Analyzing the effects of thermal stress on insulator papers by solidstate ¹³C NMR spectroscopy

Paul Jusner¹, Markus Bacher¹, Jonas Simon¹, Florian Bausch¹, Hajar Khaliliyan¹, Sonja Schiehser¹, Ivan Sumerskii², Elisabeth Schwaiger³, Antje Potthast¹, Thomas Rosenau^{1,4}

¹ Department of Chemistry, Institute of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria

² Core Facility Analysis of Lignocellulosics, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 24, A-3430 Tulln, Austria

³ Mondi Frantschach GmbH, Frantschach 5, A-9413 St. Gertraud, Austria

⁴ Johan Gadolin Process Chemistry Centre, Åbo Akademi University, Porthansgatan 3, FI-20500 Åbo/Turku, Finland

Supplementary information

Table of content

1. "Peak Analyzer" settings in OriginPro 2020	р. З
2. ¹³ C CP/MAS NMR results of Whatman paper No. 1 (WP) ageing series	p. 4
3. ¹³ C CP/MAS NMR results of softwood Kraft paper (SWKP) ageing series	p. 11
4. Calculation of lateral crystallite dimension	p. 19
5. References	p. 20

List of figures

Figure S1	p. 4
Figure S2	p. 5
Figure S3	p. 6
Figure S4	p. 7
Figure S4	p. 8
Figure S6	p. 9
Figure S7	p. 10
Figure S8	p. 11
Figure S9	p. 12

Figure S10	р. 13
Figure S11	p. 14
Figure S12	p. 15
Figure S13	p. 16
Figure S14	p. 17
Figure S15	p. 18
Figure S16	p. 19
Figure S17	p. 20

List of tables

Table S1	p. 4
Table S2	p. 5
Table S3	р. 6
Table S4	р. 7
Table S5	р. 8
Table S6	р. 9
Table S7	р. 10
Table S8	p. 11
Table S9	p. 12
Table S10	р. 13
Table S11	p. 14
Table S12	p. 15
Table S13	р. 16
Table S14	p. 17
Table S15	p. 18
Table S16	р. 19
Table S17	p. 20

List of formulas

Formula (1)	p. 19

1. "Peak Analyzer" settings in OriginPro 2020

For deconvolution of the C4 resonance (79 to 91 ppm) of ¹³C CP/MAS NMR spectra, two distinct setups were implemented in the "Peak Analyzer" tool of OriginPro 2020 (OriginLab Corporation, USA). The softwood Kraft paper sample setup featured 8 peaks, whereas the setup for Whatman paper samples featured 7 peaks (no hemicelluloses signal). A constant baseline was set for each sample using the "minimum" mode. The maximum number of iterations was set to 500 at a tolerance value of 1 * 10⁽⁻⁴⁾. Negative ordinate peak values were excluded.

Peak positions (ppm) and shapes (Wickholm et al., 1998, Zuckerstätter et al., 2013):

P1 = 89.4, Lorentz (I α)

P2 = 88.8, Lorentz ($I\alpha\beta$)

P3 = 88.5, Gaussian (PC)

P4 = 88.0, Lorentz (I β)

P5 = 84.2, Gaussian (AS I)

P6 = 83.9, Gaussian (IAS)

P7 = 83.2, Gaussian (AS II)

P8 = 81.7, Gaussian (HC)

Fit control peak constraints:

w = FWHH (ppm) $\pm 3 \times SD$ from Wickholm *et al.* (1998)

A = peak area

A_2=A_1+A_4;

A__1<A__4;

A___6;

- 0.11<w_1<0.76;
- 0.34<w_2<0.58;
- 1.40<w__3<1.94;
- 0.30<w_4<1.31;
- 0.22<w_5<1.17;
- 2.54<w__6<5.17;
- 0.29<w_7<0.76;
- 0.55<w__8<1.86;

Figure S1: ¹³C CP/MAS NMR spectrum of WP_{REF} (a) and deconvoluted C4 resonance (b).

