	43.7	14.24	20.48
0.36	0.36	0.72	1.12	0.33	4.36	26.7	0.15	4.68
0.43	0.43	0.61	1.33	0.67	4.17	31.9	0.12	5.58
0.24	0.24	0.87	2.13	0.45	4.91	43.4	0.12	3.28
0.35	0.35	0.48	1.51	0.59	4.73	32.0	0.15	4.22
0.79	0.79	1.49	1.92	1.18	7.84	25.2	0.40	6.82

* Source: K. Hairiah, M. van Noordwijk. Complete profile data available from contact author; Ag C kg m^2 = Aboveground carbon, Tot C kg m^2 = Total carbon

Indicator	Aboveg	round	Total		
Indicator	Carbon (I	kg m ⁻²)	Carbor	Carbon (kg m^{-2})	
	r	Р	r	Р	
Crown cover %, woody:non-woody plts	0.929	0.0001	0.932	0.0001	
Tree species diversity	0.885	0.0001	0.893	0.0001	
Mean canopy height	0.880	0.0001	0.892	0.0001	
Spp.:PFTs	0.861	0.0001	0.867	0.0001	
Basal area	0.846	0.0001	0.861	0.0001	
Plant species diversity	0.789	0.0001	0.827	0.0001	
Plant litter depth	0.663	0.005	0.662	0.005	
Plant Functional Complexity (PFC)	0.603	0.013	0.640	0.008	
Unique PFT diversity	0.577	0.019	0.621	0.010	
Bryophyte cover abundance	0.601	0.014	0.612	0.012	
Crown cover % woody plants	0.552	0.027	0.586	0.017	
Crown cover % non-woody plants	-0.535	0.033	-0.534	0.033	
Termite species diversity	0.890	0.007	0.898	0.006	
Termite abundance	0.789	0.035	0.802	0.030	

 Table S19. Indicators of aboveground and total carbon - Sumatran baseline

Site feature	Descriptor	Data type
Location reference	Location	Alpha-numeric
	Date (dd-mm-year)	Alpha-numeric
	Plot number (unique)	Alpha-numeric
	Country	Text
Observer/s	Observer/s by name	Text
Physical	Latitude deg.min.sec. (GPS)	Alpha-numeric
	Longitude deg.min.sec. (GPS)	Alpha-numeric
	Elevation (m.a.s.l.) (aneroid and GPS)	Numeric
	Aspect (compass deg.) (perpendicular to plot)	Numeric
	Slope percent (perpendicular to plot)	Numeric
	Soil depth (cm) (sample taken 0-10, 10-20cm)	Numeric
	Soil type (US Soil taxonomy preferred)	Text
	Parent rock type	Text
	Litter depth (cm)	Numeric
	Terrain position	Text
Site history	General description and land-use / landscape context	Text
Vegetation structure	Vegetation type	Text
	Mean canopy height (m)	Numeric
	Canopy cover percent (total)	Numeric
	Cover-abundance (Domin Scale) - bryophytes	Numeric
	Cover-abundance (DS) woody plants <1.5 m tall	Numeric
	Basal area (mean of 3) (m^2ha^{-1}) ;	Numeric
	Furcation index (mean and cv % of 20)	Numeric
	Profile sketch of 40x5 m plot (scannable)	Digital
Plant taxa (vascular)	Family	Text
	Genus	Text
	Species	Text
	Botanical authority	Text
Plant Functional Type	Plant functional elements combined	Text
	according to published rule set.	
Photograph	Hard copy and digital image	JPEG

 Table S20.
 Data variables recorded for each 40x5m transect (VegClass)*

* Does not include soil analytical and faunal data. VegClass program downloadable at <u>www.cbmglobe.org</u> and <u>www.cifor.org</u>

