Supplementary Material

A Bounding the Probabilities of the Bad Events

A. 1 Bounding $\operatorname{bad} \tau$-switch

Let's first fix a pair of values for the indices i and j. If $j \in \mathcal{I}_{\text {enc }}$, then the probability of the event $\left(S^{j}, T^{j}\right)=\left(S^{i}, T^{i}\right)$ comes out to be $(1 / N) \cdot(1 / N)$ due to the n-bit randomness over each of S^{j} and T^{j}. Similarly, if $j \in \mathcal{I}_{\text {dec }}$, then the probability of the event $\left(L^{j}, R^{j}\right)=\left(L^{i}\right.$, R^{i}) comes out to be $(1 / N) \cdot(1 / N)$ due to the n-bit randomness over each of L^{j} and R^{j}. As we can choose the pair of indices (i, j) in $\binom{q}{2}$ ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \tau-\text { switch }] \leq \frac{\binom{q}{2}}{N^{2}} \tag{87}
\end{equation*}
$$

A. 2 Bounding $\operatorname{bad} \tau-\widehat{Y}$

Let's first fix a pair of values for the indices i and j. If $j \in \mathcal{I}_{\text {enc }}$, then the probability of each of the events $S^{i}=S^{j}$ and $L^{i}+T^{i}=L^{j}+T^{j}$ comes out to be $\left(1 / N^{2}\right)$ due to the n - bit randomness over S^{j} and T^{j} respectively. Similarly if $j \in \mathcal{I}_{\text {dec }}$, then the probability of each of the events $R^{i}=R^{j}$ and $L^{i}+T^{i}=L^{j}+T^{j}$ comes out to be $\left(1 / N^{2}\right)$ due to the n - bit randomness over R^{j} and L^{j} respectively. As we can choose the pair of indices (i, j) in $\binom{q}{2}$ ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \tau-\widehat{Y}] \leq \frac{\binom{q}{2}}{N^{2}} \tag{88}
\end{equation*}
$$

A. 3 Bounding bad $\tau-3$ path

Proposition 4 Having defined the bad event badt-3path in Fig. 3, we have

$$
\operatorname{Pr}[\text { bad } \tau-3 \text { path }] \leq \frac{\binom{q}{3}}{N^{2}}
$$

To prove the proposition, let's first fix three distinct values for the indices i, j and l. We'll study this bad event in the following four sub-cases.

- bad τ-3path-1: If $j, l \in \mathcal{I}_{\text {dec }}$, then $\operatorname{Pr}\left[R^{i}=R^{j}=R^{l}\right]=\operatorname{Pr}\left[R^{i}=R^{j}\right] \cdot \operatorname{Pr}\left[R^{i}=R^{j}=\right.$ $\left.R^{l} \mid R^{i}=R^{j}\right]\left(\right.$ as $\left.\operatorname{Pr}\left[R^{i}=R^{j}=R^{l} \mid R^{i} \neq R^{j}\right]=0\right)$. This probability comes out to be $\left(1 / N^{2}\right)$. The n-bit randomness for the first term on the RHS comes from R^{j} and the same randomness for the second term on the RHS comes from R^{l}.
- bad τ-3path-2: If $j, l \in \mathcal{I}_{\text {enc }}$, then $\operatorname{Pr}\left[S^{i}=S^{j}=S^{l}\right]=\operatorname{Pr}\left[S^{i}=S^{j}\right] \cdot \operatorname{Pr}\left[S^{i}=S^{j}=S^{l} \mid S^{i}=\right.$ $\left.S^{j}\right]$ (as $\left.\operatorname{Pr}\left[S^{i}=S^{j}=S^{l} \mid S^{i} \neq S^{j}\right]=0\right)$. This probability comes out to be $\left(1 / N^{2}\right)$. The n-bit randomness for the first term on the RHS comes from S^{j} and the same randomness for the second term on the RHS comes from S^{l}.
- bad τ-3path-3: If $j \in \mathcal{I}_{\text {dec }}$ and $l \in \mathcal{I}_{\text {enc }}$, then the probability of each of the events $R^{i}=$ $R^{j}=R^{l}$ and $S^{i}=S^{j}=S^{l}$ comes out to be $(1 / N)$. The n-bit randomness comes from R^{j} and S^{l} respectively.
- bad τ-3path-4: If $j \in \mathcal{I}_{\text {enc }}$ and $l \in \mathcal{I}_{\text {dec }}$, then the probability of each of the events $R^{i}=$ $R^{j}=R^{l}$ and $S^{i}=S^{j}=S^{l}$ comes out to be $(1 / N)$. The n-bit randomness comes from R^{l} and S^{j} respectively.

As we can choose the 3 -tuple of indices (i, j, l) in $\binom{q}{3}$ ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\text { bad } \tau-3 \text { path }] \leq \frac{\binom{q}{3}}{N^{2}} . \tag{89}
\end{equation*}
$$

A. 4 Bounding bad τ-3coll

Once we fix three distinct values for the indices i, j and l, the analysis of this bad event exactly corresponds to the first two sub-cases of the previous bad event(e.g., bad τ-3path). As we can choose the 3 -tuple of indices (i, j, l) in $\binom{q}{3}$ ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \tau-3 \mathrm{coll}] \leq \frac{\binom{q}{3}}{N^{2}} \tag{90}
\end{equation*}
$$

A. 5 Bounding badK-outer

Proposition 5 Having defined the bad event badK-outer in Fig. 4, we have

$$
\operatorname{Pr}[\text { badK-outer }] \leq \frac{q q_{1} q_{5}+q^{2}\left(q_{1}+q_{5}\right)}{N^{2}}
$$

To prove this proposition, we note that this bad event occurs when one of the following happens. Note that the event $\mathcal{I}_{R R} \cap \mathcal{I}_{S S} \neq \emptyset$ is an impossible event as $\mathcal{I}_{R R} \subseteq \mathcal{I}_{\text {dec }}$ and $\mathcal{I}_{S S} \subseteq \mathcal{I}_{\text {enc }}$ from definition.

- badK-outer-1 $\mathcal{I}_{R} \cap \mathcal{I}_{S} \neq \emptyset$. This bad event occurs when for some $i \in[q], j \in\left[q_{1}\right]$ and $l \in\left[q_{5}\right], R^{i}+K_{1}=U_{1}^{j}$ and $S^{i}+K_{5}=U_{5}^{l}$. Let's first fix the values for the indices i, j and l. Then the probability of each of the events $R^{i}+K_{1}=U_{1}^{j}$ and $S^{i}+K_{5}=U_{5}^{l}$ comes out to be $(1 / N)$. The n-bit randomness comes from the keys K_{1} and K_{5} respectively. As we can choose the indices i, j and l in q, q_{1} and q_{5} ways respectively, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}\left[\mathcal{I}_{R} \cap \mathcal{I}_{S} \neq \emptyset\right] \leq \frac{q q_{1} q_{5}}{N^{2}} \tag{91}
\end{equation*}
$$

- badK-outer-2 $\mathcal{I}_{R} \cap \mathcal{I}_{R R} \neq \emptyset$. This bad event occurs when for some $i \in \mathcal{I}_{\text {dec }}, j \in\left[q_{1}\right]$ and $l \in[i-1], R^{i}+K_{1}=U_{1}^{j}$ and $R^{i}=R^{l}$. Let's first fix the values for the indices i, j and l. The probability of the event $R^{i}+K_{1}=U_{1}^{j}$ comes out to be $(1 / N)$. The n-bit randomness comes from the key K_{1}. The probability of the event $R^{i}=R^{l}$ also comes out to be $(1 / N)$. The n-bit randomness comes from R^{i} as $i>l$ and $i \in \mathcal{I}_{\text {dec }}$. As we can choose the pair of indices (i, l) in $\binom{q}{2}$ ways and the index j in q_{1} ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}\left[\mathcal{I}_{R} \cap \mathcal{I}_{R R} \neq \emptyset\right] \leq \frac{q_{1}\binom{q}{2}}{N^{2}} \tag{92}
\end{equation*}
$$

- badK-outer-3 $\mathcal{I}_{S} \cap \mathcal{I}_{S S} \neq \emptyset$. This bad event occurs when for some $i \in \mathcal{I}_{\text {enc }}, j \in\left[q_{5}\right]$ and $l \in[i-1], S^{i}+K_{5}=U_{5}^{j}$ and $S^{i}=S^{l}$. Let's first fix the values for the indices i, j and l. The probability of the event $S^{i}+K_{5}=U_{5}^{j}$ comes out to be $(1 / N)$. The n-bit randomness comes from the key K_{5}. The probability of the event $S^{i}=S^{l}$ also comes
out to be $(1 / N)$. The n-bit randomness comes from S^{i} as $i>l$ and $i \in \mathcal{I}_{\text {enc }}$. As we can choose the pair of indices (i, l) in $\binom{q}{2}$ ways and the index j in q_{5} ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}\left[\mathcal{I}_{S} \cap \mathcal{I}_{S S} \neq \emptyset\right] \leq \frac{q_{5}\binom{q}{2}}{N^{2}} \tag{93}
\end{equation*}
$$

- badK-outer-4 $\mathcal{I}_{R} \cap \mathcal{I}_{S S} \neq \emptyset$. This bad event occurs when for some $i \in \mathcal{I}_{\text {enc }}, j \in\left[q_{1}\right]$ and $l \in[i-1], R^{i}+K_{1}=U_{1}^{j}$ and $S^{i}=S^{l}$. Let's first fix the values for the indices i, j and l. The probability of the event $R^{i}+K_{1}=U_{1}^{j}$ comes out to be $(1 / N)$. The n-bit randomness comes from the key K_{1}. The probability of the event $S^{i}=S^{l}$ also comes out to be $(1 / N)$. The n-bit randomness comes from S^{i} as $i>l$ and $i \in \mathcal{I}_{\text {enc }}$. As we can choose the pair of indices (i, l) in $\binom{q}{2}$ ways and the index j in q_{1} ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}\left[\mathcal{I}_{S} \cap \mathcal{I}_{S S} \neq \emptyset\right] \leq \frac{q_{1}\binom{q}{2}}{N^{2}} \tag{94}
\end{equation*}
$$

- badK-outer-5 $\mathcal{I}_{S} \cap \mathcal{I}_{R R} \neq \emptyset$. This bad event occurs when for some $i \in \mathcal{I}_{\text {dec }}, j \in\left[q_{5}\right]$ and $l \in[i-1], S^{i}+K_{5}=U_{5}^{j}$ and $R^{i}=R^{l}$. Let's first fix the values for the indices i, j and l. The probability of the event $S^{i}+K_{5}=U_{5}^{j}$ comes out to be $(1 / N)$. The n-bit randomness comes from the key K_{5}. The probability of the event $R^{i}=R^{l}$ also comes out to be $(1 / N)$. The n-bit randomness comes from R^{i} as $i>l$ and $i \in \mathcal{I}_{\text {dec }}$. As we can choose the pair of indices (i, l) in $\binom{q}{2}$ ways and the index j in q_{5} ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}\left[\mathcal{I}_{R} \cap \mathcal{I}_{R R} \neq \emptyset\right] \leq \frac{q_{5}\binom{q}{2}}{N^{2}} \tag{95}
\end{equation*}
$$

Adding the probabilities of all these sub-cases, we obtain

$$
\begin{equation*}
\operatorname{Pr}[\text { badK-outer }] \leq \frac{q q_{1} q_{5}+q^{2}\left(q_{1}+q_{5}\right)}{N^{2}} \tag{96}
\end{equation*}
$$

A. 6 Bounding badK-source

Proposition 6 Having defined the bad event badK-source in Fig. 4, we have

$$
\operatorname{Pr}[\text { badK-source }] \leq \frac{\left(q_{1}+q_{5}\right)\binom{q}{2}+2\binom{q}{3}}{N^{2}}
$$

This bad event occurs when one of the following happens.

