Supplementary material to "A three-term recurrence relation for accurate evaluation of transition probabilities of the simple birth-and-death process"

Alberto Pessia ${ }^{1, *}$ and Jing Tang ${ }^{1}$
${ }^{1}$ Research Program in Systems Oncology (ONCOSYS), Faculty of Medicine, University of Helsinki, Helsinki, Finland

S1 Algorithm for evaluating ${ }_{2} F_{1}(-a,-b ;-(a+b-k) ;-z)$

```
Algorithm 1 Hypergeometric evaluation
Input: Integers \(a \geq 0, b \geq 0, k \leq 1\). Real \(z>-1\).
Output: \({ }_{2} F_{1}(-a,-b ;-(a+b-k) ;-z)\)
Initialization:
    \(m \leftarrow \min (a, b)\)
    \(M \leftarrow \max (a, b)\)
    if \(z=0\) or \(m=0\) then
        return 1
    end if
    \(y \leftarrow 1+\frac{M z}{M+1-k}\)
    if \(m=1\) then
        return y
    end if
    // To avoid overflow define \(R_{b}=y_{b} / y_{b-1}\), that is \(y_{b}=R_{b} y_{b-1}\). Note that \(R_{1}=y_{1} / y_{0}=y_{1}\).
    \(R \leftarrow y\)
    for \(n=2, \ldots, m\) do
        \(R \leftarrow 1+\frac{z}{M+n-k}\left(M-n+1+\frac{(n-1)(n-1-k)}{(M+n-k-1) R}\right)\)
        \(y \leftarrow R y\)
    end for
    return \(y\)
```


S2 Gradient and Hessian of the log-transition probability

Partial derivatives of the log-transition probability are simple but cumbersome. To simplify notation we will drop function arguments (unless required for clarity) and denote the first and second order partial derivatives of a function $f(x, y)$ with $f_{x}, f_{y}, f_{x x}, f_{x y}, f_{y x}$, and $f_{y y}$. We will also use the
*To whom correspondence should be addressed. Email: academic@albertopessia.com
substitutions

$$
\begin{aligned}
x=e^{(\lambda-\mu) t}, \quad c^{(h)}=\binom{i}{h}\binom{i+j-h-1}{i-1}, & \theta^{(h)}=\mu^{i-h} \lambda^{j-h} \phi(t, \lambda, \mu)^{i+j-2 h} \gamma(t, \lambda, \mu)^{h}, \\
u=\frac{{ }_{2} F_{1}\left[\begin{array}{c}
-(i-1),-(j-1) \\
-(i+j)
\end{array} ;-z(t, \lambda, \mu)\right]}{{ }_{2} F_{1}\left[\begin{array}{c}
-i,-j \\
-(i+j-1)
\end{array}-z(t, \lambda, \mu)\right]}, & v=\frac{{ }_{2} F_{1}\left[\begin{array}{c}
-(i-2),-(j-2) \\
-(i+j+1)
\end{array}-z(t, \lambda, \mu)\right]}{{ }_{2} F_{1}\left[\begin{array}{c}
-i,-j \\
-(i+j-1)
\end{array}-z(t, \lambda, \mu)\right]}
\end{aligned}
$$

Partial derivatives of the log-transition probability, in their most general form, are simply

$$
\begin{aligned}
(\log p)_{\lambda} & =\frac{\sum_{h} c^{(h)} \theta_{\lambda}^{(h)}}{\sum_{k} c^{(k)} \theta^{(k)}} & (\log p)_{\mu} & =\frac{\sum_{h} c^{(h)} \theta_{\mu}^{(h)}}{\sum_{k} c^{(k)} \theta^{(k)}} \\
(\log p)_{\lambda \lambda} & =\frac{\sum_{h} c^{(h)} \theta_{\lambda \lambda}^{(h)}}{\sum_{k} c^{(k)} \theta^{(k)}}-(\log p)_{\lambda}^{2} & (\log p)_{\lambda \mu} & =\frac{\sum_{h} c^{(h)} \theta_{\lambda \mu}^{(h)}}{\sum_{k} c^{(k)} \theta^{(k)}}-(\log p)_{\lambda}(\log p)_{\mu} \\
(\log p)_{\mu \lambda} & =\frac{\sum_{h} c^{(h)} \theta_{\mu \lambda}^{(h)}}{\sum_{k} c^{(k)} \theta^{(k)}}-(\log p)_{\mu}(\log p)_{\lambda} & (\log p)_{\mu \mu} & =\frac{\sum_{h} c^{(h)} \theta_{\mu \mu}^{(h)}}{\sum_{k} c^{(k)} \theta^{(k)}}-(\log p)_{\mu}^{2}
\end{aligned}
$$

