
Supplement to A Comparative Study of
Methods for Estimating Model-Agnostic

Shapley Value Explanations

Lars Henry Berge Olsen1,2*, Ingrid Kristine Glad1, Martin
Jullum3 and Kjersti Aas3

1Department of Mathematics, University of Oslo, Oslo, Norway.
2The Alan Turing Institute, London, United Kingdom.

3Norwegian Computing Center, Oslo, Norway.

*Corresponding author(s). E-mail(s): lholsen@math.uio.no;
Contributing authors: glad@math.uio.no; jullum@nr.no;

kjersti@nr.no;

In Section S1, we elaborate on approaches for estimating conditional Shapley
value explanations used in the main text and describe other methods. We
provide additional simulation studies in Section S2. In Section S3, we include
plots of some simulated and real-world data sets. We apply additional methods
to the real-world experiments and decompose the computation times of the
methods in Section S4. Finally, in Section S5, we provide a schematic overview
of the conditional Shapley value explanation framework and the estimation
methods within the explainable artificial intelligence field.

S1 Additional Approaches
In this section, we provide more information about the methods used in
the main text, describe additional approaches we have used, and point out
potential methods that can be incorporated into the Shapley value explanation
framework in the future.

1

2 Study of Shapley Value Explanations: Supplement

S1.1 The Missingness During Training Procedure
Covert et al. (2021, Appendix E.2) and Chen et al. (2022a, Section. 5.1.3)
describe a procedure where they directly estimate the conditional expectation
by modifying the training process of the predictive model f such that it handles
missing features. That is, they train f on a particular objective function such
that its predictions of observations with missing features are equivalent to
marginalizing out the features using the conditional distribution. However, as
we focus on model-agnostic post hoc explanation for arbitrary f and most
predictive models do not support missingness, we skipped this procedure in
the main part of the article.

S1.2 The Generative Method Class
Here, we describe alternative versions of the VAEAC approach that we have
considered and then list other potential methods in the generative method
class.

S1.2.1 VAEAC with Response Feature
The VAEAC-f approach includes the predicted response of the predictive
model ŷ = f(x) as an additional feature that is always unobserved in
the deployment phase. That is, the extended training data takes the form
{x[i], f(x[i])}Ntrain

i=1 . This idea was proposed by Ivanov et al. (2019), the
creators of the VAEAC methodology, and they argued that this extension
could improve the modeling of the data, especially for multi-modal data. The
VAEAC-f approach will generate (x(k)

S , ŷ
(k)
S) ∼ pψ,θ(xS , yS |xS ,S), for which

two possible procedures are available. First, in the indirect VAEAC-f-indir
approach, we only use the x(k)

S part, combine them with xS , send them through
the predictive model f , and finally estimate the contribution function with
v̂(S,x) = 1

K

∑K
k=1 f(x(k)

S ,xS). For the other approach, which we call the
direct VAEAC-f-dir approach, we skip the intermediate step where we evaluate
the model at the Monte Carlo samples by rather using the ŷ(k)

S samples, that
is, v̂(S,x) = 1

K

∑K
k=1 ŷ

(k)
S . This saves time if f is computationally expensive

to call. We use the same hyperparameters for these two approaches as for
the original VAEAC approach and the estimated model parameters at the
epoch with the lowest validation error; see Appendix A. We consider several
maximum numbers of epochs and indicate this by including the number in
the method name. For example, VAEAC-f-dir-500 means that we trained the
VAEAC-f-dir method for 500 epochs.

S1.2.2 VAEAC with Paired Sampling
The VAEAC-paired approach is identical to the VAEAC method described in
Section 3.4.2, except that we used paired sampling when generating the mask.
That means that both S and S are applied to the same observation in the
training phase of the VAEAC model.

Study of Shapley Value Explanations: Supplement 3

S1.2.3 Potential Generative Methods
We can use various applicable generative methods to generate the conditional
Monte Carlo samples and Shapley values, such as non-parametric vine copulas
(Aas et al., 2021). We now provide a non-exhaustive list of other applicable
generative methods, which, to the best of our knowledge, have yet to be used
in Shapley value estimation. Computing the Monte Carlo samples coincides
with the field of multiple imputation of missing values. The methods in this
rich field can be categorized into two classes (Zheng and Charoenphakdee,
2022). The first class contains the iterative approaches: the Multivariate
Imputations based on Chained Equations (MICE) (Van Buuren and Groothuis-
Oudshoorn, 2011) and MissForest (Stekhoven and Bühlmann, 2011). The
second class contains the deep generative models: Multiple Imputation
using Denoising Autoencoders (MIDA) (Gondara and Wang, 2018), Missing
Data Importance-weighted Autoencoder (MIWAE) (Mattei and Frellsen, 2019),
Generative Adversarial Imputation Nets (GAIN) (Yoon et al., 2018), and
Conditional Score-based Diffusion Models for Tabular data (CSDI T) (Zheng
and Charoenphakdee, 2022). Other methods are the Arbitrary Conditioning
Flow model (ACFlow) (Li et al., 2020), the Neural Conditioner (NC) (Belghazi
et al., 2019), Neural Autoregressive Distribution Estimation (NADE) (Uria
et al., 2016), and Universal Marginalizers (UM) (Douglas et al., 2017).

S1.3 The Separate and Surrogate Method Class
In this section, we describe additional regression-based approaches. Note that
all the regression methods can, in theory, be used both in the separate
and surrogate regression frameworks. Some of them might, however, be
infeasible for the latter in practice due to memory or time constraints,
especially for large training data sets and high dimensions. Note that not all
the regression methods minimize the mean squared error loss function.

S1.3.1 Polynomial Regression
Polynomial regression is an extension of linear regression where we model the
relationship as a pth degree polynomial for each feature. That is, the model
takes the following form:

f(x) = β0 +
M∑
j=1

(
βj,1x

1
j + βj,2x

2
j + · · ·+ βj,px

p
j

)
= β0 +

M∑
j=1

p∑
k=1

βj,kx
k
j .

We estimate the coefficients of the polynomial model using the lm function in
base R with formula = "y ∼ poly(X1, deg = p) +...+ poly(XM, deg =
p)", where p is the degree. We call the approach Poly-p.

4 Study of Shapley Value Explanations: Supplement

S1.3.2 Linear Regression with Interactions
We extend the linear regression model by including interactions between the
features. For example, we get the following model formula when we include
first-order interactions:

f(x) = β0 +
M∑
j=1

βjxj +
M−1∑
j=1

M∑
k=j+1

βj,kxjxk.

For second-order interactions, we get the following model:

f(x) = β0 +
M∑
j=1

βjxj +
M−1∑
j=1

M∑
k=j+1

βj,kxjxk +
M−2∑
j=1

M−1∑
k=j+1

M∑
l=k+1

βj,k,lxjxkxl.

We estimate the coefficients in the interaction model using the lm function
in base R with formula = "y ∼ (.)o+1", where o is the order. We call the
approach LM-inter-o.

S1.3.3 Polynomial Regression with Interactions
Here, we extend the linear regression model with interactions by also allowing
for polynomial terms. For example, the polynomial regression model with
polynomial degree 2 and interactions of one order lower takes the following
form:

f(x) = β0 +
M∑
j=1

βjxj +
M∑
j=1

M∑
k=j

βj,kxjxk.

We estimate the coefficients in the polynomial interaction model using the lm
function in base R with formula = "y ∼ poly(X1, ..., XM, deg = d)",
where d is the degree. For the surrogate version, we do not include interactions
with the binary mask features, as the number of coefficients to be estimated
drastically increases. We call the approach Poly-inter-d.

S1.3.4 Generalized Additive Models
We also fit GAMs using the gam package (Hastie, 2022), which differs slightly
from the mgcv package discussed in Appendix A. In the gam package, we
can directly specify the degrees of freedom for the splines. We consider three
different versions: one with df = 5 (GAM-5), another with df = 10 (GAM-10),
and in the last, we conduct cross-validation using the caret package to tune
the degrees of freedom (GAM-CV).

S1.3.5 Elastic Net Regression
Elastic Net models add regularization to the model coefficients, and the
popular Lasso and Ridge regression models are special cases. However,

Study of Shapley Value Explanations: Supplement 5

they do not minimize the MSE, but we still include them. The objective
function for the Gaussian family is: min(β0,β)∈Rp+1

1
2N
∑N
i=1(yi−β0−xTi β)2 +

λ
(
(1− α)‖β‖22/2 + α‖β‖1

)
, where λ ≥ 0 is a regularization parameter and

0 ≤ α ≤ 1 is a compromise between Ridge (α = 0) and Lasso regression
(α = 1). We consider α ∈ {0, 0.5, 1} and call the corresponding methods for
Ridge, Elastic, and Lasso. We use the glmnet package (Friedman et al.,
2010) to fit the models and use the package’s cross-validation procedure to
tune λ.

S1.3.6 Principal Component Regression
The difference between regular linear regression and principal component
regression (PCR) is that the latter regress the response on the principal
components instead of the original features. For more details, see Hastie et al.
(2009, pp. 79-80). We use the pls package (Liland et al., 2021) to fit the
PCR model and use the package’s cross-validation procedure to determine the
number of principal components to include in the final model. We call the
approach PCR.

S1.3.7 Partial Least Squares
The partial least squares (PLS) regression model is similar to PCR, but the
PLS also uses the response when constructing the linear combinations of the
features for regression. For more details, see Hastie et al. (2009, pp. 80-82).
We use the pls package (Liland et al., 2021) to fit the PLS model and use the
package’s cross-validation procedure to determine the number of components
to include in the final regression model. We call the approach PLS.

S1.3.8 Projection Pursuit Regression
Section 3.5.3 and Appendix A describe the PPR model and explain that we
use cross-validation to determine the number of terms L in the PPR separate
approach. An alternative is the PPR-fixed separate approach where we let
L = |S|. This method is much faster than PPR separate but still competitive;
see Section S2. For larger values of M , letting L = min(|S|, Lmax), where Lmax
is a threshold, will reduce the computation time even more.