- badK-source1. $\exists i \in \mathcal{I}_{S}, j \in \mathcal{I}_{R R}, i<j$ and $R^{i}=R^{j}$. In other words, $\exists i \in[q]$ and $j \in \mathcal{I}_{\text {dec }}$ with $i<j$ and $l \in\left[q_{5}\right]$ such that $S^{i}+K_{5}=U_{5}^{l}$ and $R^{i}=R^{j}$. Let's first fix the values for the indices i, j and l. The probability of each of the events $S^{i}+K_{5}=U_{5}^{l}$ and $R^{i}=R^{j}$ comes out to be $(1 / N)$. The n-bit randomness comes from the key K_{5} and R_{j} respectively. As we can choose the pair of indices (i, j) in $\binom{q}{2}$ ways and the index l in q_{5} ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\text { badK-source } 1] \leq \frac{q_{5}\binom{q}{2}}{N^{2}} \tag{97}
\end{equation*}
$$

- badK-source2. $\exists i \in \mathcal{I}_{S S}, j \in \mathcal{I}_{R R}, i<j$ and $R^{i}=R^{j}$. In other words, $\exists l \in[q], i \in \mathcal{I}_{\text {enc }}$ and $j \in \mathcal{I}_{\text {dec }}$ with $k<i<j$ such that $R^{i}=R^{j}$ and $S^{i}=S^{k}$. Let's first fix the values for the indices i, j and l. The probability of each of the events $R^{i}=R^{j}$ and $S^{i}=S^{k}$ comes out to be $(1 / N)$. The n-bit randomness comes from R_{j} and S_{i} respectively. As we can choose the 3 -tuple of indices (i, j, l) in $\binom{q}{3}$ ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\text { badK-source } 2] \leq \frac{\binom{q}{3}}{N^{2}} \tag{98}
\end{equation*}
$$

- badK-source3. $\exists i \in \mathcal{I}_{R}, j \in \mathcal{I}_{S S}, i<j$ and $S^{i}=S^{j}$. In other words, $\exists i \in[q]$ and $j \in \mathcal{I}_{\text {enc }}$ with $i<j$ and $l \in\left[q_{1}\right]$ such that $R^{i}+K_{1}=U_{1}^{l}$ and $S^{i}=S^{j}$. Let's first fix the values for the indices i, j and l. The probability of each of the events $R^{i}+K_{1}=U_{1}^{l}$ and $S^{i}=S^{j}$ comes out to be $(1 / N)$. The n-bit randomness comes from the key K_{1} and S_{j} respectively. As we can choose the pair of indices (i, j) in $\binom{q}{2}$ ways and the index l in q_{1} ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\text { badK-source3 }] \leq \frac{q_{1}\binom{q}{2}}{N^{2}} \tag{99}
\end{equation*}
$$

- badK-source4. $\exists i \in \mathcal{I}_{R R}, j \in \mathcal{I}_{S S}, i<j$ and $S^{i}=S^{j}$. In other words, $\exists l \in[q], i \in \mathcal{I}_{\text {dec }}$ and $j \in \mathcal{I}_{\text {enc }}$ with $k<i<j$ such that $S^{i}=S^{j}$ and $R^{i}=R^{k}$. Let's first fix the values for the indices i, j and l. The probability of each of the events $S^{i}=S^{j}$ and $R^{i}=R^{k}$ comes out to be $(1 / N)$. The n-bit randomness comes from S_{j} and R_{i} respectively. As we can choose the 3-tuple of indices (i, j, l) in $\binom{q}{3}$ ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\text { badK-source } 4] \leq \frac{\binom{q}{3}}{N^{2}} \tag{100}
\end{equation*}
$$

Adding the probabilities of all these sub-cases, we obtain

$$
\begin{equation*}
\operatorname{Pr}[\text { badK-source }] \leq \frac{\left(q_{1}+q_{5}\right)\binom{q}{2}+2\binom{q}{3}}{N^{2}} \tag{101}
\end{equation*}
$$

A. 7 Bounding bad μ-in\&out

Proposition 7 Having defined the bad event bad 1 -in\&out in Fig. 7, we have

$$
\begin{aligned}
\operatorname{Pr}[\text { bad } \mu \text {-in\&out }] \leq & \frac{q^{2}\left(3 q_{1}+3 q_{5}+q_{2}+q_{3}+q_{4}\right)}{N^{2}}+\frac{5 q^{3}}{N^{2}}+\frac{q q_{1}\left(q_{3}+q_{4}+q_{5}\right)}{N^{2}} \\
& +\frac{q q_{5}\left(q_{2}+q_{3}+q_{4}\right)}{N^{2}}+\frac{2 q^{2} q_{1} q_{5}}{N^{3}}+\frac{2 q^{3}\left(q_{1}+q_{5}\right)}{N^{3}}+\frac{2 q^{2}}{N^{2}} .
\end{aligned}
$$

This bad event occurs when $\left(\mathcal{I}_{R} \sqcup \mathcal{I}_{S} \sqcup \mathcal{I}_{R R} \sqcup \mathcal{I}_{S S}\right) \cap\left(\mathcal{I}_{X} \cup \mathcal{I}_{X X} \cup \mathcal{I}_{\widehat{Y}} \cup \mathcal{I}_{\widehat{Y} \widehat{Y}} \cup \mathcal{I}_{Z} \cup \mathcal{I}_{Z Z}\right) \neq \emptyset$. Note that, by definition $\mathcal{I}_{R} \cap \mathcal{I}_{X X}=\emptyset$ and $\mathcal{I}_{S} \cap \mathcal{I}_{Z Z}=\emptyset$. We individually bound each of the bad events as follows:
$-\operatorname{bad} \mu$-in\&out-1. $\mathcal{I}_{R} \cap \mathcal{I}_{X} \neq \emptyset$. This bad event occurs when $\exists i \in[q], j \in\left[q_{1}\right]$ and $l \in\left[q_{5}\right]$ such that $R^{i}+K_{1}=U_{1}^{j}$ and $X^{i}+K_{2}=U_{2}^{l}$. Let's first fix the values for the indices i, j and l. The probability of each of the events $R^{i}+K_{1}=U_{1}^{j}$ and $X^{i}+K_{2}=U_{2}^{l}$ comes out to be $(1 / N)$ due to the n-bit randomness over the keys K_{1} and K_{2} respectively. As we can choose the indices i, j and l in q, q_{1} and q_{5} ways respectively, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\text { bad } \mu \text {-in\&out- } 1] \leq \frac{q q_{1} q_{5}}{N^{2}} \tag{102}
\end{equation*}
$$

$-\operatorname{bad} \mu$-in\&out-2. $\mathcal{I}_{R R} \cap \mathcal{I}_{X} \neq \emptyset$. This bad event occurs when $\exists i \in \mathcal{I}_{\text {dec }}, j \in[i-1]$ and $l \in\left[q_{2}\right]$ such that $R^{i}=R^{j}$ and $X^{i}+K_{2}=U_{2}^{l}$. Let's first fix the values for the indices i, j and l. The probability of each of the events $R^{i}=R^{j}$ and $X^{j}+K_{2}=U_{2}^{l}$ comes out to be $(1 / N)$ due to the n-bit randomness over R^{i} and K_{2} respectively. As we can choose the pair of indices (i, j) in $\binom{q}{2}$ ways and the index l in q_{2} ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-in\&out- } 2] \leq \frac{q_{2}\binom{q}{2}}{N^{2}} \tag{103}
\end{equation*}
$$

$-\operatorname{bad} \mu$-in\&out-3. $\mathcal{I}_{R R} \cap \mathcal{I}_{X X} \neq \emptyset$. This bad event occurs when $\exists i \in \mathcal{I}_{\text {dec }}, j \in[i-1]$, and $l \in[q]$ with $i \neq l$ such that $R^{i}=R^{j}$ and $X^{i}=X^{l}$, which we equivalently write as

$$
R^{i}=R^{j}, \widehat{R}^{i}+\widehat{R}^{l}=L^{i}+L^{l}
$$

We analyze this event into two separate subcases: (a) when $l=j$ and if j is a decryption query, then, the above event boils down to the event $R^{i}=R^{j}, L^{i}=L^{j}$, which triggers the bad event bad τ-switch. Therefore, we analyse the case (b) when $l \neq j$. In this case, we use the randomness of R^{i} and \widehat{R}^{i} to bound the above event to at most $\left(2 / N^{2}\right)$ As we can choose the pair of indices $\{i, j\}$ in $\binom{q}{2}$ ways and for each of those choices, we can choose the index l in $(q-1)$ ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-in\&out-3 }] \leq \frac{q^{3}}{N^{2}} \tag{104}
\end{equation*}
$$

$-\operatorname{bad} \mu$-in\&out-4. $\mathcal{I}_{R} \cap \mathcal{I}_{\widehat{Y}} \neq \emptyset$. This bad event occurs when $\exists i \in[q], j \in\left[q_{1}\right]$ and $k \in\left[q_{3}\right]$ such that $R^{i}+K_{1}=U_{1}^{j}$ and $\widehat{Y}^{i}+K_{3}=V_{3}^{k}$, which we equivalently write as

$$
R^{i}+K_{1}=U_{1}^{j}, \widehat{R}^{i}+L^{i}+\widehat{S}^{i}+T^{i}+K_{3}=V_{3}^{k}
$$

For a fixed choice of indices, the probability of the event is at most $1 / N^{2}$ due to the n-bit randomness over K_{1} and K_{3}. We can choose the triplet of indices (i, j, k) is at most $q q_{1} q_{3}$ ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-in\&out-4 }] \leq \frac{q q_{1} q_{3}}{N^{2}} \tag{105}
\end{equation*}
$$