We will now list all partial derivatives of basic functions to be used later in the Section. Partial derivatives of function $\log \phi(t, \lambda, \mu)$ are

$$
\begin{aligned}
(\log \phi)_{\lambda} & =-\frac{x}{\lambda x-\mu}\left(1-\frac{(\lambda-\mu) t}{x-1}\right), \quad(\log \phi)_{\mu}=\frac{1}{\lambda x-\mu}\left(1-\frac{(\lambda-\mu) t x}{x-1}\right) \\
(\log \phi)_{\lambda \lambda} & =\frac{(x+\mu t) x}{(\lambda x-\mu)^{2}}\left(1-\frac{(\lambda-\mu) t}{x-1}\right)+\frac{t x}{(\lambda x-\mu)(x-1)}\left(1-\frac{(\lambda-\mu) t x}{x-1}\right) \\
(\log \phi)_{\mu \mu} & =\frac{1+\lambda t x}{(\lambda x-\mu)^{2}}\left(1-\frac{(\lambda-\mu) t x}{x-1}\right)+\frac{t x}{(\lambda x-\mu)(x-1)}\left(1-\frac{(\lambda-\mu) t}{x-1}\right) \\
(\log \phi)_{\lambda \mu} & =-\frac{(1+\mu t) x}{(\lambda x-\mu)^{2}}\left(1-\frac{(\lambda-\mu) t}{x-1}\right)-\frac{t x}{(\lambda x-\mu)(x-1)}\left(1-\frac{(\lambda-\mu) t x}{x-1}\right) \\
(\log \phi)_{\mu \lambda} & =(\log \phi)_{\lambda \mu}
\end{aligned}
$$

Partial derivatives of function $z(t, \lambda, \mu)$ are

$$
\begin{aligned}
z_{\lambda} & =\frac{(\lambda-\mu) x}{\lambda \mu(x-1)^{2}}\left(\frac{\lambda+\mu}{\lambda}-\frac{(\lambda-\mu) t(x+1)}{x-1}\right) \\
z_{\mu} & =-\frac{(\lambda-\mu) x}{\lambda \mu(x-1)^{2}}\left(\frac{\lambda+\mu}{\mu}-\frac{(\lambda-\mu) t(x+1)}{x-1}\right) \\
z_{\lambda \lambda} & =\frac{x}{\lambda \mu(x-1)^{2}}\left(2\left(\frac{\mu}{\lambda}\right)^{2}-\frac{(\lambda-\mu) t}{x-1}\left(2\left(\frac{\lambda+\mu}{\lambda}\right)(x+1)-\frac{(\lambda-\mu) t}{x-1}\left(x^{2}+4 x+1\right)\right)\right) \\
z_{\mu \mu} & =\frac{x}{\lambda \mu(x-1)^{2}}\left(2\left(\frac{\lambda}{\mu}\right)^{2}-\frac{(\lambda-\mu) t}{x-1}\left(2\left(\frac{\lambda+\mu}{\mu}\right)(x+1)-\frac{(\lambda-\mu) t}{x-1}\left(x^{2}+4 x+1\right)\right)\right) \\
z_{\lambda \mu} & =-\frac{x}{\lambda \mu(x-1)^{2}}\left(\frac{\lambda^{2}+\mu^{2}}{\lambda \mu}-\frac{(\lambda-\mu) t}{x-1}\left(\frac{(\lambda+\mu)^{2}}{\lambda \mu}(x+1)-\frac{(\lambda-\mu) t}{x-1}\left(x^{2}+4 x+1\right)\right)\right) \\
z_{\mu \lambda} & =z_{\lambda \mu}
\end{aligned}
$$