Shape	Relative intensity (%)	Position (ppm)	FWHH (ppm)
Lorentz	4.09	89.57	0.54
Lorentz	17.99	88.82	0.39
Gaussian	36.64	88.53	1.79
Lorentz	13.61	87.99	0.64
Gaussian	3.90	84.34	0.85
Gaussian	20.37	83.70	4.06
Gaussian	3.39	83.32	0.70
	Shape Lorentz Lorentz Gaussian Lorentz Gaussian Gaussian Gaussian	Relative intensity (%)Lorentz4.09Lorentz17.99Gaussian36.64Lorentz13.61Gaussian3.90Gaussian20.37Gaussian3.39	Relative intensity (%)Position (ppm)Lorentz4.0989.57Lorentz17.9988.82Gaussian36.6488.53Lorentz13.6187.99Gaussian3.9084.34Gaussian20.3783.70Gaussian3.3983.32

 Table S1: Peak properties of C4 deconvolution (WPREF).

Chemical shift (ppm)

Figure S2: ¹³C CP/MAS NMR spectrum of WP_{0.33d} (a) and deconvoluted C4 resonance (b).

WP 0.33d	Shape	Relative intensity (%)	Position (ppm)	FWHH (ppm)
Ια	Lorentz	3.56	89.57	0.42
Ιαβ	Lorentz	18.28	88.85	0.41
PC	Gaussian	32.38	88.50	1.88
Ιβ	Lorentz	14.52	88.02	0.65
AS I	Gaussian	3.31	84.32	0.80
IAS	Gaussian	24.83	83.70	4.61
AS II	Gaussian	3.11	83.35	0.76

Table S2: Peak properties of C4 deconvolution (WP_{0.33d}).

Figure S3: ¹³C CP/MAS NMR spectrum of WP_{1d} (a) and deconvoluted C4 resonance (b).

WP 1d	Shape	Relative intensity (%)	Position (ppm)	FWHH (ppm)
Ιβ	Lorentz	4.88	89.56	0.50
Ιαβ	Lorentz	19.40	88.85	0.44
PC	Gaussian	29.30	88.39	1.84
Ιβ	Lorentz	14.27	88.04	0.66
AS I	Gaussian	2.75	84.39	0.84
IAS	Gaussian	26.73	83.77	4.72
AS II	Gaussian	2.67	83.40	0.76

 Table S3: Peak properties of C4 deconvolution (WP1d).

Figure S4: ¹³C CP/MAS NMR spectrum of WP_{2d} (a) and deconvoluted C4 resonance (b).

WP 2d	Shape	Relative intensity (%)	Position (ppm)	FWHH (ppm)
Ια	Lorentz	4.43	89.59	0.46
Ιαβ	Lorentz	19.01	88.85	0.44
PC	Gaussian	28.90	88.38	1.86
Ιβ	Lorentz	14.34	88.03	0.70
AS I	Gaussian	2.36	84.38	0.78
IAS	Gaussian	28.20	83.81	4.87
AS II	Gaussian	2.76	83.37	0.76

Table S4: Peak properties of C4 deconvolution (WP_{2d}).

Figure S5: ¹³C CP/MAS NMR spectrum of WP_{3d} (a) and deconvoluted C4 resonance (b).

WP 3d	Shape	Relative intensity (%)	Position (ppm)	FWHH (ppm)
Ια	Lorentz	4.55	89.57	0.45
Ιαβ	Lorentz	17.75	88.84	0.43
PC	Gaussian	34.02	88.40	1.90
Ιβ	Lorentz	12.98	88.03	0.67
AS I	Gaussian	2.43	84.32	0.82
IAS	Gaussian	26.40	83.79	4.27
AS II	Gaussian	1.87	83.37	0.76

Table S5: Peak properties of C4 deconvolution (WP_{3d}).