$-\operatorname{bad} \mu$-in\&out-5. $\mathcal{I}_{R} \cap \mathcal{I}_{\widehat{Y} \widehat{Y}} \neq \emptyset$. This bad event occurs when $\exists i \in[q], j \in[q]$ and $k \in\left[q_{1}\right]$ such that $R^{i}+K_{1}=U_{1}^{k}$ and $\widehat{Y}^{i}=\widehat{Y}^{j}$, which we equivalently write as

$$
R^{i}+K_{1}=U_{1}^{k}, \widehat{R}^{i}+\widehat{S}^{i}+\widehat{R}^{j}+\widehat{S}^{j}=L^{i}+L^{j}+T^{i}+T^{j}
$$

For a fixed choice of indices, the probability of the event is at most $2 / N^{2}$ due to the n-bit randomness over K_{1} and the n-bit randomness over \widehat{S}^{i} (note that $i \notin \mathcal{I}_{S}$ and $\left.i \notin \mathcal{I}_{S S}\right)$. As we can choose the pair of indices $\{i, j\}$ in $\binom{q}{2}$ ways and for each of those choices, we can choose the index k in q_{1} ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-in\&out-5 }] \leq \frac{q^{2} q_{1}}{N^{2}} \tag{106}
\end{equation*}
$$

- bad μ-in\&out-6. $\mathcal{I}_{R} \cap \mathcal{I}_{Z} \neq \emptyset$. This bad event occurs when $\exists i \in[q], j \in\left[q_{1}\right]$ and $k \in\left[q_{4}\right]$ such that $R^{i}+K_{1}=U_{1}^{j}$ and $Z^{i}+K_{4}=U_{4}^{k}$, which we equivalently write as

$$
R^{i}+K_{1}=U_{1}^{j}, \widehat{S}^{i}+T^{i}+K_{4}=U_{4}^{k}
$$

For a fixed choice of indices, the probability of the event is at most $1 / N^{2}$ due to the n-bit randomness over K_{1} and K_{4}. However, the total number of choices of the indices is at most $q q_{1} q_{4}$, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\text { bad } \mu \text {-in\&out- } 6] \leq \frac{q q_{1} q_{4}}{N^{2}} \tag{107}
\end{equation*}
$$

$-\operatorname{bad} \mu$-in\&out-7. $\mathcal{I}_{R} \cap \mathcal{I}_{Z Z} \neq \emptyset$. This bad event occurs when $\exists i \in[q], j \in[q]$ and $k \in\left[q_{1}\right]$ such that $R^{i}+K_{1}=U_{1}^{k}$ and $Z^{i}=Z^{j}$, which we equivalently write as

$$
R^{i}+K_{1}=U_{1}^{k}, \widehat{S}^{i}+T^{i}=\widehat{S}^{j}+T_{j}
$$

For a fixed choice of indices, the probability of the event is at most $2 / N^{2}$ due to the n-bit randomness over K_{1} and \widehat{S}^{i} (note that \widehat{S}^{i} is freshly sampled as $i \notin \mathcal{I}_{S}$ and $i \notin \mathcal{I}_{S S}$). However, the total number of choices of the indices is at most $\binom{q}{2} q_{1}$, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-in\&out- } 7] \leq \frac{q^{2} q_{1}}{N^{2}} \tag{108}
\end{equation*}
$$

- bad μ-in\&out-8. $\mathcal{I}_{S} \cap \mathcal{I}_{X} \neq \emptyset$. Analysis of this case is similar to that of bad μ-in\&out- 1 ., where we use the randomness of K_{5} and K_{2}. Looking ahead, we bound the probability to be at most

$$
\begin{equation*}
\operatorname{Pr}[\text { bad } \mu \text {-in\&out- } 8] \leq \frac{q q_{2} q_{5}}{N^{2}} \tag{109}
\end{equation*}
$$

$-\operatorname{bad} \mu$-in\&out-9. $\mathcal{I}_{S} \cap \mathcal{I}_{X X} \neq \emptyset$. Analysis of this case is again similar to that of bad μ -in\&out-7., where we use the randomness of K_{5} and \widehat{R}^{i}. Looking ahead, we bound the probability to be at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-in\&out- } 9] \leq \frac{q^{2} q_{5}}{N^{2}} \tag{110}
\end{equation*}
$$

- $\operatorname{bad} \mu$-in\&out-10. $\mathcal{I}_{S} \cap \mathcal{I}_{\widehat{Y}} \neq \emptyset$. Analysis of this case is again similar to that of $\operatorname{bad} \mu$ -in\&out-4., where we use the randomness of K_{5} and K_{3}. Looking ahead, we bound the probability to be at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-in\&out-10 }] \leq \frac{q q_{3} q_{5}}{N^{2}} \tag{111}
\end{equation*}
$$

- bad μ-in\&out-11. $\mathcal{I}_{S} \cap \mathcal{I}_{\widehat{Y} \widehat{Y}} \neq \emptyset$. Analysis of this case is again similar to that of bad μ -in\&out-5., where we use the randomness of K_{5} and \widehat{R}^{i}. Looking ahead, we bound the probability to be at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-in\&out-11 }] \leq \frac{q^{2} q_{5}}{N^{2}} \tag{112}
\end{equation*}
$$

- $\operatorname{bad} \mu$-in\&out-12. $\mathcal{I}_{S} \cap \mathcal{I}_{Z} \neq \emptyset$. Analysis of this case is again similar to that of bad μ -in\&out-6., where we use the randomness of K_{5} and K_{4}. Looking ahead, we bound the probability to be at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-in\&out-12 }] \leq \frac{q q_{4} q_{5}}{N^{2}} \tag{113}
\end{equation*}
$$

$-\operatorname{bad} \mu$-in\&out-13. $\mathcal{I}_{R R} \cap \mathcal{I}_{\widehat{Y}} \neq \emptyset$. This bad event occurs when $\exists i \in \mathcal{I}_{\text {dec }}, j \in[i-1]$ and $k \in\left[q_{3}\right]$ such that $R^{i}=R^{j}$ and $\widehat{Y}^{i}+K_{3}=V_{3}^{k}$, which we equivalently write as

$$
R^{i}=R^{j}, \widehat{R}^{i}+L^{i}+\widehat{S}^{i}+T^{i}+K_{3}=V_{3}^{k}
$$

For a fixed choice of indices, the probability of the event is at most $1 / N^{2}$ due to the n-bit randomness over R^{i} and K_{3}. We can choose the triplet of indices (i, j, k) is at most $\binom{q}{2} q_{3}$ ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-in\&out-13 }] \leq \frac{q^{2} q_{3}}{2 N^{2}} \tag{114}
\end{equation*}
$$

$-\operatorname{bad} \mu$-in\&out-14. $\mathcal{I}_{R R} \cap \mathcal{I}_{\widehat{Y} \widehat{Y}} \neq \emptyset$. This bad event occurs when $\exists i \in \mathcal{I}_{\text {dec }}, j \in[i-1]$ and $k \in[q]$ such that $R^{i}=R^{j}$ and $\widehat{Y}^{i}=\widehat{Y}^{k}$, which we equivalently write as

$$
R^{i}=R^{j}, \widehat{R}^{i}+\widehat{S}^{i}+\widehat{R}^{k}+\widehat{S}^{k}=L^{i}+L^{k}+T^{i}+T^{k}
$$

Now, we consider two separate subcases: (i) if $k=j$ and it is a decryption query, then the above event boils down to $R^{i}=R^{j}, L^{i}+L^{j}=T^{i}+T^{j}$ (assuming in both of the decryption queries S values are same). Then, using the randomness of R^{i} and L^{i}, we bound the above probability to be at most $1 / N^{2}$. Moreover, the number of choices for (i, j) to be at most $\binom{q}{2}$. Therefore, by using the union bound, the probability of the above event is at most $q^{2} / 2 N^{2}$.
Now, we consider the other case when $k \neq j$. In this case, we use the randomness of R^{i} and \widehat{R}^{i} to bound the above event to at most $2 / N^{2}$. The number of choices for triplets (i, j, k) is q^{3}. Therefore, by using the union bound, the probability of the above event is at most q^{3} / N^{2}.
Combining the above two cases, we obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-in\&out-14 }] \leq \frac{q^{2}}{2 N^{2}}+\frac{q^{3}}{N^{2}} \tag{115}
\end{equation*}
$$

$-\operatorname{bad} \mu$-in\&out-15. $\mathcal{I}_{R R} \cap \mathcal{I}_{Z} \neq \emptyset$. This bad event occurs when $\exists i \in \mathcal{I}_{\text {dec }}, j \in[i-1]$ and $k \in\left[q_{4}\right]$ such that $R^{i}=R^{j}$ and $Z^{i}+K_{4}=U_{4}^{k}$, which we equivalently write as

$$
R^{i}=R^{j}, \widehat{S}^{i}+T^{i}+K_{4}=U_{4}^{k}
$$

For a fixed choice of indices, the probability of the event is at most $1 / N^{2}$ due to the n-bit randomness over R^{i} and K_{4}. However, the total number of choices of the indices is at most $\binom{q}{2} q_{4}$, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-in\&out- } 15] \leq \frac{q^{2} q_{4}}{2 N^{2}} \tag{116}
\end{equation*}
$$

$-\operatorname{bad} \mu$-in\&out-16. $\mathcal{I}_{R R} \cap \mathcal{I}_{Z Z} \neq \emptyset$. This bad event occurs when $\exists i \in \mathcal{I}_{\text {dec }}, j \in[i-1]$ and $k \in[q]$ such that $R^{i}=R^{j}$ and $Z^{i}=Z^{k}$, which we equivalently write as

$$
R^{i}=R^{j}, \widehat{S}^{i}+T^{i}=\widehat{S}^{k}+T^{k}
$$

For a fixed choice of indices, the probability of the event is at most $2 / N^{2}$ due to the n-bit randomness over \widehat{R}^{i} and \widehat{S}^{i} (note that \widehat{S}^{i} is freshly sampled as $S^{i} \neq S^{j}$ and $i \notin \mathcal{I}_{S}$). However, the total number of choices of the indices is at most $\binom{q}{2} q$, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}\left[\operatorname{bad} \mu \text {-in\&out-16] } \leq \frac{q^{3}}{2 N^{2}}\right. \tag{117}
\end{equation*}
$$

- $\operatorname{bad} \mu$-in\&out-17. $\mathcal{I}_{S S} \cap \mathcal{I}_{X} \neq \emptyset$. Analysis of this bad event is similar to that of bad μ -in\&out-12, where we use the randomness of S^{i} and K_{2}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}\left[\text { bad } \mu \text {-in\&out-17] } \leq \frac{q_{2}\binom{q}{2}}{N^{2}}\right. \tag{118}
\end{equation*}
$$