S1.3.9 Support Vector Machines
Support vector machines (SVM) used for regression are also known as support
vector regression, and see Hastie et al. (2009, Ch. 12.3) for an introduction.
We use ε-type regression and a radial kernel, but one could also consider ν-
regression and linear, polynomial, and sigmoid kernels. We use the WeightSVM
package (Xu et al., 2021) to fit the SVM, as it supports weighting of the
observations, but the more well-known e1071 package (Meyer et al., 2022)
could also have been used. We call the approach SVM.

6 Study of Shapley Value Explanations: Supplement

S1.3.10 K-Nearest Neighbors
The K-nearest neighbors (KNN) regression model is a memory-based approach
that does not require any model to be fit. For a given individual x∗, the
model finds the K closes observations in the training data and return the
mean response of these observations. We use the kknn package (Schliep and
Hechenbichler, 2016) to train the KNN model and to conduct hyperparameter
tuning. We call the approach KNN.

S1.3.11 Single Decision Tree
A regression decision tree partitions the feature space into a set of rectangles
and predicts a new observation’s response as the mean response of the
training observations in the particular partition. CART, C4.5, and CTree
are popular methods for tree-based regression, which are very simple to
understand yet powerful; see, e.g., Hastie et al. (2009, Ch. 9.2). We use the
rpart package (Therneau and Atkinson, 2022) to fit a decision tree with
complexity parameter 0.001 and then prune the tree afterward. We call the
approach Tree.

S1.3.12 Random Forest
In the main text, the RF approach was tuned using cross-validation, which leads
to a large computation time. Here we propose a default approach called RF-def
with 500 trees and default hyperparameter values in the ranger package
(Wright and Ziegler, 2017). A potential improvement is to vary the number of
trees based on the coalition size |S| instead of having a fixed number as, e.g.,
500 trees might be excessive when S is a singleton.

S1.3.13 Boosting
Both XGBoost (Chen et al., 2015) and CatBoost (Prokhorenkova et al., 2018)
are gradient-based boosted decision trees, but they differ in that the latter
supports categorical data by default while the former require the user to do,
e.g., one-hot encoding. We include two versions of the XGBoost approach: one
where we use default hyperparameter values (XGBoost-def) and one where we
tune nrounds, max depth, eta, gamma, colsample bytree using the default
grid in the caret package. We call the latter approach XGBoost, which is
time-consuming due to the extensive hyperparameter tuning.

S1.3.14 Neural Networks and Multilayer Perceptron
In Sections S2 and S4, we explore NN surrogate methods with
hyperparameters defined in Section 5 but with different maximum numbers of
learning epochs. E.g., NN-Olsen-500 surrogate indicates that num epochs =
500, but we still use the network weights at the epoch with the lowest
validation error. We have also implemented a version that employs early
stopping, as discussed in Appendix A. More precisely, we stop the training

Study of Shapley Value Explanations: Supplement 7

if no improvement has been made to the validation error in 150 epochs.
Additionally, this version initiates ten networks to reduce the likelihood of
poorly initiated network parameters, as discussed in Section S4. We train
the ten networks for fifteen epochs and continue only with the network with
the lowest validation error. We denote this method by NN-Olsen-ES and
NN-Frye-ES.

The multilayer perceptron (MLP) is a fully connected feedforward artificial
neural network. We include some small networks to compare these against
the large NN-Olsen surrogate and NN-Frye surrogate methods described
in Section 3.6.2 and Appendix A. We call the approach, e.g., NN-[u, v, w],
which means that the network has three layers where the number of neurons in
the layers are u, v, and w, respectively. We use the RSNNS package (Bergmeir
and Beńıtez, 2012), with default hyperparameters and 200 epochs.

S1.3.15 Potential Methods
Bénard et al. (2022) use a projected random forest to estimate Shapley effects,
which is not the same as Shapley values in (1). The projected random forest
is a surrogate regression model that provides predictions of the output
conditioned on any feature subset. Thus, their procedure can be adapted to
estimate conditional Shapley values. Jethani et al. (2021) propose another
neural network-based procedure that skips the modeling of the data/response
altogether by training a complex neural network that takes in the full input
feature vector x and directly outputs the Shapley values φ.

S1.3.16 Surrogate Regression Methods in High-Dimensions
In high-dimensional settings, to reduce the computational cost, one can
consider training the surrogate regression model on a sampled subset of
the augmented representations in (5). In that case, one should ensure that
all coalitions are present. Uniform sampling will mostly sample coalitions
with approximately half of the features present, as the number of coalitions
with |S| entries is given by

(
M
|S|
)
. Therefore, Covert et al. (2021) propose to

first uniformly sample the coalition size, i.e., |S| ∼ U [1,M − 1], and then
sample |S| features with uniform probability. Recall that the number of terms
in the Shapley value formula in (1) grows at an exponential rate; hence,
in higher dimensions, it is common practice to estimate the Shapley values
based on a sampled collection of coalitions with replacement (Chen et al.,
2022a; Lundberg and Lee, 2017; Olsen et al., 2022). We can then create Xaug
only based on these coalitions. Furthermore, many regression models support
weighting of the observations, which we can set as the sampling frequency of
the different coalitions. Olsen et al. (2022) use a similar idea when sampling
masks. For regression models that do not support weights, one can duplicate
the relevant data, but this näıve approach increases the number of rows in the
augmented design matrix.

8 Study of Shapley Value Explanations: Supplement

S2 Additional Simulation Studies
In this section, we extend the numerical simulation studies in Section 4 in two
directions. First, in Section S2.1, we include more setups with Gaussian data.
Second, in Section S2.2, we use the multivariate Burr distribution instead of
the multivariate Gaussian.

S2.1 Gaussian Distributed Experiments
Here we include additional setups to the experiments in Sections 4.1 and 4.2.
We include:

lm some interactions: flm,some(x) = flm,no(x) + γ1x1x2,
lm many interactions: flm,many(x) = flm,more(x) + γ3x5x6,
gam one: fgam,one(x) = β0 +

∑1
i=1 βi cos(xi) +

∑M
j=2 βjxj ,

gam two: fgam,two(x) = β0 +
∑2
i=1 βi cos(xi) +

∑M
j=3 βjxj ,

gam five: fgam,five(x) = β0 +
∑5
i=1 βi cos(xi) +

∑M
j=6 βjxj ,

gam some interactions: fgam,some(x) = fgam,no(x) + γ1g(x1, x2),
gam many interactions: fgam,many(x) = fgam,more(x) + γ3g(x5, x6),

where we let β = {1.0, 0.2,−0.8, 1.0, 0.5,−0.8, 0.6,−0.7,−0.6} and γ =
{0.8,−1.0,−2.0, 1.5}, i.e., the same coefficients as in the main text.

The results for the first two linear setups are very similar to those
obtained in Section 4.1. The correct parametric approaches are the most
accurate, while the generative method class is generally the second-best
class for moderate ρ. However, the separate regression method class is the
second-best class for higher values of ρ.

The results of the gam one and gam two experiments are almost identical to
those obtained in the lm no interactions experiment, which is unsurprising
as the setups are very similar. When we include one nonlinear term, the LM
separate is the most accurate, but as expected, this changes when we include
more nonlinear terms. In this case, the correct parametric methods are the
most accurate, together with the GAM separate method. Again, we see a
tendency for the separate regression methods to become more precise for
higher dependence levels. The same holds for the parametric methods. The
results of the gam five experiment are nearly identical to those described for
the gam three experiment in the main text.

For the gam some interactions and gam many interactions
experiments, we obtain indistinguishable results. Furthermore, the results
also coincide with the results we observed in Section 4.2; see Figure S1.
Generally, the parametric methods are superior, with the generative
methods as a close runner-up, except for ρ = 0.9, where the separate
regression methods constitute the second-best method class, in particular,
the PPR separate method. Furthermore, using the PPR-fixed separate
method introduced in Section S1.3.8 drastically decreases the computational
cost without sacrificing much precision.

Study of Shapley Value Explanations: Supplement 9

S2.2 Burr Distributed Experiments
In this section, we repeat the same simulation studies as in Section 4 and
Section S2.1, but we replace the multivariate Gaussian data with multivariate
Burr data. The Burr distribution is strictly positive, heavy-tailed, skewed, and
has nonlinear dependence and known conditional distributions; see Appendix
B.2.

We sample Ntrain = 1000 training and Ntest = 250 test observations
from a Burr(κ, b, r) distribution. We let b = {5, 4, 6, 5, 3, 6, 5, 5},
r = {4, 3, 5, 2, 5, 3, 5, 1}, while we vary the scale parameter κ ∈
{0.5, 1.0, 1.5, 2.0, 2.5, 3.0}. Here, a low κ indicates high dependency. The
average Pearson correlations for the six values of κ are 0.80, 0.63, 0.46, 0.36,
0.29, and 0.25, respectively. In Figures S6 and S7 in Section S3, we display
plots of the Burr data when κ = 1 and κ = 3, respectively. A larger value
of κ makes the Burr distribution more Gaussian-like, while lower values of
κ produce more extreme observations due to the right heavy-tailed property
of the Burr distribution. We observe that the methods struggle with these
extreme observations, and the individual MAE is (often) higher for these
observations in the outer region of the data distribution. That is, the data has
few similar observations for the methods to learn the conditional structure.
In Figures S2 to S4, we present a selection of the results. The results for the
other settings are very similar.

We observe similar results for the Burr data as we did for the Gaussian
data. That is, using the correct parametric approach, in this case, the Burr
approach, yields the most accurate Shapley value explanations. The GH method
also performs well, even though it makes an incorrect parametric assumption,
while the Gaussian and copula methods perform relatively worse. The best
method outside the parametric method class is generally a VAEAC approach,
where the number in the name indicates the maximum number of epochs.
However, for the less complex setups without interaction terms, the VAEAC
approaches are often outperformed by some of the separate regression
methods, particularly the GAM separate and PPR separate approaches. We
do not see a systematic benefit of choosing a large value for the maximum
number of epochs in the VAEAC approaches. Thus, the differences are likely
based on better initialized random weights in the networks, similar to
what we discuss for the NN-Olsen surrogate method in Section S4.1. The
VAEAC-f-dir approaches are consistently outperformed by the VAEAC and
VAEAC-f-indir methods, and there does not seem to be a systematic winner
between the latter two methods. Some of the additional regression-based
methods proposed in Section S1.3 perform relatively well, such as the proposed
LM-inter separate and Poly-inter separate methods.

