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Fig. 16 Pairwise accuracy of k × g = 512 vs k × g = 256.
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Fig. 17 Standard deviation (accuracy) vs k & g.
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Fig. 18 Sparsity vs k. Sparsity represents the proportion of all features, for all examples
in the training set, which have a value of zero (i.e., corresponding to kernels which have not
been counted at any timepoint).
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Fig. 19 Mean rank vs k & g (max+min/soft+hard/no diff/no clip).
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Fig. 20 Mean rank vs k & g (max+min/soft+hard/diff/clip).
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Fig. 21 Mean rank vs k & g (max+min/soft+hard/diff/no clip/without robust feature
normalisation).
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Fig. 22 p values for the Wilcoxon signed-rank test for each pair of classifiers, corresponding
to the results shown in Figure 5. p values less than 0.05 are shown in bold, p values which
are considered statistically significant after applying the Holm correction are underlined.
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B Feature Normalisation

As the number of kernels per group increases, we observe increasing feature
sparsity. With a high level of sparsity, all or almost all of the values for a
particular feature might be zero. The sample size (i.e., the number of nonzero
values for a given feature) may be too small to meaningfully estimate the
standard deviation or any other quantity we might use to rescale the features.
A particular problem can arise where we underestimate a quantity such as the
standard deviation, which can lead to considerable inflation of feature values.

Accordingly, we modify the standard approach of subtracting the per-
feature mean and dividing by the per-feature standard deviation to take into
account feature sparsity. In particular, we (a) mask sparse values (these remain
zero), (b) square-root transform the features, (c) subtract the per-feature
mean, and (d) divide by the per-feature standard deviation plus a quantity, ϵ,
which is proportional to per-feature sparsity:

Ẑ =

√
Z − µ√Z

σ√Z + ϵ
.

Specifically, ϵ = α4, where α represents per-feature sparsity, i.e., the pro-
portion of values which are zero for each feature. Accordingly, ϵ is in the range
[0, 1], and the exponent means that ϵ remains small for small values of spar-
sity, increasing rapidly as sparsity increases. (Note that the actual value of the
exponent is not critically important, and values between 2 and 16 appear to
produce broadly similar results.)
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C Larger Datasets

C.1 Training Times
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Fig. 23 Training times (not including the transform time for the validation set) for the
FruitFlies, InsectSound, and MosquitoSound datasets.

C.2 Training Details

We train a logistic regression model using stochastic gradient descent, with a
momentum value of 0.9, and a minibatch size of 256. We use a validation set
of 10% of the training examples. We integrate a version of the ‘learning rate
range test’ or ‘learning rate finder’ into the start of training (Smith, 2017).
We increase the learning rate (from an initial value of 10−6) by 10% on each
update until validation loss diverges. We then ‘rewind’ training to the point of
minimum validation loss and continuing training. We reduce the learning rate
by a factor of 10 if validation loss does not improve after 10 epochs, and stop
training if validation loss does not improve after 20 epochs.

For MiniRocket and MultiRocket, we fit the bias values using the first
4,096 (shuffled) training examples. For all methods, we perform the transform
once and cache the transformed features in order to avoid repeating the trans-
form unnecessarily. We run the experiments on the same cluster referred to
in Section 1, performing five runs per datasets per method (results are mean
results over the five runs), using eight cores per dataset per run.
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D Pseudocode

Function fit(X, g, k)

input : X : n time series of length l
g : num. groups
k : num. kernels per group

output: W : kernels
m : num. dilations

m← ⌈log2(l− 1)/8⌉ // num. dilations

h← ⌊g/min(g, 2)⌋ // half num. groups (if g > 1)

// k × g kernels of length 9 per dilation (h× k for X; h× k for diff(X), if g > 1)

W ← sample(N (0, 1), [m,min(g, 2), h× k, 9])

// for each kernel, subtract mean and divide by sum of absolute values

rescale(W )

return W , m

Function transform(X, W , m, g, k)

input : X : n time series of length l
W : kernels
m : num. dilations
g : num. groups
k : num. kernels per group

output: F : features

h← ⌊g/min(g, 2)⌋ // half num. groups (if g > 1)

for X ∈ X do // for each timeseries

if g > 1 then Ω← {X, diff(X)} else Ω← {X} // time series, 1st diff (if g > 1)

for p ∈ {0, . . . , |Ω| − 1} do // for each of X, diff(X) (if g > 1)

for d ∈ {20, . . . , 2m−1} do // for each dilation

for q ∈ {0, . . . , h− 1} do // for each group

Z ← Ωp ∗W (d,p,q) // convolve w/ corresponding kernels

Ǔ, V̌ , Û ← 0l, 0l, 0l // initialise argmax, max, argmin

for j ∈ {0, . . . , l− 1} do // for each timepoint

Ǔj ← argmaxi zij // index of kernel with max value

V̌j ← maxi zij // max value

Ûj ← argmini zij // index of kernel with min value

Č, Ĉ ← 0k, 0k // initialise counts

for i ∈ {0, . . . , k − 1} do // for each kernel

Či ←
∑

j:ǔj=i v̌j // soft count (max)

Ĉi ←
∑

j:ûj=i 1 // hard count (min)

append(F , {Č, Ĉ}) // append counts to features

return F