- bad μ-in\&out-18. $\mathcal{I}_{S S} \cap \mathcal{I}_{X X} \neq \emptyset$. This bad event occurs when $\exists i \in \mathcal{I}_{\text {enc }}, j \in[i-1]$, and $l \in[q]$ with $i \neq l$ such that $S^{i}=S^{j}$ and $X^{i}=X^{l}$, which we equivalently write as

$$
S^{i}=S^{j}, \widehat{R}^{i}+\widehat{R}^{l}=L^{i}+L^{l}
$$

We use the randomness of S^{i} and \widehat{R}^{i} to bound the above event to at most $\left(2 / N^{2}\right)$ As we can choose the pair of indices $\{i, j\}$ in $\binom{q}{2}$ ways and for each of those choices, we can choose the index l in $(q-1)$ ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-in\&out-18 }] \leq \frac{q^{3}}{N^{2}} \tag{119}
\end{equation*}
$$

- bad μ-in\&out-19. $\mathcal{I}_{S S} \cap \mathcal{I}_{\widehat{Y}} \neq \emptyset$. Analysis of this bad event is similar to that of bad μ -in\&out-13, where we use the randomness of S^{i} and K_{3}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-in\&out- } 19] \leq \frac{q^{2} q_{3}}{2 N^{2}} \tag{120}
\end{equation*}
$$

$-\operatorname{bad} \mu$-in\&out-20. $\mathcal{I}_{S S} \cap \mathcal{I}_{\widehat{Y} \widehat{Y}} \neq \emptyset$. Analysis of this bad event is similar to that of bad μ -in\&out-16, where we use the randomness of S^{i} instead of R^{i}, wherever applicable. Looking ahead, we bound the probability of the above event to at most

$$
\begin{equation*}
\operatorname{Pr}\left[\operatorname{bad} \mu \text {-in\&out-20] } \leq \frac{q^{2}}{2 N^{2}}+\frac{q^{3}}{N^{2}}\right. \tag{121}
\end{equation*}
$$

$-\operatorname{bad} \mu$-in\&out-21. $\mathcal{I}_{S S} \cap \mathcal{I}_{Z} \neq \emptyset$. Analysis of this bad event is similar to that of bad μ -in\&out-15, where we use the randomness of S^{i} and K_{4}. Looking ahead, we bound the above event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-in\&out- } 21] \leq \frac{q^{2} q_{4}}{2 N^{2}} \tag{122}
\end{equation*}
$$

- bad μ-in\&out-22. $\mathcal{I}_{S S} \cap \mathcal{I}_{Z Z} \neq \emptyset$. Again, the analysis of this bad event is similar to that of bad μ-in\&out-3, where we use the randomness of S^{i}, wherever applicable. Looking ahead, we bound the above probability to be at most

$$
\begin{equation*}
\operatorname{Pr}\left[\operatorname{bad} \mu \text {-in\&out-22] } \leq \frac{q^{3}}{2 N^{2}}\right. \tag{123}
\end{equation*}
$$

By combining Eqn. (102)-Eqn. (123), we obtain

$$
\begin{align*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-in\&out }] \leq & \frac{q^{2}\left(2 q_{1}+2 q_{5}+q_{2}+q_{3}+q_{4}\right)}{N^{2}}+\frac{5 q^{3}}{N^{2}}+\frac{q q_{1}\left(q_{3}+q_{4}+q_{5}\right)}{N^{2}} \\
& +\frac{q q_{5}\left(q_{2}+q_{3}+q_{4}\right)}{N^{2}}+\frac{2 q^{2}}{N^{2}} \tag{124}
\end{align*}
$$

A. 8 Bounding bad μ-source

Proposition 8 Having defined the bad event bad μ-source in Fig. 7, we have

$$
\operatorname{Pr}[\text { bad } \mu \text {-source }] \leq \frac{2\binom{q}{2}\left(q_{1}+q_{5}\right)}{N^{2}}
$$

To prove the proposition, we first fix the values for the indices i, j and l.
$-\operatorname{bad} \mu$-source-1. $i, j \in[q]$ with $i \neq j$ and $l \in\left[q_{1}\right]$ such that $R^{i}+K_{1}=U_{1}^{l}$ and $\widehat{R}^{i}+\widehat{R}^{j}=$ $L^{i}+L^{j}$. The probability of the event $R^{i}+K_{1}=U_{1}^{l}$ comes out to be $(1 / N)$ due to the randomness over the key K_{1}. The probability of the event $\widehat{R}^{i}+\widehat{R}^{j}=L^{i}+L^{j}$ comes out to be at most $(2 / N)$ due to the randomness over \widehat{R}^{j}.
$-\operatorname{bad} \mu$-source-2. $i, j \in[q]$ with $i \neq j$ and $l \in\left[q_{5}\right]$ such that $S^{i}+K_{5}=U_{5}^{l}$ and $\widehat{S}^{i}+\widehat{S}^{j}=$ $T^{i}+T^{j}$. The probability of the event $S^{i}+K_{5}=U_{5}^{l}$ comes out to be $(1 / N)$ due to the randomness over the key K_{5}. The probability of the event $\widehat{S}^{i}+\widehat{S}^{j}=T^{i}+T^{j}$ comes out to be at most $(2 / N)$ due to the randomness over \widehat{S}^{j}.

As we can choose the pair of indices (i, j) in $2\binom{q}{2}$ ways and the index l in q_{1} or q_{5} ways (for bad μ-source-1 and bad μ-source- 2 respectively), we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\text { bad } \mu \text {-source }] \leq \frac{2\binom{q}{2}\left(q_{1}+q_{5}\right)}{N^{2}} \tag{125}
\end{equation*}
$$

A. 9 Bounding bad μ-inner

Proposition 9 Having defined the bad event bad μ-inner in Fig. 7, we have

$$
\operatorname{Pr}[\text { bad } \mu \text {-inner }] \leq \frac{q\left(q_{2} q_{3}+q_{3} q_{4}+q_{1} q_{4}\right)}{N^{2}}+\frac{3 q^{2}\left(q_{2}+q_{3}+q_{4}\right)}{N^{2}}+\frac{3 q^{3}}{N^{2}}
$$

This bad event occurs when one of the following happens.
$-\operatorname{bad} \mu$-inner-1. $\mathcal{I}_{X} \cap \mathcal{I}_{\widehat{Y}} \neq \emptyset$. This bad event occurs when $\exists i \in[q], j \in\left[q_{2}\right]$ and $l \in\left[q_{3}\right]$ such that $X^{i}+K_{2}=U_{2}^{j}$ and $\widehat{Y}^{i}+K_{3}=V_{3}^{l}$. Let's first fix the values for the indices i, j and l. The probability of each of the events $X^{i}+K_{2}=U_{2}^{j}$ and $\widehat{Y}^{l}=V_{3}^{l}$ comes out to be $(1 / N)$ due to the randomness over the keys K_{2} and K_{3} respectively. As we can choose the indices i, j and l in q, q_{2} and q_{3} ways respectively, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\text { bad } \mu \text {-inner- } 1] \leq \frac{q q_{2} q_{3}}{N^{2}} \tag{126}
\end{equation*}
$$

$-\operatorname{bad} \mu$-inner-2. $\mathcal{I}_{\widehat{Y}} \cap \mathcal{I}_{Z} \neq \emptyset$. This bad event occurs when $\exists i \in[q], j \in\left[q_{3}\right]$ and $l \in\left[q_{4}\right]$ such that $\widehat{Y}^{i}+K_{3}=V_{3}^{j}$ and $Z^{i}+K_{4}=U_{3}^{l}$. Let's first fix the values for the indices i, j and l. The probability of each of the events $\widehat{Y}^{i}+K_{3}=V_{3}^{j}$ and $Z^{i}+K_{4}=U_{3}^{l}$ comes out to be $(1 / N)$ due to the randomness over the keys K_{3} and K_{4} respectively. As we can choose the indices i, j and l in q, q_{3} and q_{4} ways respectively, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\text { bad } \mu \text {-inner-2 }] \leq \frac{q q_{3} q_{4}}{N^{2}} \tag{127}
\end{equation*}
$$

$-\operatorname{bad} \mu$-inner-3. $\mathcal{I}_{Z} \cap \mathcal{I}_{X} \neq \emptyset$. This bad event occurs when $\exists i \in[q], j \in\left[q_{4}\right]$ and $l \in\left[q_{1}\right]$ such that $Z^{i}+K_{4}=U_{4}^{j}$ and $X^{i}+K_{1}=U_{1}^{l}$. Let's first fix the values for the indices i, j and l. The probability of each of the events $Z^{i}+K_{4}=U_{4}^{j}$ and $X^{i}+K_{1}=U_{1}^{l}$ comes out to be $(1 / N)$ due to the randomness over the keys K_{4} and K_{1} respectively. As we can choose the indices i, j and l in q, q_{4} and q_{1} ways respectively, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\text { bad } \mu \text {-inner- } 3] \leq \frac{q q_{4} q_{1}}{N^{2}} \tag{128}
\end{equation*}
$$

$-\operatorname{bad} \mu$-inner-4. $\mathcal{I}_{X} \cap \mathcal{I}_{X X} \neq \emptyset$. This bad event occurs when $\exists i, j \in[q]$ with $i \neq j$ and $l \in\left[q_{2}\right]$ such that $X^{i}+K_{2}=U_{2}^{l}$ and $X^{i}=X^{j}$. Let's first fix the values for the indices i, j and l. The probability of the event $X^{i}+K_{2}=U_{2}^{l}$ comes out to be $(1 / N)$ due to the randomness over the key K_{2}. The probability of the event $X^{i}=X^{j}$ comes out to be at most $(2 / N)$ due to the n-bit randomness over X^{i} or X^{j}. As we can choose the pair of indices (i, j) in $2\binom{q}{2}$ and l in q_{2} ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\text { bad } \mu \text {-inner- } 4] \leq \frac{2 q_{2}\binom{q}{2}}{N^{2}} \tag{129}
\end{equation*}
$$

$-\operatorname{bad} \mu$-inner-5. $\mathcal{I}_{X} \cap \mathcal{I}_{\widehat{Y} \widehat{Y}} \neq \emptyset$. This bad event occurs when $\exists i, j \in[q]$ with $i \neq j$ and $l \in\left[q_{2}\right]$ such that $X^{i}+K_{2}=U_{2}^{l}$ and $\widehat{Y}^{i}=\widehat{Y}^{j}$. Let's first fix the values for the indices i, j and l. The probability of the event $X^{i}+K_{2}=U_{2}^{l}$ comes out to be $(1 / N)$ due to the randomness over the key K_{2}. The probability of the event $\widehat{Y}^{i}=\widehat{Y}^{j}$ comes out to be at most $(2 / N)$ due to the n-bit randomness over \widehat{Y}^{i} or \widehat{Y}^{j}. As we can choose the pair of indices (i, j) in $2\binom{q}{2}$ and l in q_{2} ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\text { bad } \mu \text {-inner- } 5] \leq \frac{2 q_{2}\binom{q}{2}}{N^{2}} \tag{130}
\end{equation*}
$$