For the surrogate regression approaches, we notice that the LM-inter
surrogate and Poly-inter surrogate often outperform the complex
NN-Frye surrogate and NN-Olsen surrogate approaches. However, for
the complex gam more interactions experiment, the NN-Olsen surrogate
approach with a high number of epochs is the overall best surrogate

10 Study of Shapley Value Explanations: Supplement

Method Time Method Time Method Time

Independence 36:23.4 Poly-inter-3 sep. 3.1 Poly-inter-2 sur. 7.0
Empirical 13:17.6 GAM sep. 43.7 Poly-inter-3 sur. 17.0
Gaussian 35:59.0 GAM-5 sep. 26.6 GAM sur. 22.8
Copula 39:14.1 GAM-10 sep. 1:37.7 GAM-5 sur. 12.3
GH 42:38.5 GAM-CV sep. 25:43.0 GAM-10 sur. 55.0
Burr 38:30.5 PCR sep. 3.9 PCR sur. 14.9
Ctree 18:45.6 PLS sep. 3.3 PLS sur. 14.1
VAEAC-200 40:20.1 PPR sep. 1:55.4 PPR sur. 4:29.9
VAEAC-500 41:58.2 PPR-fixed sep. 4.6 KNN sur. 38:10.4
VAEAC-1000 44:03.8 SVM sep. 14.0 Tree sur. 13.0
VAEAC-paired-200 52:54.4 KNN sep. 18.8 RF sur. 55:44.6
VAEAC-f-indir-200 40:53.8 Tree sep. 3.5 RF-def sur. 2:19.1
VAEAC-f-indir-500 42:04.1 RF sep. 56:04.1 XGBoost sur. 2:02:39.5
VAEAC-f-indir-1000 44:13.9 RF-def sep. 40.0 XGBoost-def sur. 50.7
VAEAC-f-dir-200 5:05.3 XGBoost sep. 26:32.7 CatBoost sur. 34.6
VAEAC-f-dir-500 6:46.0 XGBoost-def sep. 33.5 NN-[3, 4] sur. 3:48.7
VAEAC-f-dir-1000 8:54.0 CatBoost sep. 4:47.9 NN-[32, 16, 8] sur. 7:44.2
LM sep. 0.6 NN-[3, 4] sep. 1:32.1 NN-Frye sur. 13:44:46.7
LM-inter-2 sep. 0.7 NN-[32, 16, 8] sep. 5:13.1 NN-Frye-15000 sur. 14:53:22.9
LM-inter-3 sep. 0.8 LM sur. 2.7 NN-Frye-ES sur. 44:08.3
Lasso sep. 15.5 LM-inter-2 sur. 8.4 NN-Olsen sur. 7:15:32.6
Ridge sep. 17.3 Lasso sur. 5.2 NN-Olsen-2500 sur. 3:58:45.2
Elastic sep. 15.9 Ridge sur. 6.5 NN-Olsen-10000 sur. 15:22:43.1
Poly-2 sep. 0.4 Elastic sur. 4.4 NN-Olsen-ES sur. 26:40.1
Poly-3 sep. 1.7 Poly-2 sur. 4.4
Poly-inter-2 sep. 1.9 Poly-3 sur. 5.1

Table S1: The CPU times used by the methods to compute Shapley values for the
Ntest = 250 test observations in the gam more interactions experiment with Burr
distributed features when κ = 2 and Ntrain = 1000 (Section S2.2). The format of the
CPU times is hours:minutes:seconds, where we omit the larger units of time if they
are zero, and the colors indicate the different method classes.

regression approach. For the complex setups in Section 4.2 and Section S2.1
with interactions, we also let the predictive model f be a random forest
and a projection pursuit regression model, as done in Section 4.5. This
had a minor effect on the overall results. However, some of the non-smooth
regression methods, such as CatBoost separate, performed relatively better
when f was also non-smooth, just as in the main text. We also looked at
Ntrain ∈ {100, 5000}, and the overall tendencies remained.

In Table S1, we report the CPU times for the approaches used in the
gam more interactions experiment with Burr distributed features, κ = 2,
Ntrain = 1000, and Ntest = 250. We see similar time tendencies as discussed in
Section 4.3, but note the time differences between the separate regression
methods with default and cross-validated versions. For example, the RF
separate takes approximately 84 times longer than the RF-def separate
method due to the extra cost of tuning the hyperparameters. However, the RF
separate method obtains lower MAE scores; see Figure S4. We observe similar
tendencies for the PPR separate and PPR-fixed separate methods. Here,
we only report the total time, but the time decomposition is similar to the one
in Table 1. That is, the separate regression and surrogate regression
methods spend the vast majority of their time on training, while the predicting
step only takes a couple of seconds. In contrast, the Monte Carlo-based

Study of Shapley Value Explanations: Supplement 11

approaches spend most of the time on the predicting and generating steps in
that order.

S3 Characteristics of the Data Sets
In this section, we provide pairwise scatter plots, marginal density functions,
and pairwise Pearson correlation coefficients (for the continuous features)
between the features in some of the data sets we have used in this article. In
Figures S5 to S7, we include figures for a few of the simulated Gaussian and
Burr distributed data sets from the numerical simulation studies in Section
4 and Section S2, respectively. Further, plots for the Abalone, Diabetes, and
Wine data sets from Section 5 are provided in Figures S8 to S10, respectively.
We omit the Adult dataset as it is chaotic and difficult to interpret due to
the large number of levels in the categorical features. However, the pairwise
Pearson correlation coefficients for the continuous features are all close to zero.

In Figures S5 to S7, we include plots for the Gaussian distribution with ρ =
0.9 and Burr distribution with κ ∈ 1, 3, respectively. For the Gaussian features,
the pairwise correlation between features i and j is given by ρ|i−j|, i.e., it
decreases from 0.9 to 0.48 in the M = 8 situation. For the Burr distribution,
the marginals become more right-skewed, and the correlation approximately
doubles when we decrease κ from 3 to 1. The average correlations are 0.28 and
0.61 for κ = 3 and κ = 1, respectively.

For the Abalone data set (Figure S8), there is a clear nonlinearity and
heteroscedasticity among the pairs of features and a significant pairwise
correlation between the features. All continuous features have a pairwise
correlation above 0.775, or 0.531 when grouped by the categorical feature Sex.
There is a clear distinction between infants and females/males. All marginals
are right-skewed, except for the features Length and Diameter, which is
left-skewed.

The Diabetes data set (Figure S9) shows a fairly strong correlation between
many features. For example, the correlation between S1 and S2 is 0.90. On
average, the Age feature is the least correlated feature with the other features.
Most scatter plots and marginal distributions display structures and marginals
somewhat similar to Gaussian distribution, except the S4 feature, which has
a multi-modal marginal.

In contrast, for the (Red) Wine dataset (Figure S10), most scatter plots
and marginal density functions display structures and marginals far from
the Gaussian distribution, as most marginals are right-skewed. The largest
correlation in absolute value is 0.683 (between pH and fix acid), while most
other pairs of features have zero to moderate correlation.

12 Study of Shapley Value Explanations: Supplement

Fig. S1: Experiment gam many interactions with Gaussian data.

Study of Shapley Value Explanations: Supplement 13

Fig. S2: Experiment lm more interactions with Burr data.

14 Study of Shapley Value Explanations: Supplement

Fig. S3: Experiment gam three with Burr data.

Study of Shapley Value Explanations: Supplement 15

Fig. S4: Experiment gam more interactions with Burr data.

16 Study of Shapley Value Explanations: Supplement

Fig. S5: Pairwise scatter plots, marginal density functions, and pairwise Pearson
correlation coefficients for the simulated Gaussian distributed features in Section 4
with ρ = 0.9. The correlation between feature i and j is given by ρ|i−j|.

Study of Shapley Value Explanations: Supplement 17

Fig. S6: Pairwise scatter plots, marginal density functions, and pairwise Pearson
correlation coefficients for the simulated Burr distributed features in Section S2 with
κ = 1.

18 Study of Shapley Value Explanations: Supplement

Fig. S7: Pairwise scatter plots, marginal density functions, and pairwise Pearson
correlation coefficients for the simulated Burr distributed features in Section S2 with
κ = 3.

Study of Shapley Value Explanations: Supplement 19

Fig. S8: Pairwise scatter plots, marginal density functions, and pairwise Pearson
correlation coefficients for the features in the Abalone data set used in Section 5. The
figure is grouped by Sex, where the infants are gray, females are yellow, and males
are blue. The correlations reported in black correspond to all observations, while the
colored correlations are grouped based on Sex.

20 Study of Shapley Value Explanations: Supplement

Fig. S9: Pairwise scatter plots, marginal density functions, and pairwise Pearson
correlation coefficients for the features in the Diabetes data set used in Section 5.
The figure is grouped by Sex. The correlations reported in black correspond to all
observations, while the colored correlations are grouped based on Sex.

Study of Shapley Value Explanations: Supplement 21

Fig. S10: Pairwise scatter plots, marginal density functions, and pairwise Pearson
correlation coefficients for the features in the (Red) Wine data set used in Section 5.

22 Study of Shapley Value Explanations: Supplement

S4 Real-World Data Experiments: Computation Time
Tables S2 to S6 present the decomposed CPU times for the Abalone, Diabetes,
Wine, and Adult experiments from Section 5, respectively. The tables also
include the MSEv scores for the different methods. The total CPU times
are decomposed into the same three categories as in Section 4.3: training,
generating, and predicting. Recall that we ran the three first experiments on
the MAC system specified in Section 4.3, while the Adult experiment was run
on a shared computer server described in Section 5. The CPU times will differ
from computer to computer.