Regressand	Regressor		<i>P</i> -value		FDR
variable	variable	d.f.	millionths	<i>t</i> -value	millionths
Spp	phw	46	C	12.599	0
Spp	SPRAT	46	C	10.151	0
Spp	dow	46	C	10.069	0
Spp	PFT	46	C	10.066	0
Spp	law	46	C	8.988	0
Spp	mew	46	C	7.736	0
Spp	now	46	C	7.572	0
la	Al	46	Ċ	7.504	0
me	Al	46	Č	7.311	Ő
do	Al	46	Č	7.228	ů 0
no	Al	46	C C	7.220 7.150	0
Snn	ctw	46	C C	7 096	0
Spp	liw	46		6 969	0
Spp	DEC	+0 /6		6.50	0
Spp	row	40		6501	0
зрр тађа	SDDAT	+0 16		0.301	0
		10		9.319	0
SPKAI		40		0.407	0
Mam		29		/.194	0
All.F	I.Abd	13	C	10.823	0
T.Abd	ph	16	C	9.512	0
ch	Silt	46	C	6.030	l
ph	Al	46	C	6.028	l
Spp	Al	46	C	5.986	1
mi	Al	46	C	5.940	2
Mam	do	29	1	6.265	3
li	Al	46	1	5.657	4
Mam	no	29	1	6.152	4
Birds	All.F	13	1	8.463	3
Mam	me	29	1	6.038	5
ct	Al	46	2	5.466	7
T.Abd	no	16	2	7.282	5
Spp	suw	46	2	5.442	8
Birds	la	26	2	5.998	8
Spp	adw	46	3	5.340	11
Birds	me	26	4	5.907	10
T.Abd	la	16	4	6.895	9
T.Spp	T.Abd	16	4	6.833	10
Birds	ph	26	4	5.802	13
Birds	ct	26	4	5.799	13
T.Abd	do	16	5	6.679	14
hc	Silt	46	5	5.144	20
chw	Clay	46	5	5 143	20
Mam	Al	29	Q	5 389	20
Mam	law	29	9	5.363	29

Table S21 Significant and close-to significant positive regression slopes

Regressand	Regressor	P-v	alue		FDR
T.Spp	SPRAT	16	9	6.369	23
T.Abd	li	16	9	6.363	23
Birds	do	26	12	5.382	37
All.F	ph	13	14	6.751	30
T.Abd	me	16	21	5.941	50
li	Silt	46	22	4.725	72
T.Spp	ph	16	24	5.864	57
Spp	Mam	29	25	5.005	73
Spp	Barea	46	28	4.648	91
Birds	no	26	33	5.002	93
Spp	pvw	46	34	4.593	107
Mam	li	29	36	4.871	103
Spp	Ht	46	37	4.564	117
Mam	ct	29	45	4.797	125
me	Silt	46	48	4.488	146
T.Abd	ct	16	50	5.488	113
do	Silt	46	53	4.457	160
All.F	la	13	53	5.892	110
Mam	ph	29	53	4.732	147
ch	Clay	46	55	4.445	166
Spp	hcw	46	56	4.440	168
Birds	SPRAT	26	64	4.757	169
Mam	mi	29	80	4.586	213
dew	C org	46	81	4.324	236
phw	Al	46	83	4.319	240
Spp	T.Abd	16	94	5.163	207
Spp	W plts	46	96	4.271	275
Birds	Mam	26	107	4.592	251
de	C org	46	112	4.224	315
Spp	T.Spp	16	116	5.061	250
Spp	fiw	46	119	4.206	332
de	K	46	122	4.199	339
dew	CEC	46	124	4.193	345
T.Spp	la	16	125	5.025	268
la	Silt	46	128	4.184	354
T.Spp	no	16	134	4.989	286
de	Ca	46	158	4.117	427
de	CEC	46	162	4.109	438
All.F	do	13	165	5.222	320
All.F		13	173	5.194	334
mı	Silt	46	182	4.072	485
vew	Ca	46	184	4.068	490
All.F	ct	13	203	5.102	389
All.F	SPRAT	13	211	5.081	402
All.F	me	13	214	5.073	407
Spp	Bryo	46	219	4.013	572
Mam	su	29	219	4.221	530
All.F	no	13	220	5.056	418