Figure S6: ¹³C CP/MAS NMR spectrum of WP_{7d} (a) and deconvoluted C4 resonance (b).

WP 7d	Shape	Relative intensity (%)	Position (ppm)	FWHH (ppm)
Ια	Lorentz	3.77	89.57	0.41
Ιαβ	Lorentz	19.33	88.85	0.44
PC	Gaussian	31.23	88.42	1.91
Ιβ	Lorentz	15.36	88.03	0.68
AS I	Gaussian	1.99	84.35	0.80
IAS	Gaussian	26.24	83.81	4.27
AS II	Gaussian	2.07	83.40	0.76

 Table S6: Peak properties of C4 deconvolution (WP_{7d}).

Figure S7: ¹³C CP/MAS NMR spectrum of WP_{14d} (a) and deconvoluted C4 resonance (b).

WP 14d	Shape	Relative intensity (%)	Position (ppm)	FWHH (ppm)
Ια	Lorentz	3.23	89.60	0.45
Ιαβ	Lorentz	18.20	88.86	0.41
PC	Gaussian	36.29	88.50	1.87
Iβ	Lorentz	14.73	88.03	0.67
AS I	Gaussian	2.00	84.33	0.83
IAS	Gaussian	23.43	84.01	3.96
AS II	Gaussian	2.12	83.33	0.76

Table S7: Peak properties of C4 deconvolution (WP_{14d}).

Figure S8: ¹³C CP/MAS NMR spectrum of SWKP_{REF} (a) and deconvoluted C4 resonance (b).

SWKP REF	Shape	Relative intensity (%)	Position (ppm)	FWHH (ppm)
Ια	Lorentz	1.94	89.58	0.56
Ιαβ	Lorentz	11.26	88.81	0.49
PC	Gaussian	38.00	88.68	1.84
Ιβ	Lorentz	9.10	87.83	0.88
AS I	Gaussian	4.38	84.31	0.79
IAS	Gaussian	22.17	83.90	2.71
AS II	Gaussian	4.02	83.24	0.62
HC	Gaussian	9.13	81.50	1.86

Table S8: Peak properties of C4 deconvolution (SWKPREF).

Figure S9: ¹³C CP/MAS NMR spectrum of SWKP_{0.33d} (a) and deconvoluted C4 resonance (b).

SWKP 0.33d	Shape	Relative intensity (%)	Position (ppm)	FWHH (ppm)
Ια	Lorentz	3.69	89.56	0.65
Ιαβ	Lorentz	10.37	88.84	0.49
PC	Gaussian	32.52	88.55	1.76
Ιβ	Lorentz	6.45	87.91	0.79
AS I	Gaussian	7.47	84.31	1.08
IAS	Gaussian	29.56	83.70	5.17
AS II	Gaussian	4.42	83.25	0.73
HC	Gaussian	5.52	81.76	1.86

 Table S9: Peak properties of C4 deconvolution (SWKP0.33d).

Figure S10: ¹³C CP/MAS NMR spectrum of SWKP_{1d} (a) and deconvoluted C4 resonance (b).

SWKP 1d	Shape	Relative intensity (%)	Position (ppm)	FWHH (ppm)
Ια	Lorentz	2.60	89.57	0.73
Ιαβ	Lorentz	8.90	88.84	0.47
PC	Gaussian	35.19	88.53	1.82
Ιβ	Lorentz	5.98	87.89	1.00
AS I	Gaussian	7.56	84.30	1.10
IAS	Gaussian	29.83	83.70	5.17
AS II	Gaussian	4.08	83.30	0.76
HC	Gaussian	5.86	81.77	1.86

Table S10: Peak properties of C4 deconvolution (SWKP1d).

Figure S11: ¹³C CP/MAS NMR spectrum of SWKP_{2d} (a) and deconvoluted C4 resonance (b).