Here, we include some methods in addition to those used in Section 5,
such as the PCR separate approach (Section S1.3.6), which performs similarly
to the best methods for the Diabetes experiment. Recall that the predictive
model f in the Diabetes experiment is a PCR model. Hence, this supports
our findings in the main text that we should use a separate regression
method with the same form as f for accurate Shapley value estimates.
Additionally, we include the RF-def separate method (Section S1.3.12)
with default hyperparameters to illustrate the need for conducting cross-
validation to tune the hyperparameters. We also include versions of the VAEAC,
NN-Olsen surrogate, and NN-Frye surrogate approaches with default
hyperparameters but with different numbers of training epochs. It should also
be noted that the PPR-fixed separate method with a fixed number of terms
L = |S| produces almost as good results as the CV-alternative PPR separate
in a fraction of the time.

As in Section 4.3, the training step is the most time-consuming step
for the separate regression and surrogate regression methods, while
the predicting step often takes only a couple of seconds. For the Abalone
and Diabetes datasets, creating the augmented training data set takes
approximately 2 seconds, while it takes approximately 14 seconds for the Wine
data set. The time increase is due to larger a M (compared to Abalone) and
Ntrain (compared to Diabetes). In comparison, the Monte Carlo-based methods
use most of their time generating the Monte Carlo samples in the Abalone
and Diabetes experiments. This contrasts with the timings in Table 1, where
the predicting step was the slowest. The time difference is caused by the GAM
model in the gam more interactions experiment being more computationally
expensive to call than the PPR and PCR models in Abalone and Diabetes
experiments, respectively. For the Wine experiment, the predicting step is the
most expensive, which is caused by the RF model being more computationally
costly to call, and we have more calls due to a larger M (compared to Abalone)
and Ntest (compared to Diabetes).

When excluding the training time, which is only done once and can
be considered an upfront time cost, it is evident that the regression-based
methods are superior with respect to computation time. For example, consider
the best Monte Carlo and regression-based methods for the Abalonecont
experiment, i.e., the VAEAC-10000 and PPR separate methods, respectively.
The VAEAC-10000 approach uses 551.9 seconds to explain 1044 predictions,

Study of Shapley Value Explanations: Supplement 23

an average of 0.53 seconds per explanation. In contrast, the PPR separate
method explains all the 1044 predictions in 0.5 seconds. Thus, there is a speed
difference of a factor of 1104, which is essential when the number of predictions
to explain is large.

If training time is not a limiting factor, we can use more time to train the
NN-Olsen surrogate and NN-Frye surrogate methods, as these methods
are slow to train but fast in the predicting step. In contrast to the numerical
simulation studies in Section 4, the validation errors for some of the complex
real-world experiments were still decreasing for these approaches, indicating
that more training would be beneficial. Table S2 shows that the MSEv scores
for the different versions of the NN-Olsen surrogate approach decrease when
we increase the number of epochs leading it to share the first place with
the PPR separate approach. However, recall that we use the network at
the epoch with the lowest validation error, which was the 6457th epoch for
the NN-Olsen-20000 surrogate approach. This means that the increased
performance was not due to the additional number of training epochs but
rather to better random initialization values, which caused the network
parameters to converge to a better local optimum. The same tendency also
holds for the other real-world experiments. For example, there is essentially
no difference in the MSEv scores of the NN-Olsen-500 surrogate and
NN-Olsen-10000 surrogate methods for the Diabetes data set in Table S4.
Furthermore, the validation data is randomly extracted and removed from the
training data for each NN surrogate method. Thus, it might be that for some
NN surrogate methods and data sets, we were unlucky in that the training
and validation data were not representative of the test data. This is more likely
to happen for small data sets.

Table S4 shows that the RF-def separate approach with default
hyperparameters provides almost as low MSEv score as the cross-validated
counter-version RF separate, whose training time is approximately 140 times
longer. For the surrogate regression version, we see that the RF-def
surrogate method outperforms the RF surrogate even though the default
hyperparameters are an option in the cross-validation procedure.

S4.1 Analysis of the NN-Olsen surrogate method for the
Abalone Data Set

In this section, we look closer at the effect of initialization values
and hyperparameters for the NN-Olsen surrogate method for the two
experiments on the Abalone data set.

For the Abaloneall experiment, we fitted ten versions of the
NN-Olsen-10000 surrogate method with different idealizations seeds. These
networks were trained on the shared computer server described in Section 5
and had an average training time of 14:02:46.6. In comparison, the training
CPU time for the NN-Olsen-10000 surrogate method in Table S3 was almost
3.5 times higher when trained on the MAC operating system described in
Section 4.3. The average MSEv was 1.214, with a standard deviation of

24 Study of Shapley Value Explanations: Supplement

0.0085. Furthermore, on average, the best epoch was the 5509th, with a
standard deviation of 1660. The large standard deviation means there is a large
variability when the networks reach their minimum validation error. Seven
versions reached their minimum before epoch 5000, while the slowest reached
its minimum at the 8920th epoch. This means that if num epochs = 5000, the
performance of seven of the networks would not be influenced by the reduced
number of epochs. In contrast, the precision of the three remaining versions
would decrease. This highlights the need for good network initialization values
when num epochs is limited or for choosing a large value for num epochs.

For the NN-Olsen-10000 surrogate method, we wanted to investigate the
effect of the hyperparameters. We considered the same hyperparameter grid as
in Appendix A, i.e., lr ∈ {0.01, 0.001, 0.0001} and width ∈ {32, 64, 128} and
we call the corresponding method for NN-Olsen-CV-10000 surrogate. We
fit ten versions of the NN-Olsen-CV-10000 surrogate method with different
initialized network weights. The average best epoch was the 7706th, with
a standard deviation of 2496, while the average MSEv was 1.208, with a
standard deviation of 0.0236. This score is nearly identical to the average score
we obtained for the NN-Olsen-10000 surrogate method above with default
hyperparameters: lr = 0.001 and width = 64. The default hyperparameters
were chosen two times, but lr = 0.0001 and width = 128 was the best
combination five times. For these five repetitions, we obtained an average
MSEv of 1.198, with a standard deviation of 0.0053. However, the average
best epoch was then 9456, with a standard deviation of 473, which is close to
the maximum number of epochs. Thus, we might see further improvements
for this hyperparameter combination by increasing num epochs. We ran one
network with num epochs = 20 000, which obtained its best validation score
after 15 518 epochs. The method’s training time was 1:08:07:48.1, and it got
an MSEv score of 1.214, which is at the same level as previous versions.

We repeated the investigations for the Abalonecont experiment. For the ten
versions of the NN-Olsen-10000 surrogate approach, we obtain an average
MSEv score of 1.178, with a standard deviation of 0.0068. This score is lower
than the one reported in Tables 2 and S2. Thus, it is likely that that version
had poorly initialized network parameters or that the training and validation
data sets were not representative. The average best epoch was the 5410th, with
a standard deviation of 1842, and the average training time was 10:45:13.1.
The best of the ten versions obtained an MSEv score of 1.167, beating all other
methods. We also fitted ten versions of the NN-Olsen-CV-10000 surrogate
method. They obtained an average MSEv score of 1.77, with a standard
deviation of 0.0067. That is, there is minimal improvement in conducting cross-
validation. The default hyperparameters were never the best hyperparameter
combination. The lr = 0.0001 and width = 128 combination was the best
five times, while lr = 0.001 and width = 128 was best four times. For
the former combination, the average MSEv score is 1.171, with a standard
deviation of 0.0015. The average best number of epochs is 9253; meaning
that we should consider increasing num epochs. We ran one network with

Study of Shapley Value Explanations: Supplement 25

num epochs = 20 000, which obtained its best validation score after 11 523
epochs. The method’s training time was 1:02:02:24.5, and it got an MSEv score
of 1.169, equal to the two best methods; NN-Olsen-20000 surrogate and PPR
separate. However, the latter is approximately 700 times faster to train.

Several methods exist to stabilize and robustify neural networks: we can
regularize the network parameters, apply drop-out during training, or create
an ensemble model of several networks. One can also initialize several networks
and only continue to train the best-performing one after a fixed number of
epochs. The latter is done in the NN-Frye-ES and NN-Olsen-ES surrogate
methods, but we do not see a systematic improvement. In the R package
torch (Falbel and Luraschi, 2022), the weights and biases in each layer are
uniformly initialized from U(−

√
Nin,
√
Nin), where Nin is the number of inputs

to the linear layers in the network. Other initialization schemes exist, such as
Xavier initialization (Glorot and Bengio, 2010) and Kaiming initialization (He
et al., 2015), where the latter considers the rectifier nonlinearities to initialize
the network parameters robustly. Discovering better procedures and ensuring
representative training, validation, and test data should be of focus and is
mentioned as further work in the conclusion in Section 7.