$-\operatorname{bad} \mu$-inner-6. $\mathcal{I}_{X} \cap \mathcal{I}_{Z Z} \neq \emptyset$. This bad event occurs when $\exists i, j \in[q]$ with $i \neq j$ and $l \in\left[q_{2}\right]$ such that $X^{i}+K_{2}=U_{2}^{l}$ and $Z^{i}=Z^{j}$. Let's first fix the values for the indices i, j and l. The probability of the event $X^{i}+K_{2}=U_{2}^{l}$ comes out to be $(1 / N)$ due to the randomness over the key K_{2}. The probability of the event $Z^{i}=Z^{j}$ comes out to be at most $(2 / N)$ due to the n-bit randomness over Z^{i} or Z^{j}. As we can choose the pair of indices (i, j) in $2\binom{q}{2}$ and l in q_{2} ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\text { bad } \mu \text {-inner- } 6] \leq \frac{2 q_{2}\binom{q}{2}}{N^{2}} \tag{131}
\end{equation*}
$$

$-\operatorname{bad} \mu$-inner-7. $\mathcal{I}_{\widehat{Y}} \cap \mathcal{I}_{X X} \neq \emptyset$. This bad event occurs when $\exists i, j \in[q]$ with $i \neq j$ and $l \in\left[q_{3}\right]$ such that $\widehat{Y}^{i}+K_{3}=U_{3}^{l}$ and $X^{i}=X^{j}$. Let's first fix the values for the indices i, j and l. The probability of the event $\widehat{Y}^{i}+K_{3}=U_{3}^{l}$ comes out to be $(1 / N)$ due to the randomness over the key K_{3}. The probability of the event $X^{i}=X^{j}$ comes out to be at most $(2 / N)$ due to the n-bit randomness over X^{i} or X^{j}. As we can choose the pair of indices (i, j) in $2\binom{q}{2}$ and l in q_{3} ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-inner- } 7] \leq \frac{2 q_{3}\binom{q}{2}}{N^{2}} \tag{132}
\end{equation*}
$$

$-\operatorname{bad} \mu$-inner-8. $\mathcal{I}_{\widehat{Y}} \cap \mathcal{I}_{\widehat{Y} \widehat{Y}} \neq \emptyset$. This bad event occurs when $\exists i, j \in[q]$ with $i \neq j$ and $l \in\left[q_{3}\right]$ such that $\widehat{Y}^{i}+K_{3}=U_{3}^{l}$ and $\widehat{Y}^{i}=\widehat{Y}^{j}$. Let's first fix the values for the indices i, j and l. The probability of the event $\widehat{Y}^{i}+K_{3}=U_{3}^{l}$ comes out to be $(1 / N)$ due to the randomness over the key K_{3}. The probability of the event $\widehat{Y}^{i}=\widehat{Y}^{j}$ comes out to be at most $(2 / N)$ due to the n-bit randomness over \widehat{Y}^{i} or \widehat{Y}^{j}. As we can choose the pair of indices (i, j) in $2\binom{q}{2}$ and l in q_{3} ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\text { bad } \mu \text {-inner- } 8] \leq \frac{2 q_{3}\binom{q}{2}}{N^{2}} \tag{133}
\end{equation*}
$$

$-\operatorname{bad} \mu$-inner-9. $\mathcal{I}_{\widehat{Y}} \cap \mathcal{I}_{Z Z} \neq \emptyset$. This bad event occurs when $\exists i, j \in[q]$ with $i \neq j$ and $l \in\left[q_{3}\right]$ such that $\widehat{Y}^{i}+K_{3}=U_{3}^{l}$ and $Z^{i}=Z^{j}$. Let's first fix the values for the indices i, j and l. The probability of the event $\widehat{Y}^{i}+K_{3}=U_{3}^{l}$ comes out to be $(1 / N)$ due to the randomness over the key K_{3}. The probability of the event $Z^{i}=Z^{j}$ comes out to be at most $(2 / N)$ due to the n-bit randomness over Z^{i} or Z^{j}. As we can choose the pair of indices (i, j) in $2\binom{q}{2}$ and l in q_{3} ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-inner- } 9] \leq \frac{2 q_{3}\binom{q}{2}}{N^{2}} \tag{134}
\end{equation*}
$$

$-\operatorname{bad} \mu$-inner-10. $\mathcal{I}_{Z} \cap \mathcal{I}_{X X} \neq \emptyset$. This bad event occurs when $\exists i, j \in[q]$ with $i \neq j$ and $l \in\left[q_{4}\right]$ such that $Z^{i}+K_{4}=U_{4}^{l}$ and $X^{i}=X^{j}$. Let's first fix the values for the indices i, j and l. The probability of the event $Z^{i}+K_{4}=U_{4}^{l}$ comes out to be $(1 / N)$ due to the randomness over the key K_{4}. The probability of the event $X^{i}=X^{j}$ comes out to be at most $(2 / N)$ due to the n-bit randomness over X^{i} or X^{j}. As we can choose the pair of indices (i, j) in $2\binom{q}{2}$ and l in q_{4} ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-inner-10 }] \leq \frac{2 q_{4}\binom{q}{2}}{N^{2}} \tag{135}
\end{equation*}
$$

$-\operatorname{bad} \mu$-inner-11. $\mathcal{I}_{Z} \cap \mathcal{I}_{\widehat{Y} \widehat{Y}} \neq \emptyset$. This bad event occurs when $\exists i, j \in[q]$ with $i \neq j$ and $l \in\left[q_{4}\right]$ such that $Z^{i}+K_{4}=U_{4}^{l}$ and $\widehat{Y}^{i}=\widehat{Y}^{j}$. Let's first fix the values for the indices i, j and l. The probability of the event $Z^{i}+K_{4}=U_{4}^{l}$ comes out to be $(1 / N)$ due to the
randomness over the key K_{4}. The probability of the event $\widehat{Y}^{i}=\widehat{Y}^{j}$ comes out to be at most $(2 / N)$ due to the n-bit randomness over \widehat{Y}^{i} or \widehat{Y}^{j}. As we can choose the pair of indices (i, j) in $2\binom{q}{2}$ and l in q_{4} ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}\left[\operatorname{bad} \mu \text {-inner-11] } \leq \frac{2 q_{4}\binom{q}{2}}{N^{2}}\right. \tag{136}
\end{equation*}
$$

$-\operatorname{bad} \mu$-inner-12. $\mathcal{I}_{Z} \cap \mathcal{I}_{Z Z} \neq \emptyset$. This bad event occurs when $\exists i, j \in[q]$ with $i \neq j$ and $l \in\left[q_{4}\right]$ such that $Z^{i}+K_{4}=U_{4}^{l}$ and $Z^{i}=Z^{j}$. Let's first fix the values for the indices i, j and l. The probability of the event $Z^{i}+K_{4}=U_{4}^{l}$ comes out to be $(1 / N)$ due to the randomness over the key K_{4}. The probability of the event $Z^{i}=Z^{j}$ comes out to be at most $(2 / N)$ due to the n-bit randomness over Z^{i} or Z^{j}. As we can choose the pair of indices (i, j) in $2\binom{q}{2}$ and l in q_{4} ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}\left[\operatorname{bad} \mu \text {-inner-12] } \leq \frac{2 q_{4}\binom{q}{2}}{N^{2}}\right. \tag{137}
\end{equation*}
$$

$-\operatorname{bad} \mu$-inner-13. $\mathcal{I}_{X X} \cap \mathcal{I}_{\widehat{Y} \widehat{Y}} \neq \emptyset$. This bad event occurs when $\exists i, j, l \in[q]$ with $i \neq j$ and $i \neq l$ such that $X^{i}=X^{j}$ and $\widehat{Y}^{i}=\widehat{Y}^{l}$. Let's first fix the values for the indices i, j and l. The probability of each of the events comes out to be at most $(2 / N)$ due to the n-bit randomness of X^{i} or X^{j} and \widehat{Y}^{i} or \widehat{Y}^{j}. As we can choose the index i in q ways and for each of those choices, we can choose each of the indices j and l in $(q-1)$ ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\text { bad } \mu \text {-inner- } 13] \leq \frac{q(q-1)^{2}}{N^{2}} \tag{138}
\end{equation*}
$$

$-\operatorname{bad} \mu$-inner-14. $\mathcal{I}_{\widehat{Y} \widehat{Y}} \cap \mathcal{I}_{Z Z} \neq \emptyset$. This bad event occurs when $\exists i, j, l \in[q]$ with $i \neq j$ and $i \neq l$ such that $\widehat{Y}^{i}=\widehat{Y}^{j}$ and $Z^{i}=Z^{l}$. Let's first fix the values for the indices i, j and l. The probability of each of the events comes out to be at most $(2 / N)$ due to the n-bit randomness of \widehat{Y}^{i} or \widehat{Y}^{j} and Z^{i} or Z^{j}. As we can choose the index i in q ways and for each of those choices, we can choose each of the indices j and l in $(q-1)$ ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}\left[\text { bad } \mu \text {-inner-14] } \leq \frac{q(q-1)^{2}}{N^{2}}\right. \tag{139}
\end{equation*}
$$

$-\operatorname{bad} \mu$-inner-15. $\mathcal{I}_{Z Z} \cap \mathcal{I}_{X X} \neq \emptyset$. This bad event occurs when $\exists i, j, l \in[q]$ with $i \neq j$ and $i \neq l$ such that $Z^{i}=Z^{j}$ and $X^{i}=X^{l}$. Let's first fix the values for the indices i, j and l. The probability of each of the events comes out to be at most $(2 / N)$ due to the n-bit randomness of Z^{i} or Z^{j} and X^{i} or X^{j}. As we can choose the index i in q ways and for each of those choices, we can choose each of the indices j and l in $(q-1)$ ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}\left[\operatorname{bad} \mu \text {-inner-15] } \leq \frac{q(q-1)^{2}}{N^{2}}\right. \tag{140}
\end{equation*}
$$

By combining Eqn. (126)-Eqn. (140), we have

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu \text {-inner }] \leq \frac{q\left(q_{2} q_{3}+q_{3} q_{4}+q_{1} q_{4}\right)}{N^{2}}+\frac{3 q^{2}\left(q_{2}+q_{3}+q_{4}\right)}{N^{2}}+\frac{3 q^{3}}{N^{2}} \tag{141}
\end{equation*}
$$

A. 10 Bounding bad μ-3coll

Proposition 10 Having defined the bad event bad μ-3coll in Fig. 7, we have

$$
\operatorname{Pr}[\text { bad } \mu-3 c o l /] \leq \frac{4\binom{q}{3}}{N^{2}} .
$$