Regressand	Regressor	P-v	alue		FDR
crw	Silt	46	236	3.989	610
hew	Silt	46	254	3.965	653
Birds	mi	26	261	4.222	606
dew	Κ	46	262	3.955	670
Mam	fi	16	284	4.126	668
Spp	Silt	46	304	3.908	763
Mam	phw	29	314	4.089	730
Mam	All.F	13	330	4.828	608
no	Silt	46	336	3.875	834
T.Spp	li	16	337	4.537	668
Birds	T.Abd	16	369	4.765	435
Mam	SPRAT	29	377	4.022	858
T.Spp	do	16	379	4.480	743
Mam	Silt	29	390	4.010	885
law	Al	46	391	3.826	951
Mam	fiw	29	452	3.955	1007
Birds	li	26	458	4.008	999
Mam	Р	29	463	3.946	1030
mew	Al	46	520	3.733	1217
su	Silt	46	532	3.725	1243
Mam	suw	29	564	3.873	1224
now	Silt	46	586	3.694	1350
Spp	CCwdy	46	693	3.638	1559
fi	Al	46	696	3.636	1565
T.Spp	phw	16	711	4.178	1308
Mam	now	29	716	3.785	1505
All.F	T.Spp	13	739	4.384	1266
Spp	plw	46	759	3.607	1686
liw	Silt	46	795	3.592	1752
T.Abd	Al	16	844	4.096	1522
fiw	Silt	46	849	3.570	1853
ad	Silt	46	859	3.566	1872
fi	Silt	46	1093	3.485	2294
pe	C org	46	1152	3.467	2396
Spp	Litt	46	1170	3.462	2429
pew	Clay	46	1235	3.443	2540
Spp	epw	46	1238	3.442	2545
dow	Silt	46	1297	3.427	2645
PFT	Silt	46	1313	3.422	2672
Mam	hc	29	1336	3.550	2564
now	Al	46	1372	3.407	2772
Mam	me	29	1391	3.535	2653
pew	C org	46	1397	3.401	2814
pew	CEC	46	1474	3.383	2941
fiw	Al	46	1514	3.374	3007
law	Silt	46	1596	3.355	3140
pew	Κ	46	1671	3.395	3260
ре	CEC	46	1674	3.339	3264

Regressand	Regressor	<i>P</i> -v	alue		FDR
mew	Si	46	1707	3.332	3317
Birds	Al	26	1730	3.492	3129
Spp	Birds	26	1752	3.487	3163
T.Abd	phw	16	1813	3.733	2956
T.Spp	ct	16	1839	3.726	2991
pe	Clay	46	1967	3.283	3723
Mam	T.Abd	16	2064	3.772	2755
pe	Κ	46	2099	3.260	3925
Spp	cow	46	2118	3.257	3954
Spp	All.F	13	2134	3.818	3213
Mam	hew	29	2318	3.339	4045
T.Spp	Litt	16	2403	3.599	3749

The eight positive slopes below are borderline significant, having *P*-values in excess of 0.0025 (2500 in the relevant column). However they could be sufficiently close to significance to be of interest. All eight of them have *t*-values in excess of 3.000. The test statistic, *t*, is the slope of the line divided by its standard error.

Regressand	Regressor		<i>P</i> -value		FDR		
variable	variable	d.f.	millionths	<i>t</i> -value	millionths		
T.Spp	me	16	2542	3.573	3928		
suw	Silt	46	3142	3.117	5407		
W plts	Al Sat	46	3216	3.109	5507		
Litt	Н	46	3381	3.091	5725		
pew	Н	46	3564	3.072	5964		
Mam	ad	29	3727	3.154	5910		
All.F	Al	13	4436	3.435	5909		
T.Abd	mi	16	4510	3.301	6265		