Partial derivatives of function $\log \left({ }_{2} F_{1}(-i,-j ;-(i+j-1) ;-z(t, \lambda, \mu))\right)$ are

$$
\begin{aligned}
\left(\log _{2} F_{1}\right)_{\lambda} & =\frac{i j u}{i+j-1} z_{\lambda}, \quad \quad\left(\log _{2} F_{1}\right)_{\mu}=\frac{i j u}{i+j-1} z_{\mu} \\
\left(\log _{2} F_{1}\right)_{\lambda \lambda} & =\frac{i j u}{i+j-1}\left(z_{\lambda \lambda}+z_{\lambda}^{2}\left(\frac{(i-1)(j-1)}{i+j-2} \frac{v}{u}-\frac{i j u}{i+j-1}\right)\right) \\
\left(\log _{2} F_{1}\right)_{\mu \mu} & =\frac{i j u}{i+j-1}\left(z_{\mu \mu}+z_{\mu}^{2}\left(\frac{(i-1)(j-1)}{i+j-2} \frac{v}{u}-\frac{i j u}{i+j-1}\right)\right) \\
\left(\log _{2} F_{1}\right)_{\lambda \mu} & =\frac{i j u}{i+j-1}\left(z_{\lambda \mu}+z_{\lambda} z_{\mu}\left(\frac{(i-1)(j-1)}{i+j-2} \frac{v}{u}-\frac{i j u}{i+j-1}\right)\right) \\
\left(\log _{2} F_{1}\right)_{\mu \lambda} & =\left(\log _{2} F_{1}\right)_{\lambda \mu}
\end{aligned}
$$

We can now study the shape of the partial derivatives of the log-transition probability in the various sub-domains. Considering that the binomial coefficient $\binom{a}{b}$ is equal to zero for all $b>a$, we will use the convention that $\binom{a}{b} /\binom{a}{b}$ is always equal to 1 for all a and b.

Parameters greater than zero

When t, λ, and μ are all greater than zero we can safely use representation (3.1). We need to distinguish the case $\mu \neq \lambda$ from the case $\mu=\lambda$.

Unequal rates

If $\mu \neq \lambda$ the partial derivatives are simply

$$
\begin{align*}
(\log p)_{\lambda} & =\frac{j}{\lambda}+(i+j)(\log \phi)_{\lambda}+\left(\log _{2} F_{1}\right)_{\lambda} \tag{1}\\
(\log p)_{\mu} & =\frac{i}{\mu}+(i+j)(\log \phi)_{\mu}+\left(\log _{2} F_{1}\right)_{\mu} \tag{2}\\
(\log p)_{\lambda \lambda} & =-\frac{j}{\lambda^{2}}+(i+j)(\log \phi)_{\lambda \lambda}+\left(\log _{2} F_{1}\right)_{\lambda \lambda} \tag{3}\\
(\log p)_{\mu \mu} & =-\frac{i}{\mu^{2}}+(i+j)(\log \phi)_{\mu \mu}+\left(\log _{2} F_{1}\right)_{\mu \mu} \tag{4}\\
(\log p)_{\lambda \mu} & =(i+j)(\log \phi)_{\lambda \mu}+\left(\log _{2} F_{1}\right)_{\lambda \mu} \tag{5}\\
(\log p)_{\mu \lambda} & =(\log p)_{\lambda \mu} \tag{6}
\end{align*}
$$

Equal rates

Apply the limit $\mu \rightarrow \lambda$ directly to equations (1)-(6) to get

$$
\begin{align*}
\left.(\log p)_{\lambda}\right|_{\mu=\lambda} & =\frac{j}{\lambda}+\left.(i+j)(\log \phi)_{\lambda}\right|_{\mu=\lambda}+\left.\left(\log _{2} F_{1}\right)_{\lambda}\right|_{\mu=\lambda} \tag{7}\\
\left.(\log p)_{\mu}\right|_{\mu=\lambda} & =\frac{i}{\lambda}+\left.(i+j)(\log \phi)_{\mu}\right|_{\mu=\lambda}+\left.\left(\log _{2} F_{1}\right)_{\mu}\right|_{\mu=\lambda} \tag{8}\\
\left.(\log p)_{\lambda \lambda}\right|_{\mu=\lambda} & =-\frac{j}{\lambda^{2}}+\left.(i+j)(\log \phi)_{\lambda \lambda}\right|_{\mu=\lambda}+\left.\left(\log _{2} F_{1}\right)_{\lambda \lambda}\right|_{\mu=\lambda} \tag{9}\\
\left.(\log p)_{\mu \mu}\right|_{\mu=\lambda} & =-\frac{i}{\lambda^{2}}+\left.(i+j)(\log \phi)_{\mu \mu}\right|_{\mu=\lambda}+\left.\left(\log _{2} F_{1}\right)_{\mu \mu}\right|_{\mu=\lambda} \tag{10}\\
\left.(\log p)_{\lambda \mu}\right|_{\mu=\lambda} & =\left.(i+j)(\log \phi)_{\lambda \mu}\right|_{\mu=\lambda}+\left.\left(\log _{2} F_{1}\right)_{\lambda \mu}\right|_{\mu=\lambda} \tag{11}\\
\left.(\log p)_{\mu \lambda}\right|_{\mu=\lambda} & =\left.(\log p)_{\lambda \mu}\right|_{\mu=\lambda} \tag{12}
\end{align*}
$$