To prove the proposition, we first fix the values for the indices i, j and l.
$-\operatorname{bad} \mu$-3coll-1. $i, j, l \in[q]$ with $i<j<l$ such that $X^{i}=X^{j}=X^{l}$. We can write $\operatorname{Pr}\left[X^{i}=X^{j}=X^{l}\right]=\operatorname{Pr}\left[X^{i}=X^{j}\right] \cdot \operatorname{Pr}\left[X^{i}=X^{j}=X^{l} \mid X^{i}=X^{j}\right] \quad$ as $\operatorname{Pr}\left[X^{i}=X^{j}=\right.$ $\left.\left.X^{l} \mid X^{i} \neq X^{j}\right]=0\right)$. Each term on the RHS can be at most $(2 / N)$ due to the randomness over X^{j} and X^{l} respectively.
$-\operatorname{bad} \mu$-3coll-2. $i, j, l \in[q]$ with $i<j<l$ such that $\widehat{Y}^{i}=\widehat{Y}^{j}=\widehat{Y}^{l}$. We can write $\operatorname{Pr}\left[\widehat{Y}^{i}=\widehat{Y}^{j}=\widehat{Y}^{l}\right]=\operatorname{Pr}\left[\widehat{Y}^{i}=\widehat{Y}^{j}\right] \cdot \operatorname{Pr}\left[\widehat{Y}^{i}=\widehat{Y}^{j}=\widehat{Y}^{l} \mid \widehat{Y}^{i}=\widehat{Y}^{j}\right]$ (as $\operatorname{Pr}\left[\widehat{Y}^{i}=\widehat{Y}^{j}=\right.$ $\left.\left.\widehat{Y}^{l} \mid \widehat{Y}^{i} \neq \widehat{Y}^{j}\right]=0\right)$. Each term on the RHS can be at most $(2 / N)$ due to the randomness over \widehat{Y}^{j} and \widehat{Y}^{l} respectively.

- bad μ-3coll-3. $i, j, l \in[q]$ with $i<j<l$ such that $Z^{i}=Z^{j}=Z^{l}$. We can write $\operatorname{Pr}\left[Z^{i}=\right.$ $\left.Z^{j}=Z^{l}\right]=\operatorname{Pr}\left[Z^{i}=Z^{j}\right] \cdot \operatorname{Pr}\left[Z^{i}=Z^{j}=Z^{l} \mid Z^{i}=Z^{j}\right]\left(\right.$ as $\operatorname{Pr}\left[Z^{i}=Z^{j}=Z^{l} \mid Z^{i} \neq Z^{j}\right]=$ $0)$. Each term on the RHS can be at most $(2 / N)$ due to the randomness over Z^{j} and Z^{l} respectively.
As we can choose the 3-tuple of indices (i, j, l) in $\binom{q}{3}$ ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \mu-3 \mathrm{col}] \leq \frac{4\binom{q}{3}}{N^{2}} \tag{142}
\end{equation*}
$$

A. 11 Bounding bad μ-size

Proposition 11 Having defined the bad event bad μ-size in Fig. 7, we have

$$
\operatorname{Pr}[\text { bad } \mu \text {-size }] \leq \frac{q^{1 / 2}\left(q_{2}+q_{3}+q_{4}\right)}{N}+\frac{2 q^{3 / 2}}{N} .
$$

We say that the bad event bad μ-size happens if one of the following event happens.

- bad μ-size-prim This event holds if either of the following three events hold:
- bad μ-size- \mathcal{I}_{X} : This event holds if $\left|\mathcal{I}_{X}\right|>q^{1 / 2}$.
$-\operatorname{bad} \mu$-size- $\mathcal{I}_{\widehat{Y}}$: This event holds if $\left|\mathcal{I}_{\widehat{Y}}\right|>q^{1 / 2}$.
$-\operatorname{bad} \mu$-size- \mathcal{I}_{Z} : This event holds if $\left|\mathcal{I}_{Z}\right|>q^{1 / 2}$.
- bad μ-size-coll This event holds if either of the following three events hold:
$-\operatorname{bad} \mu$-size- $\mathcal{I}_{X X}$: This event holds if $\left|\mathcal{I}_{X X}\right|>q^{1 / 2}$.
$-\operatorname{bad} \mu$-size- $\mathcal{I}_{\widehat{Y} \widehat{Y}}$: This event holds if $\left|\mathcal{I}_{\widehat{Y} \widehat{Y}}\right|>q^{1 / 2}$.
$-\operatorname{bad} \mu$-size- $\mathcal{I}_{Z Z}$: This event holds if $\left|\mathcal{I}_{Z Z}\right|>q^{1 / 2}$.

A.11.1 Bounding bad μ-size-prim

To bound this event, we bound each of the following events: bad μ-size- \mathcal{I}_{X}, bad μ-size- $\mathcal{I}_{\widehat{Y}}$, and $\operatorname{bad} \mu$-size- \mathcal{I}_{Z}. We begin with bounding the size of $\left|\mathcal{I}_{X}\right|$. Let for each $i \in[q], \mathbb{I}_{i}$ be an indicator random variable that takes the value 1 if there exists an $j \in\left[q_{2}\right]$ such that $X^{i}+K_{2}=U_{2}^{j}$. Note that, the probability of this event holds is at most q_{2} / N using the randomness of key K_{2}, i.e., for a fixed $i \in[q]$,

$$
\operatorname{Pr}\left[\mathbb{I}_{i}=1\right] \leq \frac{q_{2}}{N} .
$$

Therefore, by the linearity of expectations and by applying Markov's inequality, we have

$$
\operatorname{Pr}\left[\left|\mathcal{I}_{X}\right|>q^{1 / 2}\right] \leq \frac{q^{1 / 2} q_{2}}{N} \approx \frac{q^{3 / 2}}{N}, \quad\left(\text { provided }, q_{2} \approx q\right)
$$

In a similar way, we can show that

$$
\operatorname{Pr}\left[\left|\mathcal{I}_{\widehat{Y}}\right|>q^{1 / 2}\right] \leq \frac{q^{1 / 2} q_{3}}{N}, \quad \operatorname{Pr}\left[\left|\mathcal{I}_{Z}\right|>q^{1 / 2}\right] \leq \frac{q^{1 / 2} q_{4}}{N}
$$

By combining the above three cases, we have

$$
\begin{equation*}
\operatorname{Pr}[\text { bad } \mu \text {-size-prim }] \leq \frac{q^{1 / 2}\left(q_{2}+q_{3}+q_{4}\right)}{N} \tag{143}
\end{equation*}
$$

A.11.2 Bounding bad μ-size-coll

To bound this event, we bound each of the following events: bad μ-size- $\mathcal{I}_{X X}$, bad μ-size $-\mathcal{I}_{\widehat{Y}}^{\widehat{Y}}$, and bad μ-size- $\mathcal{I}_{Z Z}$. We begin with bounding the size of $\left|\mathcal{I}_{X X}\right|$. Let for each $i \in[q], \mathbb{I}_{i}$ be an indicator random variable that takes the value 1 if there exists an $j \in[q]$ with $j \neq i$ such that $X^{i}=X^{j}$. Note that, the probability of this event holds is at most q / N using the randomness of key $\widehat{R}^{i}\left(\right.$ as $\left.i \notin \mathcal{I}_{R}\right)$, i.e., for a fixed $i \in[q]$,

$$
\operatorname{Pr}\left[\mathbb{I}_{i}=1\right] \leq \frac{q}{N}
$$

Therefore, by the linearity of expectations and by applying Markov's inequality, we have

$$
\operatorname{Pr}\left[\left|\mathcal{I}_{X X}\right|>q^{1 / 2}\right] \leq \frac{q^{3 / 2}}{2 N}
$$

In a similar way, we can show that

$$
\operatorname{Pr}\left[\left|\mathcal{I}_{\widehat{Y} \widehat{Y}}\right|>q^{1 / 2}\right] \leq \frac{q^{3 / 2}}{2 N}, \quad \operatorname{Pr}\left[\left|\mathcal{I}_{Z Z}\right|>q^{1 / 2}\right] \leq \frac{q^{3 / 2}}{2 N}
$$

By combining the above three cases, we have

$$
\begin{equation*}
\operatorname{Pr}[\text { bad } \mu \text {-size-coll }] \leq \frac{2 q^{3 / 2}}{N} \tag{144}
\end{equation*}
$$

Finally, by combining Eqn. (143) and Eqn. (144), we have

$$
\operatorname{Pr}[\text { bad } \mu \text {-size }] \leq \frac{q^{1 / 2}\left(q_{2}+q_{3}+q_{4}\right)}{N}+\frac{2 q^{3 / 2}}{N}
$$

A. 12 Bounding bad λ-prim

Proposition 12 Having defined the bad event bad入-prim in Fig. 8, we have

$$
\begin{aligned}
\operatorname{Pr}[\text { bad } \lambda \text {-prim }] \leq & \frac{q q_{2}\left(q_{1}+q_{3}+q_{4}+q_{5}\right)}{N^{2}}+\frac{q q_{3}\left(q_{1}+q_{2}+q_{4}+q_{5}\right)}{N^{2}} \\
& +\frac{q q_{4}\left(q_{1}+q_{2}+q_{3}+q_{5}\right)}{N^{2}}+\frac{7 q^{2}\left(q_{2}+q_{3}+q_{4}\right)}{N^{2}}
\end{aligned}
$$

We say that the bad event bad λ-prim happens if one of the following event happens.

- bad λ-prim 1. $\exists i \in\left(\mathcal{I}_{X} \sqcup \mathcal{I}_{* *}\right)^{c}$ and $j \in\left[q_{2}\right]$ such that $\widehat{X}^{i}+k_{2}=V_{2}^{j}$.
- bad λ-prim 2. $\exists i \in\left(\mathcal{I}_{\widehat{Y}} \sqcup \mathcal{I}_{* *}\right)^{c}$ and $j \in\left[q_{3}\right]$ such that $Y^{i}+k_{3}=V_{3}^{j}$.
- $\operatorname{bad} \lambda$-prim 3. $\exists i \in\left(\mathcal{I}_{Z} \sqcup \mathcal{I}_{* *}\right)^{c}$ and $j \in\left[q_{4}\right]$ such that $\widehat{Z}^{i}+k_{4}=V_{4}^{j}$.

In the following subsections, we bound the above events.