26 Study of Shapley Value Explanations: Supplement

Method Training Generating x(k)
S Predicting v(S) Total CPU Time MSEv

Independence 0.0 7.6 1:16.6 1:24.2 8.679
Empirical 35.3 2:10.3 57.6 3:43.2 1.540
Gaussian 0.0 2:21.1 1:22.9 3:44.0 1.349
Copula 0.0 13:01.0 2:04.5 15:05.5 1.223
GH 4:20.2 2:53.9 1:25.6 8:39.7 1.292
Burr 2:56.3 1:00.1 1:25.9 5:22.3 5.640
Ctree 9.6 7:19.4 11.8 7:40.8 1.393
VAEAC-200 3:03.2 6:52.1 1:30.8 11:26.1 1.340
VAEAC-1000 14:52.5 7:22.2 1:25.0 23:39.7 1.217
VAEAC-10000 2:24:51.7 7:43.1 1:28.8 2:34:03.6 1.182
VAEAC-20000 4:56:25.7 7:49.5 1:20.9 5:05:36.1 1.195
VAEAC-40000 10:25:31.1 7:48.4 1:31.2 10:34:50.7 1.193
VAEAC-f-indir-200 3:27.7 9:42.7 1:27.7 14:38.1 1.412
VAEAC-f-indir-1000 16:23.3 7:59.2 1:27.4 25:49.9 1.255
VAEAC-f-indir-10000 2:36:23.3 8:23.1 1:25.8 2:46:12.2 1.197
VAEAC-f-indir-20000 5:10:17.5 8:17.9 1:19.0 5:19:54.4 1.184
VAEAC-f-indir-40000 10:32:42.9 9:08.1 1:30.6 10:43:21.6 1.181
VAEAC-f-dir-200 3:27.7 9:42.7 0.0 13:10.4 1.686
VAEAC-f-dir-1000 16:23.3 7:59.2 0.0 24:22.5 1.310
VAEAC-f-dir-10000 2:36:23.3 8:23.1 0.0 2:44:46.4 1.228
VAEAC-f-dir-20000 5:10:17.5 8:17.9 0.0 5:18:35.4 1.231
VAEAC-f-dir-40000 10:32:42.9 9:08.1 0.1 10:41:51.1 1.196
LM sep. 0.2 — 0.1 0.3 1.684
Poly-2 sep. 1.5 — 0.2 1.7 1.350
Poly-3 sep. 1.4 — 0.2 1.6 1.320
LM-inter-2 sep. 0.3 — 0.1 0.4 1.423
LM-inter-3 sep. 0.4 — 0.1 0.5 1.389
Poly-inter-2 sep. 1.3 — 0.4 1.7 1.320
Poly-inter-3 sep. 2.4 — 0.4 2.8 1.394
Lasso sep. 8.1 — 0.2 8.3 1.696
Ridge sep. 10.2 — 0.1 10.3 2.027
Elastic sep. 9.2 — 0.1 9.3 1.706
GAM sep. 27.4 — 6.3 33.7 1.298
GAM-5 sep. 11.4 — 1.0 12.4 1.306
GAM-10 sep. 19.9 — 1.0 20.9 1.294
GAM-CV, sep. 5:55.3 — 1.1 5:56.4 1.303
PCR sep. 4.8 — 0.1 4.9 1.719
PLS sep. 3.2 — 0.1 3.3 1.717
PCR sep. 4.6 — 0.1 4.7 1.721
PPR sep. 2:14.6 — 0.5 2:15.1 1.169
PPR-fixed sep. 7.1 — 0.4 7.5 1.270
SVM sep. 47.5 — 3.7 51.2 1.260
KNN sep. 30.2 — 4.0 34.2 1.330
Tree sep. 3.4 — 0.2 3.6 1.553
RF sep. 1:09:06.1 — 9.7 1:09:15.8 1.239
RF-def sep. 39.7 — 4.5 44.2 1.312
CatBoost sep. 6:16.9 — 0.2 6:17.1 1.190
LM sur. 3.2 — 0.5 3.7 2.912
Poly-2 sur. 4.3 — 0.8 5.1 2.664
Poly-3 sur. 4.1 — 0.9 5.0 2.628
LM-inter-2 sur. 7.2 — 0.9 8.1 1.775
Poly-inter-2 sur. 5.9 — 1.2 7.1 2.447
Poly-inter-3 sur. 15.2 — 1.7 16.9 1.930
Lasso sur. 7.2 — 0.2 7.4 2.912
Ridge sur. 7.4 — 0.1 7.5 2.998
Elastic sur. 7.4 — 0.2 7.6 2.912
GAM sur. 28.5 — 12.6 41.1 2.611
GAM-5 sur. 18.3 — 1.0 19.3 2.612
GAM-10 sur. 1:01.4 — 0.7 1:02.1 2.605
PCR sur. 17.8 — 0.6 18.4 2.912
PLS sur. 17.2 — 0.7 17.9 2.912
PPR sur. 14:56.2 — 1.3 14:57.5 1.548
KNN sur. 0.2 — 0.0 0.2 13.081
Tree sur. 11.2 — 0.6 11.8 2.839
RF sur. 1:14:15.8 — 15.0 1:14:30.8 1.281
RF-def sur. 1:45.1 — 6.0 1:51.1 1.448
XGBoost sur. 2:46:14.9 — 0.6 2:46:15.5 1.536
XGBoost-def sur. 1:05.5 — 0.6 1:06.1 1.437
CatBoost sur. 9:09.2 — 1.6 9:10.8 1.298
NN-Frye-3000 sur. 5:47:58.1 — 1.9 5:48:00.0 1.625
NN-Frye-6000 sur. 11:34:15.4 — 1.7 11:34:17.1 1.433
NN-Frye-15000 sur. 1:03:05:38.7 — 2.3 1:03:05:41.0 1.310
NN-Frye-40000 sur. 3:01:48:38.7 — 2.1 3:01:48:40.8 1.244
NN-Frye-ES sur. 6:10:13.2 — 2.1 6:10:15.3 1.374
NN-Olsen-500 sur. 2:24:15.7 — 1.7 2:24:17.4 1.248
NN-Olsen-2500 sur. 12:10:18.6 — 1.4 12:10:20.0 1.201
NN-Olsen-10000 sur. 2:00:40:20.3 — 2.0 2:00:40:22.3 1.194
NN-Olsen-20000 sur. 3:22:23:46.0 — 2.0 3:22:23:48.0 1.169
NN-Olsen-ES sur. 8:28:19.1 — 1.8 8:28:20.9 1.191

Table S2: Abalonecont data set experiment:M = 7,Ntrain = 3133, andNtest = 1044.

Study of Shapley Value Explanations: Supplement 27

Method Training Generating x(k)
S Predicting v(S) Total CPU Time MSEv

Independence 0.0 18.6 3:32.9 3:51.5 9.144
Ctree 18.1 18:26.6 29.4 19:14.1 1.424
VAEAC-200 4:13.4 15:47.1 5:16.6 25:17.1 1.467
VAEAC-1000 16:01.1 18:03.6 4:25.6 38:30.3 1.230
VAEAC-10000 2:41:54.8 15:58.2 5:31.9 3:03:24.9 1.194
VAEAC-20000 5:32:11.4 16:46.2 5:26.1 5:54:23.7 1.193
VAEAC-40000 11:19:30.9 17:24.9 11:26.3 11:48:22.1 1.180
VAEAC-f-indir-200 4:16.5 17:02.6 5:21.7 26:40.8 1.457
VAEAC-f-indir-1000 18:42.3 18:40.6 3:57.5 41:20.4 1.270
VAEAC-f-indir-10000 2:48:12.4 17:13.9 5:33.1 3:10:59.4 1.234
VAEAC-f-indir-20000 5:44:35.2 17:49.1 5:27.1 6:07:51.4 1.216
VAEAC-f-indir-40000 12:51:32.9 17:42.9 7:38.7 13:16:54.5 1.220
VAEAC-f-dir-200 4:16.5 17:02.6 0.0 21:19.1 1.761
VAEAC-f-dir-1000 18:42.3 18:40.6 0.0 37:22.9 1.322
VAEAC-f-dir-10000 2:48:12.4 17:13.9 0.0 3:05:26.3 1.268
VAEAC-f-dir-20000 5:44:35.2 17:49.1 0.0 6:02:24.3 1.239
VAEAC-f-dir-40000 12:51:32.9 17:42.9 0.3 13:09:16.1 1.264
LM sep. 0.6 — 0.3 0.9 1.581
Poly-2 sep. 2.7 — 0.4 3.1 1.338
Poly-3 sep. 3.2 — 0.5 3.7 1.314
Poly-4 sep. 3.7 — 0.8 4.5 1.306
LM-inter-2 sep. 0.9 — 0.3 1.2 1.381
LM-inter-3 sep. 1.4 — 0.3 1.7 1.357
LM-inter-4 sep. 2.1 — 0.4 2.5 1.360
Poly-inter-2 sep. 2.6 — 0.8 3.4 1.310
Poly-inter-3 sep. 4.5 — 0.1 4.6 1.512
Poly-inter-4 sep. 10.4 — 1.4 11.8 9.314
GAM sep. 56.3 — 13.4 1:09.7 1.299
GAM-5 sep. 22.7 — 2.1 24.8 1.302
GAM-10 sep. 36.2 — 2.2 38.4 1.297
GAM-CV, sep. 12:10.8 — 2.1 12:12.9 1.299
PCR sep. 11.6 — 0.4 12.0 1.788
PLS sep. 7.1 — 0.3 7.4 1.630
PPR sep. 3:33.5 — 1.1 3:34.6 1.185
PPR-fixed sep. 15.4 — 0.8 16.2 1.198
KNN sep. 1:02.8 — 8.7 1:11.5 1.366
Tree sep. 6.9 — 0.3 7.2 1.559
RF sep. 2:30:50.4 — 19.3 2:31:09.7 1.259
RF-def sep. 1:21.4 — 8.5 1:29.9 1.344
CatBoost sep. 18:24.7 — 0.3 18:25.0 1.213
LM sur. 5.9 — 1.3 7.2 2.770
Poly-2 sur. 7.8 — 1.5 9.3 2.625
Poly-3 sur. 7.7 — 1.5 9.2 2.577
LM-inter-2 sur. 27.4 — 1.9 29.3 1.705
LM-inter-3 sur. 9:11.8 — 5.2 9:17.0 1.443
Poly-inter-2 sur. 9.1 — 1.7 10.8 2.435
Poly-inter-3 sur. 29.5 — 3.3 32.8 1.929
GAM sur. 58.4 — 26.2 1:24.6 2.557
GAM-5 sur. 30.3 — 2.1 32.4 2.556
GAM-10 sur. 45.8 — 2.0 47.8 2.553
PCR sur. 46.2 — 0.6 46.8 2.818
PLS sur. 38.4 — 1.3 39.7 2.770
PPR sur. 55:28.4 — 3.2 55:31.6 1.538
KNN sur. 0.5 — 0.0 0.5 9.305
Tree sur. 25.7 — 0.6 26.3 2.914
RF sur. 3:45:58.8 — 35.3 3:46:34.1 1.311
RF-def sur. 4:25.1 — 12.0 4:37.1 1.473
CatBoost sur. 29:26.0 — 2.6 29:28.6 1.348
NN-Frye-3000 sur. 6:08:53.8 — 4.1 6:08:57.9 2.049
NN-Frye-6000 sur. 12:06:33.8 — 4.1 12:06:37.9 1.742
NN-Frye-15000 sur. 1:09:15:16.7 — 3.9 1:09:15:20.6 1.445
NN-Frye-40000 sur. 3:16:01:07.5 — 4.0 3:16:01:11.5 1.320
NN-Frye-ES sur. 4:53:28.7 — 6.4 4:53:35.1 1.973
NN-Olsen-500 sur. 2:21:43.4 — 3.2 2:21:46.6 1.282
NN-Olsen-2500 sur. 12:02:38.3 — 3.5 12:02:41.8 1.216
NN-Olsen-10000 sur. 2:01:07:27.4 — 2.9 2:01:07:30.3 1.192
NN-Olsen-20000 sur. 4:04:25:26.1 — 2.9 4:04:25:29.0 1.210
NN-Olsen-ES sur. 2:52:53.4 — 3.8 2:52:57.2 1.269

Table S3: Abaloneall data set experiment: M = 8, Ntrain = 3133, and Ntest = 1044.