where

$$
\begin{aligned}
&\left.(\log \phi)_{\lambda}\right|_{\mu=\lambda}=\left.(\log \phi)_{\mu}\right|_{\mu=\lambda}=-\frac{t}{2(1+\lambda t)} \\
&\left.(\log \phi)_{\lambda \lambda}\right|_{\mu=\lambda}=\left.(\log \phi)_{\mu \mu}\right|_{\mu=\lambda}=\frac{(1-2 \lambda t) t^{2}}{12(1+\lambda t)^{2}} \\
&\left.(\log \phi)_{\lambda \mu}\right|_{\mu=\lambda}=\left.(\log \phi)_{\mu \lambda}\right|_{\mu=\lambda}=\frac{(5+2 \lambda t) t^{2}}{12(1+\lambda t)^{2}} \\
&\left.\left(\log _{2} F_{1}\right)_{\lambda}\right|_{\mu=\lambda}=\left.\left(\log _{2} F_{1}\right)_{\mu}\right|_{\mu=\lambda}=-\frac{i j u}{(i+j-1) \lambda^{3} t^{2}} \\
&\left.\left(\log _{2} F_{1}\right)_{\lambda \lambda}\right|_{\mu=\lambda}=\frac{i j}{(i+j-1) \lambda^{4} t^{2}}\left(\frac{\left(12-\lambda^{2} t^{2}\right) u}{6}+\frac{(i-1)(j-1) v}{(i+j-2) \lambda^{2} t^{2}}-\frac{i j u^{2}}{(i+j-1) \lambda^{2} t^{2}}\right) \\
&\left.\left(\log _{2} F_{1}\right)_{\mu \mu}\right|_{\mu=\lambda}=\left.\left(\log _{2} F_{1}\right)_{\lambda \lambda}\right|_{\mu=\lambda} \\
&\left.\left(\log _{2} F_{1}\right)_{\lambda \mu}\right|_{\mu=\lambda}=\frac{i j}{(i+j-1) \lambda^{4} t^{2}} \\
&\left.\left(\log _{2} F_{1}\right)_{\mu \lambda}\right|_{\mu=\lambda}=\left(\frac{\left(6+\lambda^{2} t^{2}\right) u}{6}+\frac{(i-1)(j-1) v}{(i+j-2) \lambda^{2} t^{2}}-\frac{i j u^{2}}{(i+j-1) \lambda^{2} t^{2}}\right) \\
&\left.\left(\log _{1}\right)_{\lambda \mu}\right|_{\mu=\lambda}
\end{aligned}
$$

Note that functions u and v must be evaluated at the point $z(t, \lambda, \lambda)=(\lambda t)^{-2}-1$.

Parameters equal to zero

When any of t, λ, or μ equal zero it is easier to compute the partial derivatives starting from the standard representation (1.2) instead of (3.1). However, derivatives of $\theta^{(h)}$ are long and complicated, especially the second-order partial derivatives. Considering that intermediate results are not of interest we won't write them here. Instead, we will only provide the required final solutions.

Observation time is zero

When $t=0$ the partial derivatives are always zero regardless of the values of i, j, λ, or μ. This is a consequence of the fact that the transition probability, equations (1.6) and (1.8), does not depend on the process rates.