A.12.1 Bounding bad入-prim 1

To bound this event, we further split it into various sub-cases and bound their individual probabilities as follows:

- bad λ-prim $1 a . \exists i \in \mathcal{I}_{R}$ and $j \in\left[q_{2}\right]$ such that $\widehat{X}^{i}+K_{2}=V_{2}^{j}$. In other words, $\exists i \in[q]$, $j \in\left[q_{2}\right]$ and $l \in\left[q_{1}\right]$ such that $R^{i}+K_{1}=U_{1}^{l}$ and $\widehat{X}^{i}+K_{2}=V_{2}^{j}$. Let's first fix the values for the indices i, j and l. The probability of each of the events $R^{i}+K_{1}=U_{1}^{l}$ and $\widehat{X}^{i}+K_{2}=V_{2}^{j}$ comes out to be $1 / N^{2}$ each due to the randomness of the keys K_{1} and K_{2} respectively. As we can choose the index i, j and l in q, q_{2} and q_{1} ways respectively, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 1 a] \leq \frac{q q_{1} q_{2}}{N^{2}} \tag{145}
\end{equation*}
$$

- bad λ-prim $1 b . \exists i \in \mathcal{I}_{S}$ and $j \in\left[q_{2}\right]$ such that $\widehat{X}^{i}+K_{2}=V_{2}^{j}$. Analysis of this bad event is similar to that of bad λ-prim $1 a$, where we use the randomness of K_{5} and K_{2}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 1 b] \leq \frac{q q_{2} q_{5}}{N^{2}} \tag{146}
\end{equation*}
$$

$-\operatorname{bad} \lambda$-prim $1 c . \exists i \in \mathcal{I}_{R R}$ and $j \in\left[q_{2}\right]$ such that $\widehat{X}^{i}+K_{2}=V_{2}^{j}$. Analysis of this bad event is similar to that of bad λ-prim $1 a$, where we use the randomness of R^{i} and K_{2}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 1 c] \leq \frac{q^{2} q_{2}}{2 N^{2}} \tag{147}
\end{equation*}
$$

- bad λ-prim $1 d . \exists i \in \mathcal{I}_{S S}$ and $j \in\left[q_{2}\right]$ such that $\widehat{X}^{i}+K_{2}=V_{2}^{j}$. Again, analysis of this bad event is similar to that of bad λ-prim $1 c$, where we use the randomness of S^{i} and K_{2}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 1 d] \leq \frac{q^{2} q_{2}}{2 N^{2}} \tag{148}
\end{equation*}
$$

- bad λ-prim $1 e . \exists i \in \mathcal{I}_{\widehat{Y}}$ and $j \in\left[q_{2}\right]$ such that $\widehat{X}^{i}+K_{2}=V_{2}^{j}$. In other words, $\exists i \in[q]$, $j \in\left[q_{2}\right]$ and $l \in\left[q_{3}\right]$ such that $\widehat{Y}^{i}+K_{3}=V_{3}^{l}$ and $\widehat{X}^{i}+K_{2}=V_{2}^{j}$. Let's first fix the values for the indices i, j and l. The probability of each of the events $\widehat{Y}^{i}+K_{3}=V_{3}^{l}$ and $\widehat{X}^{i}+K_{2}=V_{2}^{j}$ comes out to be $1 / N^{2}$ due to the randomness of the keys K_{2} and K_{3}. As we can choose the index i, j and l in q, q_{2} and q_{3} ways, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 1 e] \leq \frac{q q_{2} q_{3}}{N^{2}} \tag{149}
\end{equation*}
$$

- bad λ-prim $1 f . \exists i \in \mathcal{I}_{Z}$ and $j \in\left[q_{2}\right]$ such that $\widehat{X}^{i}+K_{2}=V_{2}^{j}$. Analysis of this bad event is similar to that of bad λ-prim $1 e$, where we use the randomness of K_{4} and K_{2}. Looking ahead, we bound the probability of the above event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 1 f] \leq \frac{q q_{2} q_{4}}{N^{2}} \tag{150}
\end{equation*}
$$

- bad λ-prim $1 g . \exists i \in \mathcal{I}_{X X}$ and $j \in\left[q_{2}\right]$ such that $\widehat{X}^{i}+K_{2}=V_{2}^{j}$. In other words, $\exists i \in[q]$, $j \in\left[q_{2}\right]$ and $l \in[q]$ such that $i \neq l$ and $X^{i}=X^{l}, \widehat{X}^{i}+K_{2}=V_{2}^{j}$, which we equivalently write as

$$
\widehat{R}^{i}+\widehat{R}^{l}=L^{i}+L^{l}, \widehat{X}^{i}+K_{2}=V_{2}^{j}
$$

For a fixed choice of indices, we use the randomness of \widehat{R}^{i} and K_{2} to bound the probability of the event to at most $2 / N^{2}$. As we can choose the index i, j and l in q, q_{2} and $(q-1)$ ways respectively, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 1 g] \leq \frac{2 q^{2} q_{2}}{N^{2}} \tag{151}
\end{equation*}
$$

$-\operatorname{bad} \lambda$-prim $1 h . \exists i \in \mathcal{I}_{\widehat{Y} \widehat{Y}}$ and $j \in\left[q_{2}\right]$ such that $\widehat{X}^{i}+K_{2}=V_{2}^{j}$. In other words, $\exists i \in[q]$, $j \in\left[q_{2}\right]$ and $l \in[q]$ such that $i \neq l$ and $\widehat{Y}^{i}=\widehat{Y}^{l}, \widehat{X}^{i}+K_{2}=V_{2}^{j}$, which we equivalently write as

$$
\widehat{R}^{i}+\widehat{R}^{l}+\widehat{S}^{i}+\widehat{S}^{l}=L^{i}+T^{i}+L^{l}+T^{l}, \widehat{X}^{i}+K_{2}=V_{2}^{j}
$$

For a fixed choice of indices, we use the randomness of \widehat{R}^{i} and K_{2} to bound the probability of the event to at most $2 / N^{2}$. As we can choose the index i, j and l in q, q_{2} and $(q-1)$ ways respectively, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 1 h] \leq \frac{2 q^{2} q_{2}}{N^{2}} \tag{152}
\end{equation*}
$$

- bad λ-prim 1i. $\exists i \in \mathcal{I}_{Z Z}$ and $j \in\left[q_{2}\right]$ such that $\widehat{X}^{i}+k_{2}=V_{2}^{j}$. In other words, $\exists i \in[q]$, $j \in\left[q_{2}\right]$ and $l \in[q]$ such that $i \neq l$ and $Z^{i}=Z^{l}, \widehat{X}^{i}+K_{2}=V_{2}^{j}$, which we equivalently write as

$$
\widehat{S}^{i}+\widehat{S}^{l}=T^{i}+T^{l}, \widehat{X}^{i}+K_{2}=V_{2}^{j}
$$

For a fixed choice of indices, we use the randomness of \widehat{S}^{i} and K_{2} to bound the probability of the event to at most $2 / N^{2}$. As we can choose the index i, j and l in q, q_{2} and $(q-1)$ ways respectively, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\text { prim } 1 i] \leq \frac{2 q^{2} q_{2}}{N^{2}} \tag{153}
\end{equation*}
$$

Adding all the above nine cases, we obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 1] \leq \frac{q q_{2}\left(q_{1}+q_{3}+q_{4}+q_{5}+7 q\right)}{N^{2}} \tag{154}
\end{equation*}
$$

A.12.2 Bounding bad λ-prim 2.

As before, to bound this event, we further split it into various sub-cases and bound their individual probabilities as follows:

- bad λ-prim $2 a . \exists i \in \mathcal{I}_{R}$ and $j \in\left[q_{3}\right]$ such that $\widehat{Y}^{i}+K_{3}=V_{3}^{j}$. In other words, $\exists i \in[q]$, $j \in\left[q_{2}\right]$ and $l \in\left[q_{1}\right]$ such that $R^{i}+K_{1}=U_{1}^{l}$ and $\widehat{Y}^{i}+K_{3}=V_{3}^{j}$. Let's first fix the values for the indices i, j and l. The probability of each of the events $R^{i}+K_{1}=U_{1}^{l}$ and $\widehat{Y}^{i}+K_{3}=V_{3}^{j}$ comes out to be $1 / N^{2}$ each due to the randomness of the keys K_{1} and K_{3} respectively. As we can choose the index i, j and l in q, q_{3} and q_{1} ways respectively, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 2 a] \leq \frac{q q_{1} q_{3}}{N^{2}} \tag{155}
\end{equation*}
$$

- bad λ-prim $2 b . \exists i \in \mathcal{I}_{S}$ and $j \in\left[q_{3}\right]$ such that $\widehat{Y}^{i}+K_{3}=V_{3}^{j}$. Analysis of this bad event is similar to that of bad λ-prim $2 a$, where we use the randomness of K_{5} and K_{3}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 2 b] \leq \frac{q q_{3} q_{5}}{N^{2}} \tag{156}
\end{equation*}
$$

- bad λ-prim 2c. $\exists i \in \mathcal{I}_{R R}$ and $j \in\left[q_{3}\right]$ such that $\widehat{Y}^{i}+K_{3}=V_{3}^{j}$. Analysis of this bad event is similar to that of bad λ-prim $2 a$, where we use the randomness of R^{i} and K_{3}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 2 c] \leq \frac{q^{2} q_{3}}{2 N^{2}} \tag{157}
\end{equation*}
$$

- bad λ-prim $2 d . \exists i \in \mathcal{I}_{S S}$ and $j \in\left[q_{3}\right]$ such that $\widehat{Y}^{i}+K_{3}=V_{3}^{j}$. Analysis of this bad event is similar to that of bad λ-prim $2 c$, where we use the randomness of S^{i} and K_{3}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 2 d] \leq \frac{q^{2} q_{3}}{2 N^{2}} \tag{158}
\end{equation*}
$$

- bad λ-prim $2 e . \exists i \in \mathcal{I}_{Z}$ and $j \in\left[q_{3}\right]$ such that $\widehat{Y}^{i}+K_{3}=V_{3}^{j}$. Analysis of this bad event is again similar to that of bad λ-prim $1 f$, where we use the randomness of K_{4} and K_{3}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 2 e] \leq \frac{q q_{3} q_{4}}{N^{2}} \tag{159}
\end{equation*}
$$

- bad λ-prim $2 f . \exists i \in \mathcal{I}_{X}$ and $j \in\left[q_{3}\right]$ such that $\widehat{Y}^{i}+K_{3}=V_{3}^{j}$. Analysis of this bad event is again similar to that of bad λ-prim $2 a$, where we use the randomness of K_{2} and K_{3}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 2 f] \leq \frac{q q_{2} q_{3}}{N^{2}} \tag{160}
\end{equation*}
$$

- bad λ-prim $2 g . \exists i \in \mathcal{I}_{X X}$ and $j \in\left[q_{3}\right]$ such that $\widehat{Y}^{i}+K_{3}=V_{3}^{j}$. Analysis of this event is similar to that of bad λ-prim $1 g$, where we use the randomness of \widehat{R}^{i} and K_{3}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 2 g] \leq \frac{2 q^{2} q_{3}}{N^{2}} \tag{161}
\end{equation*}
$$

- bad λ-prim $2 h . \exists i \in \mathcal{I}_{\widehat{Y} \widehat{Y}}$ and $j \in\left[q_{3}\right]$ such that $\widehat{Y}^{i}+K_{3}=V_{3}^{j}$. Analysis of this event is similar to that of bad λ-prim $1 h$, where we use the randomness of \widehat{R}^{i} and K_{3}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 2 h] \leq \frac{2 q^{2} q_{3}}{N^{2}} \tag{162}
\end{equation*}
$$

- bad λ-prim $2 i . \exists i \in \mathcal{I}_{Z Z}$ and $j \in\left[q_{3}\right]$ such that $\widehat{Y}^{i}+K_{3}=V_{3}^{j}$. Again, the analysis of this event is similar to that of bad λ-prim $1 i$, where we use the randomness of \widehat{S}^{i} and K_{3}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\text { prim } 2 i] \leq \frac{2 q^{2} q_{3}}{N^{2}} \tag{163}
\end{equation*}
$$

Adding all the above nine cases, we obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 2] \leq \frac{q q_{3}\left(q_{1}+q_{2}+q_{4}+q_{5}+7 q\right)}{N^{2}} \tag{164}
\end{equation*}
$$

A.12.3 Bounding bad λ-prim 3.