SWKP 2d	Shape	Relative intensity (%)	Position (ppm)	FWHH (ppm)
Ια	Lorentz	2.97	89.54	0.71
Ιαβ	Lorentz	8.52	88.82	0.45
PC	Gaussian	36.44	88.55	1.78
Ιβ	Lorentz	5.28	87.82	0.91
AS I	Gaussian	7.66	84.29	1.16
IAS	Gaussian	30.99	83.70	5.17
AS II	Gaussian	3.79	83.25	0.73
HC	Gaussian	4.35	81.90	1.86

 Table S11: Peak properties of C4 deconvolution (SWKP_{2d}).

Figure S12: ¹³C CP/MAS NMR spectrum of SWKP_{3d} (a) and deconvoluted C4 resonance (b).

SWKP 3d	Shape	Relative intensity (%)	Position (ppm)	FWHH (ppm)
Ια	Lorentz	3.55	89.42	0.76
Ιαβ	Lorentz	8.30	88.84	0.49
PC	Gaussian	35.09	88.52	1.85
Ιβ	Lorentz	4.51	87.88	0.84
AS I	Gaussian	6.40	84.30	1.03
IAS	Gaussian	34.07	83.70	5.17
AS II	Gaussian	3.92	83.34	0.76
HC	Gaussian	4.16	81.90	1.86

 Table S12: Peak properties of C4 deconvolution (SWKP_{3d}).

Figure S13: ¹³C CP/MAS NMR spectrum of SWKP_{4d} (a) and deconvoluted C4 resonance (b).

SWKP 4d	Shape	Relative intensity (%)	Position (ppm)	FWHH (ppm)
Ια	Lorentz	3.23	89.43	0.75
Ιαβ	Lorentz	7.56	88.83	0.41
PC	Gaussian	38.84	88.51	1.81
Ιβ	Lorentz	4.04	87.82	0.92
AS I	Gaussian	7.08	84.29	1.10
IAS	Gaussian	32.41	83.70	5.17
AS II	Gaussian	4.00	83.25	0.76
HC	Gaussian	2.85	81.90	1.14

16

Table S13: Peak properties of C4 deconvolution (SWKP_{4d}).

Figure S14: ¹³C CP/MAS NMR spectrum of SWKP_{7d} (a) and deconvoluted C4 resonance (b).

SWKP 7d	Shape	Relative intensity (%)	Position (ppm)	FWHH (ppm)
Ια	Lorentz	3.27	89.54	0.74
Ιαβ	Lorentz	8.24	88.82	0.46
PC	Gaussian	37.26	88.55	1.81
Iβ	Lorentz	4.73	87.87	0.79
AS I	Gaussian	7.95	84.30	1.17
IAS	Gaussian	30.93	83.70	5.17
AS II	Gaussian	3.97	83.22	0.76
HC	Gaussian	3.65	81.90	1.39

 Table S14: Peak properties of C4 deconvolution (SWKP7d).

Figure S15: ¹³C CP/MAS NMR spectrum of SWKP_{10d} (a) and deconvoluted C4 resonance (b).

SWKP 10d	Shape	Relative intensity (%)	Position (ppm)	FWHH (ppm)
Ια	Lorentz	1.76	89.54	0.74
Ιαβ	Lorentz	7.93	88.80	0.47
PC	Gaussian	35.44	88.55	1.85
Iβ	Lorentz	5.92	87.85	0.97
AS I	Gaussian	5.17	84.32	1.06
IAS	Gaussian	39.37	83.70	5.17
AS II	Gaussian	3.01	83.28	0.76
HC	Gaussian	1.40	81.90	0.88

 Table S15: Peak properties of C4 deconvolution (SWKP10d).

Figure S16: ¹³C CP/MAS NMR spectrum of SWKP_{14d} (a) and deconvoluted C4 resonance (b).