28 Study of Shapley Value Explanations: Supplement

Method Training Generating x(k)
S Predicting v(S) Total CPU Time MSEv

Independence 0.0 7.8 30.6 38.4 0.196
Empirical 2.6 11.1 1.4 15.1 0.143
Gaussian 0.0 2:06.1 29.0 2:35.1 0.127
Copula 0.0 10:17.2 37.3 10:54.5 0.127
GH 4:34.8 2:29.6 26.9 7:31.3 0.133
Ctree 9.6 6:35.7 1.6 6:46.9 0.158
VAEAC-200 48.5 7:44.9 2:02.7 10:36.1 0.134
VAEAC-1000 2:35.1 7:04.5 1:41.1 11:20.7 0.131
VAEAC-5000 12:45.5 7:28.0 1:44.3 21:57.8 0.128
VAEAC-10000 21:37.3 8:38.8 1:23.8 31:39.9 0.128
VAEAC-20000 43:17.2 8:36.1 1:17.2 53:10.5 0.129
VAEAC-f-indir-200 41.0 7:55.9 1:41.8 10:18.7 0.137
VAEAC-f-indir-1000 2:41.6 7:33.1 1:44.7 11:59.4 0.137
VAEAC-f-indir-5000 13:33.1 7:53.8 1:44.1 23:11.0 0.133
VAEAC-f-indir-10000 22:53.1 9:17.1 1:29.4 33:39.6 0.134
VAEAC-f-indir-20000 44:32.1 8:58.6 1:09.5 54:40.2 0.130
VAEAC-f-dir-200 41.0 7:55.9 0.0 8:36.9 0.149
VAEAC-f-dir-1000 2:41.6 7:33.1 0.0 10:14.7 0.145
VAEAC-f-dir-5000 13:33.1 7:53.8 0.0 21:26.9 0.137
VAEAC-f-dir-10000 22:53.1 9:17.1 0.0 32:10.2 0.143
VAEAC-f-dir-20000 44:32.1 8:58.6 0.0 53:30.7 0.133
LM sep. 1.3 — 0.6 1.9 0.126
LM-inter-2 sep. 1.5 — 0.6 2.1 0.127
LM-inter-3 sep. 1.9 — 0.8 2.7 0.134
LM-inter-4 sep. 2.5 — 0.6 3.1 0.157
Lasso sep. 44.4 — 0.6 45.0 0.126
Ridge sep. 49.1 — 0.5 49.6 0.128
Elastic sep. 45.1 — 0.6 45.7 0.126
GAM sep. 59.2 — 4.4 1:03.6 0.126
PCR sep. 8.1 — 0.8 8.9 0.126
PLS sep. 7.0 — 0.7 7.7 0.126
PPR sep. 5:21.9 — 0.5 5:22.4 0.126
PPR-fixed sep. 8.2 — 0.1 8.3 0.145
SVM sep. 8.6 — 1.1 9.7 0.139
KNN sep. 17.3 — 3.0 20.3 0.150
Tree sep. 5.9 — 0.9 6.8 0.189
RF sep. 1:00:14.2 — 9.4 1:00:23.6 0.143
RF-def sep. 28.8 — 5.8 34.6 0.155
XGBoost sep. 1:10:10.8 — 0.9 1:10:11.7 0.137
XGBoost-def sep. 1:01.9 — 1.1 1:03.0 0.182
CatBoost sep. 18:40.3 — 0.3 18:40.6 0.135
LM sur. 3.6 — 0.8 4.4 0.165
LM-inter-2 sur. 19.3 — 1.1 20.4 0.134
LM-inter-3 sur. 11:51.0 2.7 11:53.7 0.128
Lasso sur. 6.9 — 0.2 7.1 0.165
Ridge sur. 7.9 — 0.2 8.1 0.165
Elastic sur. 5.6 — 0.4 6.0 0.165
GAM sur. 18.7 — 2.6 21.3 0.168
PCR sur. 22.7 — 0.7 23.4 0.165
PLS sur. 20.8 — 0.6 21.4 0.165
PPR sur. 4:11.9 — 1.1 4:13.0 0.136
KNN sur. 7.6 — 0.1 7.7 0.671
Tree sur. 15.3 — 0.8 16.1 0.254
RF sur. 1:33:37.6 — 13.7 1:33:51.3 0.143
RF-def sur. 2:28.8 — 7.6 2:36.4 0.159
XGBoost sur. 3:30:18.6 — 0.5 3:30:19.1 0.167
XGBoost-def sur. 1:11.1 — 0.6 1:11.7 0.202
CatBoost sur. 52.7 — 0.7 53.4 0.140
NN-Frye-3000 sur. 55:43.4 — 2.0 55:45.4 0.177
NN-Frye-6000 sur. 1:52:42.1 — 0.8 1:52:42.9 0.178
NN-Frye-10000 sur. 3:11:37.4 — 2.0 3:11:39.4 0.154
NN-Frye-15000 sur. 4:28:14.0 — 1.9 4:28:15.9 0.153
NN-Frye-ES sur. 35:12.8 — 1.6 35:14.4 0.191
NN-Olsen-500 sur. 17:39.8 — 1.2 17:41.0 0.136
NN-Olsen-2500 sur. 1:28:53.3 — 1.5 1:28:54.8 0.135
NN-Olsen-7500 sur. 4:27:26.2 — 1.5 4:27:27.7 0.139
NN-Olsen-10000 sur. 5:42:27.4 — 1.5 5:42:28.9 0.134
NN-Olsen-ES sur. 27:24.8 — 1.7 27:26.5 0.137

Table S4: Diabetes data set experiment: M = 10, Ntrain = 332, and Ntest = 110.