Death rate is zero

When μ approaches zero also the partial derivatives of $\theta^{(h)}$, in general, approach zero. Only exceptions are $\theta_{\lambda}^{(i)}, \theta_{\mu}^{(i)}, \theta_{\mu}^{(i-1)}, \theta_{\lambda \lambda}^{(i)}, \theta_{\mu \mu}^{(i)}, \theta_{\mu \mu}^{(i-1)}, \theta_{\mu \mu}^{(i-2)}, \theta_{\lambda \mu}^{(i)}, \theta_{\lambda \mu}^{(i-1)}, \theta_{\mu \lambda}^{(i)}$, and $\theta_{\mu \lambda}^{(i-1)}$. Partial derivatives become

$$
\begin{align*}
\left.(\log p)_{\lambda}\right|_{\mu=0} & =-\left(\frac{i x-j}{x-1}\right) t \tag{13}\\
\left.(\log p)_{\mu}\right|_{\mu=0} & =\left(\frac{i x-j}{x-1}\right) t-\frac{i(i-1) x+j(j+1) x^{-1}-2 i j}{(i-j-1) \lambda} \tag{14}\\
\left.(\log p)_{\lambda \lambda}\right|_{\mu=0} & =\frac{(i-j) t^{2} x}{(x-1)^{2}} \tag{15}\\
\left.(\log p)_{\mu \mu}\right|_{\mu=0} & =\frac{(i-j) t^{2} x}{(x-1)^{2}}+\frac{i(i-1) j(j+1)(x-1)^{4}}{(i-j-1)^{2}(i-j-2) \lambda^{2} x^{2}}+ \\
& -\frac{i(i-1)(x-2 \lambda t) x+j(j+1)\left(x^{-1}+2 \lambda t\right) x^{-1}-2 i j}{(i-j-1) \lambda^{2}} \tag{16}\\
\left.(\log p)_{\lambda \mu}\right|_{\mu=0} & =-\frac{(i-j) t^{2} x}{(x-1)^{2}}+\frac{i(i-1)(1-\lambda t) x+j(j+1)(1+\lambda t) x^{-1}-2 i j}{(i-j-1)^{2} \lambda^{2}} \tag{17}\\
\left.(\log p)_{\mu \lambda}\right|_{\mu=0} & =\left.(\log p)_{\lambda \mu}\right|_{\mu=0} \tag{18}
\end{align*}
$$

where $x=e^{\lambda t}$. Note that equation (14) has a discontinuity at the value $j=i-1$ where

$$
\left.\lim _{j \rightarrow(i-1)^{-}}(\log p)_{\mu}\right|_{\mu=0}=-\infty,\left.\quad \lim _{j \rightarrow(i-1)^{+}}(\log p)_{\mu}\right|_{\mu=0}=\infty
$$

Equation (16) has a discontinuity at the value $j=i-2$ where

$$
\left.\lim _{j \rightarrow(i-2)^{-}}(\log p)_{\mu \mu}\right|_{\mu=0}=\infty,\left.\quad \lim _{j \rightarrow(i-2)^{+}}(\log p)_{\mu \mu}\right|_{\mu=0}=-\infty
$$

Equations (17) and (18) have a discontinuity at the value $j=i-1$ where

$$
\left.\lim _{j \rightarrow(i-1)^{-}}(\log p)_{\lambda \mu}\right|_{\mu=0}=-\infty,\left.\quad \lim _{j \rightarrow(i-1)^{+}}(\log p)_{\lambda \mu}\right|_{\mu=0}=\infty
$$

Birth rate is zero

When λ approaches zero also the partial derivatives of $\theta^{(h)}$, in general, approach zero. Only exceptions are $\theta_{\lambda}^{(j)}, \theta_{\lambda}^{(j-1)}, \theta_{\mu}^{(j)}, \theta_{\lambda \lambda}^{(j)}, \theta_{\lambda \lambda}^{(j-1)}, \theta_{\lambda \lambda}^{(j-2)}, \theta_{\mu \mu}^{(j)}, \theta_{\lambda \mu}^{(j)}, \theta_{\lambda \mu}^{(j-1)}, \theta_{\mu \lambda}^{(j)}$, and $\theta_{\mu \lambda}^{(j-1)}$. Partial derivatives become