The cut-off between significance and non-significance is taken to be P=0.0025. This corresponds closely to an FDR of 0.04908, or approximately to one of 5%. The immediately next ten slopes of either sign consisted of five positives and five negatives, of themselves suggesting that the remaining slopes would be approximately half positive and half negative. However taking the next 50 slopes (instead of the next ten) of either sign, these were comprised of 31 positives and 19 negatives, instead indicating an estimated 38% False Discovery Rate (FDR) in that range of *P*-values. After these first 50, the estimated FDR still initially continued to increase. In consequence it seemed unnecessary to carry this table any further. (For further details as to the performance of the FDR at high values of *P*, see Table S21.) It is, however, consistent with a finding in Part 3 of Brewer et al. (2012a) to report that the regression coefficients with the largest values of *P* (say those between P=0.85 or 0.90 and P=1.00) appeared to be dominated by an inferred subpopulation labelled P₀; which consisted entirely of observations that were distributed symmetrically around zero.

Brewer KRW, Hayes G, Gillison AN (2012) Understanding and using Fisher's *p*. Part 3: Examining an empirical data set. Math Scientist 37:20-26.

Regressand variable	Regressor variable	d.f.	<i>P</i> -value millionths	<i>t</i> -value	FDR millionths
ch	Sand	46	0	-8.057	0
0	K	26	65	-4.753	170
chw	Sand	46	135	-4.167	371
now	Sand	46	144	-4.145	394
fi	Sand	46	281	-3.932	713
W plts	pH_2	46	341	-3.871	844
fiw	Sand	46	440	-3.788	1054
Totcc	Р	46	716	-3.627	1604
liw	Sand	46	829	-3.578	1816
Totcc	Ca	46	913	-3.546	1972
Spp	pH_2	46	1562	-3.363	3085
li	Sand	46	2136	-3.254	3980

 Table S22. Significant and close-to significant negative regression slopes

The two slopes below are borderline significant. The values of Fisher's *P*-statistic exceed 0.0025 (2500 in millionths) and the values of t (especially when the degrees of freedom are few) tend to be larger than 3. The test statistic, t, is the slope of the line divided by its standard error.

Regressand variable	Regressor variable	<i>P</i> -value d.f. millionths		<i>t</i> -value	FDR millionths
mew	Sand	46	2672	-3.175	4760
SPRAT	PH_2	46	3141	-3.118	5406

The cut-off between significance and non-significance is taken to be P=0.0025. This corresponds closely to an FDR of 0.04908, or approximately to one of 5%.

Ranges	1.00 > P > 0.95	0.95 > P > 0.90	0.90 > P > 0.85	0.85 > P > 0.80	0.80 > P > 0.75	0.75 > P > 0.70	
Dogitivo	1.00/1/0.00	16	0.70/1/0.05	0.03/1/0.00	0.00/1/0.75	0.13/1/0.10	
Positive	10	10	13	17	21	20	
Negative	18	19	17	22	23	27	
Total	28	35	32	39	44	53	
%	35.7	45.7	46.9	43.5	47.7	49.1	
positive							
Ranges	0.70>P>0.65	0.65>P>0.60	0.60>P>0.55	0.55>P>0.50	0.50>P>0.45	0.45>P>0.40	
Positive	17	26	11	23	27	31	
Negative	25	23	31	30	17	20	
Total	42	49	42	43	44	51	
%	40.5	53.1	26.2	53.5	61.4	60.8	
positive							
Ranges	0.40>P>0.35	0.35>P>0.30	0.30>P>0.25	0.25>P>0.20	0.20>P>0.15	0.15>P>0.10	
Positive	24	27	15	29	21	36	
Negative	25	28	28	25	25	53	
Total	49	55	43	54	46	89	
%	49.0	49.1	34.9	53.7	45.7	40.4	
positive							
Ranges	0.10>P>0.05	0.05>P>0.00			0.05>P>0.0025	0.0025>P	
Positive	52	271	Significantly positive		0	148	
Negative	43	103	Significantly negative		0	12	
Total	95	374	Total significant		0	160	
%	54.7	72.5	Total not significant		214	0	
positive			-				
Totals over all ranges combined							
Total posi	tive 715	Total negative	592	Grand total 130	7		

 Table S23. False discovery rates from an analysis of 1307 regressions: numbers of regression slopes within 20 ranges of Fisher's *P* statistic.