SWKP 14d	Shape	Relative intensity (%)	Position (ppm)	FWHH (ppm)
Ια	Lorentz	2.87	89.49	0.73
Ιαβ	Lorentz	8.09	88.82	0.46
PC	Gaussian	34.30	88.51	1.83
Ιβ	Lorentz	4.97	87.80	0.90
AS I	Gaussian	5.44	84.29	1.17
IAS	Gaussian	40.25	83.70	5.14
AS II	Gaussian	2.88	83.28	0.76
HC	Gaussian	1.20	81.90	0.97

Table S16: Peak properties of C4 deconvolution (SWKP_{14d}).

4. Calculation of lateral crystallite dimension

The lateral crystallite dimensions (*LD*) of the samples were calculated with formula (1) published by Newman (1999) by inserting crystallinity indices (*Cl*) obtained from C4 deconvolution of ¹³C CP/MAS NMR spectra and the average surface layer distance (*d*) of cellulose chains in a single crystallite.

(1)

 $LD = (2 * d) / (1 - CI^{0,5})$

LD = lateral crystallite dimension

d = average surface layer distance

CI = crystallinity index

Newman compared wide angle x-ray scattering (WAXS) results for the *LD* of several samples with results calculated via formula (1) by inserting the *CI* from ¹³C NMR spectra of the same samples and *d* derived from the 6 * 6 cellulose chain model (0.57 nm).

We calculated the *LD* of our samples based on *d* derived from the 24 cellulose chain crystallite model proposed by Oehme *et al.* (2015) (100 layer: 0.40 nm, 110 layer: 0.54 nm, 1-10 layer: 0.62, *d*: 0.52 nm). This is only an approximation, but when using the *CIs* determined by Newman via ¹³C NMR and inserting *d* of the 24 chains model instead of *d* based on the 6 * 6 chain model, a better correlation of the original Newman-data with the WAXS results for *LD*

was found (*cf.* **Table S17** and **Figure S17**). Hence, we conclude that this is a valid approach for evaluating ¹³C NMR data.

Sample	<i>CI</i> NMR	LD 6*6 chains	LD 24 chains	LD WAXS
Asplenium frond fibre	0.324	2.646	2.413	2.600
Sisal twine	0.435	3.348	3.053	3.000
Phormium leaf fibre	0.448	3.448	3.143	3.300
Cyathea frond fibre	0.450	3.463	3.158	3.100
Eucalyptus wood	0.488	3.782	3.448	3.500
Jute twine	0.489	3.791	3.456	3.400
Avicel powder	0.653	5.940	5.416	5.400
Linen sewing thread	0.661	6.097	5.559	5.600
Sigma C-6663 powder	0.771	9.349	8.524	7.900
Cotton fabric	0.777	9.618	8.770	7.800

Table S17: *LD* and *CI* data published by Newman (1999) plus *LD* calculated based on the 24 chains model proposed by Oehme *et al.* (2015).

Figure S17: *LD* calculated with *d* based on the 6 * 6 model, *LD* calculated with *d* based on the 24 cellulose chains model, and *LD* obtained from WAXS measurements plotted against *CI*.

5. References

- Newman, R. H. 1999. Estimation of the lateral dimensions of cellulose crystallites using 13C NMR signal strengths. *Solid State Nuclear Magnetic Resonance*, 15, 21-29.
- Oehme, D. P., Downton, M. T., Doblin, M. S., Wagner, J., Gidley, M. J. & Bacic, A. 2015. Unique aspects of the structure and dynamics of elementary Iβ cellulose microfibrils revealed by computational simulations. *Plant Physiology*, 168, 3-17.
- Wickholm, K., Larsson, P. T. & Iversen, T. 1998. Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. *Carbohydrate Research*, 312, 123-129.
- Zuckerstätter, G., Terinte, N., Sixta, H. & Schuster, K. C. 2013. Novel insight into cellulose supramolecular structure through 13C CP-MAS NMR spectroscopy and paramagnetic relaxation enhancement. *Carbohydrate Polymers*, 93, 122-8.