$$
\begin{align*}
\left.(\log p)_{\lambda}\right|_{\lambda=0} & =\left(\frac{j x-i}{x-1}\right) t-\frac{j(j-1) x+i(i+1) x^{-1}-2 i j}{(j-i-1) \mu} \tag{19}\\
\left.(\log p)_{\mu}\right|_{\lambda=0} & =-\left(\frac{j x-i}{x-1}\right) t \tag{20}\\
\left.(\log p)_{\lambda \lambda}\right|_{\lambda=0} & =\frac{(j-i) t^{2} x}{(x-1)^{2}}+\frac{j(j-1) i(i+1)(x-1)^{4}}{(j-i-1)^{2}(j-i-2) \mu^{2} x^{2}}+ \\
& -\frac{j(j-1)(x-2 \mu t) x+i(i+1)\left(x^{-1}+2 \mu t\right) x^{-1}-2 i j}{(j-i-1) \mu^{2}} \tag{21}\\
\left.(\log p)_{\mu \mu}\right|_{\lambda=0} & =\frac{(j-i) t^{2} x}{(x-1)^{2}} \tag{22}\\
\left.(\log p)_{\lambda \mu}\right|_{\lambda=0} & =-\frac{(j-i) t^{2} x}{(x-1)^{2}}+\frac{j(j-1)(1-\mu t) x+i(i+1)(1+\mu t) x^{-1}-2 i j}{(j-i-1)^{2} \mu^{2}} \tag{23}\\
\left.(\log p)_{\mu \lambda}\right|_{\lambda=0} & =\left.(\log p)_{\lambda \mu}\right|_{\mu=0} \tag{24}
\end{align*}
$$

where $x=e^{\mu t}$. Note that equation (19) has a discontinuity at the value $j=i+1$ where

$$
\left.\lim _{j \rightarrow(i+1)^{-}}(\log p)_{\lambda}\right|_{\lambda=0}=\infty,\left.\quad \lim _{j \rightarrow(i+1)^{+}}(\log p)_{\lambda}\right|_{\lambda=0}=-\infty
$$

Equation (21) has a discontinuity at the value $j=i+2$ where

$$
\left.\lim _{j \rightarrow(i+2)^{-}}(\log p)_{\mu \mu}\right|_{\lambda=0}=-\infty,\left.\quad \lim _{j \rightarrow(i+2)^{+}}(\log p)_{\mu \mu}\right|_{\lambda=0}=\infty
$$

Equations (23) and (24) have a discontinuity at the value $j=i+1$ where

$$
\left.\lim _{j \rightarrow(i+1)^{-}}(\log p)_{\lambda \mu}\right|_{\lambda=0}=\infty,\left.\quad \lim _{j \rightarrow(i+1)^{+}}(\log p)_{\lambda \mu}\right|_{\lambda=0}=-\infty
$$

Both rates are zero

The gradient of the log-transition probability at the origin is only defined when $j=i$. To prove it, we will compute the limit $(\lambda, \mu) \rightarrow(0,0)$ from different directions and observe whether they all converge to the same value or not. If $j \neq i$

$$
\left.\lim _{\lambda \rightarrow 0}(\log p)_{\lambda}\right|_{\mu=0}=\operatorname{sgn}(j-i) \infty,\left.\quad \lim _{\mu \rightarrow 0}(\log p)_{\lambda}\right|_{\lambda=0}=-\frac{(i+j) t}{2},\left.\quad \lim _{\lambda \rightarrow 0}(\log p)_{\lambda}\right|_{\mu=\lambda}=0
$$

and

$$
\left.\lim _{\lambda \rightarrow 0}(\log p)_{\mu}\right|_{\mu=0}=-\frac{(i+j) t}{2},\left.\quad \lim _{\mu \rightarrow 0}(\log p)_{\mu}\right|_{\lambda=0}=\operatorname{sgn}(i-j) \infty,\left.\quad \lim _{\lambda \rightarrow 0}(\log p)_{\mu}\right|_{\mu=\lambda}=0
$$

The same phenomenon can be observed with the second-order partial derivatives. When $j=i$ the first-order partial derivatives converge to $-i t$. Second-order partial derivatives $(\log p)_{\lambda \lambda}$ and
$(\log p)_{\mu \mu}$ converge to 0 while $(\log p)_{\lambda \mu}$ and $(\log p)_{\mu \lambda}$ converge to $i^{2} t^{2}$. If we interpret the transition probability as the likelihood of a single time point observation, these results are intuitive. Indeed, if $j \neq i$ the rates cannot be both equal to zero. If $j=i$, instead, the hypothesis $\lambda=\mu=0$ is plausible because it is compatible with the observation.