Study of Shapley Value Explanations: Supplement 29

Method Training Generating x(k)
S Predicting v(S) Total CPU Time MSEv

Independence 0.0 1:39.1 3:59:14.4 4:00:53.5 0.145
Empirical 1:54.3 4:22.9 2:27:01.3 2:33:18.5 0.088
Gaussian 0.0 11:06.4 3:57:22.2 4:08:28.6 0.118
Copula 0.0 54:01.1 3:59:35.5 4:53:36.6 0.107
GH 10:46.1 12:46.2 4:00:07.6 4:23:39.9 0.109
Burr 2:22.1 5:19.1 3:44:51.5 3:52:32.7 0.202
Ctree 1:06.3 33:35.5 27:59.7 1:02:41.5 0.102
VAEAC-200 1:51.6 36:22.8 3:59:54.5 4:38:08.9 0.103
VAEAC-1000 8:33.3 36:38.4 3:53:15.3 4:38:27.0 0.097
VAEAC-10000 1:34:59.6 40:42.5 3:53:55.8 6:09:37.9 0.093
VAEAC-20000 3:08:28.3 37:06.7 3:53:31.3 7:37:06.3 0.093
VAEAC-f-indir-200 2:10.4 40:23.6 3:59:21.4 4:41:55.4 0.105
VAEAC-f-indir-1000 9:55.4 40:43.6 3:49:50.5 4:40:29.5 0.096
VAEAC-f-indir-10000 1:33:53.4 43:21.2 4:00:27.9 6:17:42.5 0.098
VAEAC-f-indir-20000 3:17:31.3 43:09.3 4:00:22.9 8:01:03.5 0.097
VAEAC-f-dir-200 2:10.4 40:23.6 0.0 42:34.0 0.139
VAEAC-f-dir-1000 9:55.4 40:43.6 0.0 50:39.0 0.120
VAEAC-f-dir-10000 1:33:53.4 43:21.2 0.0 2:17:14.6 0.122
VAEAC-f-dir-20000 3:17:31.3 43:09.3 0.5 4:00:41.1 0.123
LM sep. 3.4 — 1.2 4.6 0.146
Poly-2 sep. 11.6 — 2.2 13.8 0.137
Poly-3 sep. 18.2 — 2.9 21.1 0.128
Poly-4 sep. 25.1 — 2.8 27.9 0.127
LM-inter-2 sep. 6.4 — 2.1 8.5 0.134
LM-inter-3 sep. 10.1 — 1.9 12.0 0.138
LM-inter-4 sep. 22.7 — 2.1 24.8 0.150
Poly-inter-2 sep. 17.4 — 6.1 23.5 0.128
Poly-inter-3 sep. 1:03.2 — 15.7 1:18.9 0.131
Poly-inter-4 sep. 4:43.3 — 1:21.1 6:04.4 1.142
Lasso sep. 2:00.1 — 1.3 2:01.4 0.146
Ridge sep. 2:44.1 — 1.5 2:45.6 0.147
Elastic sep. 2:33.0 — 1.7 2:34.7 0.146
GAM sep. 3:12.0 — 12.6 3:24.6 0.124
GAM-5 sep. 40.8 — 19.6 1:00.4 0.124
GAM-10 sep. 41.2 — 17.9 59.1 0.122
GAM-CV, sep. 31:29.5 — 16.9 31:46.4 0.124
PCR sep. 1:04.2 — 3.2 1:07.4 0.146
PLS sep. 53.3 — 2.5 55.8 0.146
PPR sep. 25:17.3 — 2.1 25:19.4 0.129
PPR sep. 25:17.3 — 2.1 25:19.4 0.129
PPR-fixed sep. 54.3 — 3.2 57.5 0.130
SVM sep. 3:42.3 — 12.2 3:54.5 0.109
KNN sep. 3:37.1 — 21.3 3:58.4 0.121
Tree sep. 48.7 — 2.7 51.4 0.132
RF sep. 9:20:25.2 — 47.7 9:21:12.9 0.071
RF-def sep. 4:00.4 — 23.3 4:23.7 0.072
XGBoost-def sep. 4:32.5 — 3.2 4:35.7 0.103
CatBoost sep. 1:41:31.6 — 1.1 1:41:32.7 0.082
LM sur. 22.5 — 3.4 25.9 0.162
Poly-2 sur. 39.0 — 4.7 43.7 0.155
Poly-3 sur. 43.7 — 6.2 49.9 0.147
Lasso sur. 1:11.2 — 0.4 1:11.6 0.167
Ridge sur. 1:30.2 — 1.0 1:31.2 0.182
Elastic sur. 1:23.7 — 1.3 1:25.0 0.166
GAM sur. 3:38.5 — 22.9 4:01.4 0.145
GAM-5 sur. 11:29.9 — 10.3 11:40.2 0.144
GAM-10 sur. 11:15.0 — 13.8 11:28.8 0.142
PCR sur. 4:37.8 — 4.3 4:42.1 0.162
PLS sur. 4:34.8 — 5.7 4:40.5 0.162
PPR sur. 1:20:09.6 — 5.9 1:20:15.5 0.149
KNN sur. 31.0 — 0.2 31.2 0.369
Tree sur. 3:40.8 — 3.7 3:44.5 0.214
RF sur. 1:15:41:45.0 — 1:01.3 1:15:42:46.3 0.085
RF-def sur. 27:59.0 — 42.0 28:41.0 0.075
XGBoost-def sur. 15:53.3 — 3.6 15:56.9 0.113
CatBoost sur. 29:01.9 — 4.5 29:06.4 0.108
NN-Frye-3000 sur. 1:43:10.9 — 6.3 1:43:17.2 0.227
NN-Frye-6000 sur. 3:22:15.2 — 6.2 3:22:21.4 0.210
NN-Frye-15000 sur. 17:35:44.9 — 8.2 17:35:53.1 0.190
NN-Frye-40000 sur. 1:10:53:20.6 — 6.8 1:10:53:27.4 0.170
NN-Frye-ES sur. 1:39:33.7 — 8.6 1:39:42.3 0.272
NN-Olsen-500 sur. 35:04.3 — 5.1 35:09.4 0.145
NN-Olsen-2500 sur. 2:55:22.9 — 5.4 2:55:28.3 0.137
NN-Olsen-10000 sur. 23:56:39.8 — 7.2 23:56:47.0 0.130
NN-Olsen-20000 sur. 1:23:54:17.3 — 6.2 1:23:54:23.5 0.132
NN-Olsen-ES sur. 2:42:45.9 — 9.0 2:42:54.9 0.116

Table S5: (Red) Wine data set experiment: M = 11, Ntrain = 1349, and Ntest = 250.

30 Study of Shapley Value Explanations: Supplement

Method Training Generating x(k)
S Predicting v(S) Total CPU Time MSEv

Independence 0.0 34:31.9 42:14.4 1:16:46.3 0.041
VAEAC-200 1:05:55:35.9 4:05:53:10.4 42:17.4 5:12:31:03.7 0.027
VAEAC-1000 6:01:10:13.0 3:23:34:03.1 51:35.8 10:01:35:51.9 0.027
VAEAC-f-indir-200 1:10:59:08.6 5:19:33:00.1 1:01:06.4 7:07:33:15.1 0.027
VAEAC-f-indir-1000 6:17:32:29.9 4:22:48:45.9 53:42.3 11:17:14:58.1 0.027
VAEAC-f-dir-200 1:10:59:08.6 5:19:33:00.1 0.2 7:06:32:08.9 0.033
VAEAC-f-dir-1000 6:17:32:29.9 4:22:48:45.9 0.3 11:16:21:16.1 0.032
LM sep. 8:38:57.2 — 21:16.3 9:00:13.5 0.043
Poly-2 sep. 13:44:03.3 — 27:29.3 14:11:32.6 0.037
Poly-3 sep. 17:00:32.0 — 29:08.1 17:29:40.1 0.037
Poly-4 sep. 19:25:17.4 — 28:26.1 19:53:43.5 0.036
Poly-inter-2 sep. 11:53:01.3 — 29:00.7 12:22:02.0 0.036
GAM sep. 2:37:14.8 — 1:37.8 2:38:52.6 0.033
GAM-5 sep. 7:19:07:43.1 — 2:12:59.1 7:21:20:42.2 0.034
GAM-10 sep. 75:22:18:27.1 — 2:05:52.8 76:00:24:19.9 0.033
PLS sep. 25:04:43:30.2 — 17:21.1 25:05:00:51.3 0.046
PPR sep. 14:12:16:08.6 — 3:39.0 14:12:19:47.6 0.032
PPR-fixed sep. 1:15:44:05.5 — 3:41.7 1:15:47:47.2 0.032
Tree sep. 5:44:54.7 — 46.0 5:45:40.7 0.031
RF sep. 98:13:17:15.8 — 16:11.6 98:13:33:27.4 0.027
RF-def sep. 12:49:17.0 — 8:39.0 12:57:56.0 0.028
CatBoost sep. 35:09:59:20.8 — 38.3 35:09:59:59.1 0.026
NN-Frye-3000 sur. 3:16:10:45.4 — 3:04.9 3:16:13:50.3 0.085
NN-Frye-15000 sur. 81:00:01:50.5 — 3:02.3 81:00:04:52.8 0.098
NN-Frye-ES sur. 9:42:32.0 — 2:24.8 9:44:56.8 0.101
NN-Olsen-500 sur. 3:11:31:47.6 — 2:10.3 3:11:33:57.9 0.045
NN-Olsen-2500 sur. 14:17:59:53.4 — 2:19.0 14:18:02:12.4 0.065
NN-Olsen-10000 sur. 82:11:56:11.3 — 2:36.9 82:11:58:48.2 0.037
NN-Olsen-ES sur. 1:13:15:31.9 — 1:58.4 1:13:17:30.3 0.030

Table S6: The Adult data set experiment: M = 14, Ntrain = 30 000, and Ntest = 162.
Creating the augmented test data on the form in (5) takes approximately two minutes
and is part of the predicting time for the NN surrogate approaches.

Study of Shapley Value Explanations: Supplement 31

S5 Schematic Overview of Conditional Shapley Values
in XAI

Figure S11 provides a schematic overview of this article’s method classes and
methods for computing conditional Shapley value explanations. Furthermore,
the figure also shows conditional Shapley values’ place within the explainable
artificial intelligence field as a model-agnostic explanation framework with
local explanations. Note that the ellipses represent the additional methods
introduced in Section S1. Furthermore, LIME is an explanation framework
developed by Ribeiro et al. (2016), and see, e.g., Molnar (2022)[Section 9.3]
and Redelmeier et al. (2021) for more on counterfactual explanations.

In this article, we use Shapley values to provide local explanations for
models fitted to tabular data, but different Shapley value-based frameworks
are developed for other settings. For example, Lundberg et al. (2020) develop
model-specific local and global Shapley value explanations for tree ensemble
models. Covert et al. (2020) introduce a model-agnostic global explanation
framework based on Shapley values. Krzyziński et al. (2023) propose time-
dependent Shapley value-based explanations for machine learning survival
models. Bento et al. (2021) extend Shapley values to the sequential domain
and introduce a model-agnostic Shapley value explanation framework for
sequential decision-making models, such as recurrent neural networks. Chen
et al. (2022b) explain a series of models by propagating Shapley values. Jethani
et al. (2021) use Shapley values to explain classifications made by image
classifiers. Duval and Malliaros (2021); Mastropietro et al. (2022) introduce
new methodologies based on Shapley values to explain graph neural network
models. Wang et al. (2021) include knowledge about a causal graph between
the features when creating Shapley value-based explanations. Heskes et al.
(2020) also introduces a causal Shapley value methodology that exploits causal
knowledge.

32 Study of Shapley Value Explanations: Supplement

Fig. S11: Schematic overview of conditional Shapley values within XAI.

Study of Shapley Value Explanations: Supplement 33

References
Aas K, Nagler T, Jullum M, et al. (2021) Explaining predictive models using

shapley values and non-parametric vine copulas. Dependence Modeling
9(1):62–81

Belghazi M, Oquab M, Lopez-Paz D (2019) Learning about an exponential
amount of conditional distributions. In: Wallach H, Larochelle H,
Beygelzimer A, et al. (eds) Advances in Neural Information Processing
Systems, vol 32. Curran Associates, Inc.

Bénard C, Biau G, Da Veiga S, et al. (2022) Shaff: Fast and consistent
shapley effect estimates via random forests. In: Camps-Valls G, Ruiz FJR,
Valera I (eds) Proceedings of The 25th International Conference on Artificial
Intelligence and Statistics, Proceedings of Machine Learning Research,
vol 151. PMLR, pp 5563–5582, URL https://proceedings.mlr.press/v151/
benard22a.html

Bento J, Saleiro P, Cruz AF, et al. (2021) Timeshap: Explaining recurrent
models through sequence perturbations. In: Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp 2565–
2573

Bergmeir C, Beńıtez JM (2012) Neural networks in R using the stuttgart
neural network simulator: RSNNS. Journal of Statistical Software 46(7):1–
26. URL https://www.jstatsoft.org/v46/i07/

Chen H, Covert IC, Lundberg SM, et al. (2022a) Algorithms to estimate
shapley value feature attributions. arXiv preprint arXiv:220707605

Chen H, Lundberg SM, Lee SI (2022b) Explaining a series of models by
propagating shapley values. Nature communications 13(1):4512

Chen T, He T, Benesty M, et al. (2015) Xgboost: extreme gradient boosting.
R package version 04-2 1(4):1–4

Covert I, Lundberg SM, Lee SI (2020) Understanding global feature
contributions with additive importance measures. Advances in Neural
Information Processing Systems 33

Covert I, Lundberg S, Lee SI (2021) Explaining by removing: A unified
framework for model explanation. Journal of Machine Learning Research
22(209):1–90

Douglas L, Zarov I, Gourgoulias K, et al. (2017) A universal marginalizer for
amortized inference in generative models. In: Proceedings of 31st Conference
on Neural Information Processing Systems (NIPS 2017)

https://proceedings.mlr.press/v151/benard22a.html
https://proceedings.mlr.press/v151/benard22a.html
https://www.jstatsoft.org/v46/i07/

34 Study of Shapley Value Explanations: Supplement

Duval A, Malliaros FD (2021) Graphsvx: Shapley value explanations for
graph neural networks. In: Machine Learning and Knowledge Discovery
in Databases. Research Track: European Conference, ECML PKDD 2021,
Bilbao, Spain, September 13–17, 2021, Proceedings, Part II 21, Springer, pp
302–318

Falbel D, Luraschi J (2022) torch: Tensors and Neural Networks with ’GPU’
Acceleration. URL https://CRAN.R-project.org/package=torch, r package
version 0.9.0

Friedman JH, Hastie T, Tibshirani R (2010) Regularization paths for
generalized linear models via coordinate descent. Journal of Statistical
Software 33(1):1–22. https://doi.org/10.18637/jss.v033.i01, URL https://
www.jstatsoft.org/index.php/jss/article/view/v033i01

Glorot X, Bengio Y (2010) Understanding the difficulty of training deep
feedforward neural networks. In: Proceedings of the thirteenth international
conference on artificial intelligence and statistics, JMLR Workshop and
Conference Proceedings, pp 249–256

Gondara L, Wang K (2018) Mida: Multiple imputation using denoising
autoencoders. In: Phung D, Tseng VS, Webb GI, et al. (eds) Advances in
Knowledge Discovery and Data Mining. Springer International Publishing,
Cham, pp 260–272

Hastie T (2022) gam: Generalized Additive Models. URL https://CRAN.
R-project.org/package=gam, r package version 1.20.1

Hastie T, Tibshirani R, Friedman JH, et al. (2009) The elements of statistical
learning: data mining, inference, and prediction, vol 2. Springer

He K, Zhang X, Ren S, et al. (2015) Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In: Proceedings of the
IEEE international conference on computer vision, pp 1026–1034

Heskes T, Sijben E, Bucur IG, et al. (2020) Causal shapley values: Exploiting
causal knowledge to explain individual predictions of complex models.
Advances in Neural Information Processing Systems 33

Ivanov O, Figurnov M, Vetrov D (2019) Variational autoencoder
with arbitrary conditioning. In: International Conference on Learning
Representations

Jethani N, Sudarshan M, Covert IC, et al. (2021) Fastshap: Real-time shapley
value estimation. In: International Conference on Learning Representations

https://CRAN.R-project.org/package=torch
https://doi.org/10.18637/jss.v033.i01
https://www.jstatsoft.org/index.php/jss/article/view/v033i01
https://www.jstatsoft.org/index.php/jss/article/view/v033i01
https://CRAN.R-project.org/package=gam
https://CRAN.R-project.org/package=gam

Study of Shapley Value Explanations: Supplement 35

Krzyziński M, Spytek M, Baniecki H, et al. (2023) Survshap(t): Time-
dependent explanations of machine learning survival models. Knowledge-
Based Systems 262:110,234. https://doi.org/https://doi.org/10.1016/j.
knosys.2022.110234, URL https://www.sciencedirect.com/science/article/
pii/S0950705122013302

Li Y, Akbar S, Oliva J (2020) Acflow: Flow models for arbitrary conditional
likelihoods. In: International Conference on Machine Learning, PMLR, pp
5831–5841

Liland KH, Mevik BH, Wehrens R (2021) pls: Partial Least Squares
and Principal Component Regression. URL https://CRAN.R-project.org/
package=pls, r package version 2.8-0

Lundberg SM, Lee SI (2017) A unified approach to interpreting model
predictions. In: Advances in neural information processing systems, pp
4765–4774

Lundberg SM, Erion G, Chen H, et al. (2020) From local explanations to global
understanding with explainable ai for trees. Nature machine intelligence
2(1):56–67

Mastropietro A, Pasculli G, Feldmann C, et al. (2022) Edgeshaper: Bond-
centric shapley value-based explanation method for graph neural networks.
Iscience 25(10):105,043

Mattei PA, Frellsen J (2019) Miwae: Deep generative modelling and
imputation of incomplete data sets. In: International conference on machine
learning, PMLR, pp 4413–4423

Meyer D, Dimitriadou E, Hornik K, et al. (2022) e1071: Misc Functions of
the Department of Statistics, Probability Theory Group (Formerly: E1071),
TU Wien. URL https://CRAN.R-project.org/package=e1071, r package
version 1.7-12

Molnar C (2022) Interpretable Machine Learning, 2nd edn. URL https://
christophm.github.io/interpretable-ml-book

Olsen LHB, Glad IK, Jullum M, et al. (2022) Using shapley values and
variational autoencoders to explain predictive models with dependent mixed
features. Journal of Machine Learning Research 23(213):1–51

Prokhorenkova L, Gusev G, Vorobev A, et al. (2018) Catboost: unbiased
boosting with categorical features. In: Bengio S, Wallach H, Larochelle H,
et al. (eds) Advances in Neural Information Processing Systems, vol 31.
Curran Associates, Inc., URL https://proceedings.neurips.cc/paper/2018/
file/14491b756b3a51daac41c24863285549-Paper.pdf

https://doi.org/https://doi.org/10.1016/j.knosys.2022.110234
https://doi.org/https://doi.org/10.1016/j.knosys.2022.110234
https://www.sciencedirect.com/science/article/pii/S0950705122013302
https://www.sciencedirect.com/science/article/pii/S0950705122013302
https://CRAN.R-project.org/package=pls
https://CRAN.R-project.org/package=pls
https://CRAN.R-project.org/package=e1071
https://christophm.github.io/interpretable-ml-book
https://christophm.github.io/interpretable-ml-book
https://proceedings.neurips.cc/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/14491b756b3a51daac41c24863285549-Paper.pdf

36 Study of Shapley Value Explanations: Supplement

Redelmeier A, Jullum M, Aas K, et al. (2021) Mcce: Monte carlo sampling of
realistic counterfactual explanations. arXiv preprint arXiv:211109790

Ribeiro MT, Singh S, Guestrin C (2016) ” why should i trust you?” explaining
the predictions of any classifier. In: Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and data mining, pp 1135–
1144

Schliep K, Hechenbichler K (2016) kknn: Weighted k-Nearest Neighbors. URL
https://CRAN.R-project.org/package=kknn, r package version 1.3.1

Stekhoven DJ, Bühlmann P (2011) MissForest—non-parametric missing value
imputation for mixed-type data. Bioinformatics 28(1):112–118. https://doi.
org/10.1093/bioinformatics/btr597

Therneau T, Atkinson B (2022) rpart: Recursive Partitioning and Regression
Trees. URL https://CRAN.R-project.org/package=rpart, r package version
4.1.16

Uria B, Côté MA, Gregor K, et al. (2016) Neural autoregressive distribution
estimation. The Journal of Machine Learning Research 17(1):7184–7220

Van Buuren S, Groothuis-Oudshoorn K (2011) mice: Multivariate imputation
by chained equations in r. Journal of statistical software 45:1–67

Wang J, Wiens J, Lundberg S (2021) Shapley flow: A graph-based approach
to interpreting model predictions. In: International Conference on Artificial
Intelligence and Statistics, PMLR, pp 721–729

Wright MN, Ziegler A (2017) ranger: A fast implementation of random forests
for high dimensional data in C++ and R. Journal of Statistical Software
77(1):1–17. https://doi.org/10.18637/jss.v077.i01

Xu T, Chang CC, Lin CC, et al. (2021) WeightSVM: Subject Weighted
Support Vector Machines. URL https://CRAN.R-project.org/package=
WeightSVM, r package version 1.7-9

Yoon J, Jordon J, Schaar M (2018) Gain: Missing data imputation using
generative adversarial nets. In: International Conference on Machine
Learning, PMLR, pp 5689–5698

Zheng S, Charoenphakdee N (2022) Diffusion models for missing value
imputation in tabular data. arXiv preprint arXiv:221017128

https://CRAN.R-project.org/package=kknn
https://doi.org/10.1093/bioinformatics/btr597
https://doi.org/10.1093/bioinformatics/btr597
https://CRAN.R-project.org/package=rpart
https://doi.org/10.18637/jss.v077.i01
https://CRAN.R-project.org/package=WeightSVM
https://CRAN.R-project.org/package=WeightSVM

	Additional Approaches
	The Missingness During Training Procedure
	The Generative Method Class
	VAEAC with Response Feature
	VAEAC with Paired Sampling
	Potential Generative Methods

	The Separate and Surrogate Method Class
	Polynomial Regression
	Linear Regression with Interactions
	Polynomial Regression with Interactions
	Generalized Additive Models
	Elastic Net Regression
	Principal Component Regression
	Partial Least Squares
	Projection Pursuit Regression
	Support Vector Machines
	K-Nearest Neighbors
	Single Decision Tree
	Random Forest
	Boosting
	Neural Networks and Multilayer Perceptron
	Potential Methods
	Surrogate Regression Methods in High-Dimensions

	Additional Simulation Studies
	Gaussian Distributed Experiments
	Burr Distributed Experiments

	Characteristics of the Data Sets
	Real-World Data Experiments: Computation Time
	Analysis of the NN-Olsen surrogate method for the Abalone Data Set

	Schematic Overview of Conditional Shapley Values in XAI