As before, to bound this event, we further split it into various sub-cases and bound their individual probabilities as follows:

- bad λ-prim $3 a . \exists i \in \mathcal{I}_{R}$ and $j \in\left[q_{4}\right]$ such that $\widehat{Z}^{i}+K_{4}=V_{4}^{j}$. In other words, $\exists i \in[q]$, $j \in\left[q_{4}\right]$ and $l \in\left[q_{1}\right]$ such that $R^{i}+K_{1}=U_{1}^{l}$ and $\widehat{Z}^{i}+K_{4}=V_{4}^{j}$. Let's first fix the values for the indices i, j and l. The probability of each of the events $R^{i}+K_{1}=U_{1}^{l}$ and $\widehat{Z}^{i}+K_{4}=V_{4}^{j}$ comes out to be $1 / N^{2}$ each due to the randomness of the keys K_{1} and K_{4} respectively. As we can choose the index i, j and l in q, q_{4} and q_{1} ways respectively, we use the union bound over all those possible choices to obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 3 a] \leq \frac{q q_{1} q_{4}}{N^{2}} \tag{165}
\end{equation*}
$$

- bad λ-prim $3 b . \exists i \in \mathcal{I}_{S}$ and $j \in\left[q_{4}\right]$ such that $\widehat{Z}^{i}+K_{4}=V_{4}^{j}$. Analysis of this bad event is similar to that of bad λ-prim $3 a$, where we use the randomness of K_{5} and K_{4}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 3 b] \leq \frac{q q_{4} q_{5}}{N^{2}} \tag{166}
\end{equation*}
$$

$-\operatorname{bad} \lambda$-prim $3 c . \exists i \in \mathcal{I}_{R R}$ and $j \in\left[q_{4}\right]$ such that $\widehat{Z}^{i}+K_{4}=V_{4}^{j}$. Analysis of this bad event is similar to that of bad λ-prim $3 a$, where we use the randomness of R^{i} and K_{4}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\text { prim } 3 c] \leq \frac{q^{2} q_{4}}{2 N^{2}} \tag{167}
\end{equation*}
$$

- bad λ-prim $3 d . \exists i \in \mathcal{I}_{S S}$ and $j \in\left[q_{4}\right]$ such that $\widehat{Z}^{i}+K_{4}=V_{4}^{j}$. Analysis of this bad event is similar to that of bad λ-prim $3 a$, where we use the randomness of S^{i} and K_{4}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 3 d] \leq \frac{q^{2} q_{4}}{2 N^{2}} \tag{168}
\end{equation*}
$$

- bad λ-prim $3 e . \exists i \in \mathcal{I}_{X}$ and $j \in\left[q_{4}\right]$ such that $\widehat{Z}^{i}+K_{4}=V_{4}^{j}$. Analysis of this bad event is similar to that of bad λ-prim $3 a$, where we use the randomness of K_{2} and K_{4}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 3 e] \leq \frac{q q_{2} q_{4}}{N^{2}} \tag{169}
\end{equation*}
$$

- bad λ-prim $3 f . \exists i \in \mathcal{I}_{\widehat{Y}}$ and $j \in\left[q_{4}\right]$ such that $\widehat{Z}^{i}+K_{4}=V_{4}^{j}$. Analysis of this bad event is similar to that of bad λ-prim $3 a$, where we use the randomness of K_{3} and K_{4}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 3 f] \leq \frac{q q_{3} q_{4}}{N^{2}} \tag{170}
\end{equation*}
$$

- bad λ-prim $3 g . \exists i \in \mathcal{I}_{X X}$ and $j \in\left[q_{4}\right]$ such that $\widehat{Z}^{i}+K_{4}=V_{4}^{j}$. Analysis of this bad event is similar to that of bad λ-prim $1 g$, where we use the randomness of \widehat{R}^{i} and K_{4}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 3 g] \leq \frac{2 q^{2} q_{4}}{N^{2}} \tag{171}
\end{equation*}
$$

- bad λ-prim $3 h . \exists i \in \mathcal{I}_{\widehat{Y} \widehat{Y}}$ and $j \in\left[q_{4}\right]$ such that $\widehat{Z}^{i}+K_{4}=V_{4}^{j}$. Analysis of this bad event is similar to that of bad λ-prim $1 h$, where we use the randomness of \widehat{R}^{i} and K_{4}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 3 h] \leq \frac{2 q^{2} q_{4}}{N^{2}} \tag{172}
\end{equation*}
$$

$-\operatorname{bad} \lambda$-prim $3 i . \exists i \in \mathcal{I}_{Z Z}$ and $j \in\left[q_{4}\right]$ such that $\widehat{Z}^{i}+K_{4}=V_{4}^{j}$. Analysis of this bad event is similar to that of bad λ-prim $1 i$, where we use the randomness of \widehat{S}^{i} and K_{4}. Looking ahead, we bound the probability of the event to at most

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\text { prim } 3 i] \leq \frac{2 q^{2} q_{4}}{N^{2}} \tag{173}
\end{equation*}
$$

Adding all the above nine cases, we obtain

$$
\begin{equation*}
\operatorname{Pr}[\operatorname{bad} \lambda-\operatorname{prim} 3] \leq \frac{q q_{4}\left(q_{1}+q_{2}+q_{3}+q_{5}+7 q\right)}{N^{2}} \tag{174}
\end{equation*}
$$

A. 13 Bounding $\operatorname{bad} \lambda$-coll

Proposition 13 Having defined the bad event bad入-coll in Fig. 8, we have

$$
\operatorname{Pr}[\operatorname{bad} \lambda-c o l /] \leq \frac{\binom{q}{2}\left(5 q+q_{1}+q_{2}+q_{3}+q_{4}+q_{5}\right)}{N^{2}}
$$

We say that the bad event bad λ-coll happens, if one of the following event happens.
$-\operatorname{bad} \lambda$-coll $1 . \exists i \in \mathcal{I}_{* *}^{c}, j \in[q]$ and $i \neq j$ such that $X^{i} \neq X^{j}$ and $\widehat{X}^{i}=\widehat{X}^{j}$.

- badd-coll 2. $\exists i \in \mathcal{I}_{* *}^{c}, j \in[q]$ and $i \neq j$ such that $\widehat{Y}^{i} \neq \widehat{Y}^{j}$ and $Y^{i}=Y^{j}$.
$-\operatorname{bad} \lambda$-coll $3 . \exists i \in \mathcal{I}_{* *}^{c}, j \in[q]$ and $i \neq j$ such that $Z^{i} \neq Z^{j}$ and $\widehat{Z}^{i}=\widehat{Z}^{j}$.
In the following subsection, we bound the above events. To do this, we first define a condition set and then analyze these three bad events on that condition set.

Condition Set

1. $\exists i \in \mathcal{I}_{R}$. In other words, $\exists i \in[q]$ and $k \in\left[q_{1}\right]$ such that $R^{i}+K_{1}=U_{1}^{k}$.
2. $\exists i \in \mathcal{I}_{S}$. In other words, $\exists i \in[q]$ and $k \in\left[q_{5}\right]$ such that $S^{i}+K_{5}=U_{5}^{k}$.
3. $\exists i \in \mathcal{I}_{R R}$. In other words, $\exists i \in \mathcal{I}_{\text {dec }}$ and $k \in[i-1]$ such that $R^{i}=R^{k}$.
4. $\exists i \in \mathcal{I}_{S S}$. In other words, $\exists i \in \mathcal{I}_{\text {enc }}$ and $k \in[i-1]$ such that $S^{i}=S^{k}$.
5. $\exists i \in \mathcal{I}_{X}$. In other words, $\exists i \in[q]$ and $k \in\left[q_{2}\right]$ such that $X^{i}+K_{2}=U_{2}^{k}$.
6. $\exists i \in \mathcal{I}_{\widehat{Y}}$. In other words, $\exists i \in[q]$ and $k \in\left[q_{3}\right]$ such that $\widehat{Y}^{i}+K_{3}=U_{3}^{k}$.
7. $\exists i \in \mathcal{I}_{Z}$. In other words, $\exists i \in[q]$ and $k \in\left[q_{4}\right]$ such that $Z^{i}+K_{4}=U_{4}^{k}$.
8. $\exists i \in \mathcal{I}_{X X}$. In other words, $\exists i, k \in[q]$ with $i \neq j$ such that $X^{i}=X^{k}$.
9. $\exists i \in \mathcal{I}_{\widehat{Y} \widehat{Y}}$. In other words, $\exists i, k \in[q]$ with $i \neq j$ such that $\widehat{Y}^{i}=\widehat{Y}^{k}$.
10. $\exists i \in \mathcal{I}_{Z Z}$. In other words, $\exists i, k \in[q]$ with $i \neq j$ such that $Z^{i}=Z^{k}$.

Let's first fix the values for the indices i, j and k. For any of bad λ-coll 1 , bad λ-coll 2 and bad λ-coll 3 , any one of the conditions from the above condition set satisfies. Once we fix that condition, the probability of that condition comes out to be $(1 / N)$. On the other hand, the probability of the event $\widehat{X}^{i}=\widehat{X}^{j}$ is at most $(2 / N)$ when $j \in \mathcal{I}_{X}$, and is equal to $(1 / N)$ otherwise. Similarly, the probability of the event $Y^{i}=Y^{j}$ is at $\operatorname{most}(2 / N)$ when $j \in \mathcal{I}_{Y}$, and is equal to $(1 / N)$ otherwise; and the probability of the event $\widehat{Z}^{i}=\widehat{Z}^{j}$ is at most $(2 / N)$ when $j \in \mathcal{I}_{Z}$, and is equal to $(1 / N)$ otherwise. Now one can choose the pair of indices (i, j) in $\binom{q}{2}$ ways, and the index k in as many ways as the maximum number of queries to the relevant permutation (in case of condition $1,2,5,6$ and 7) or in q ways (otherwise). Using the union bound over all those possible indices, we obtain the upper bound of each of these bad events as $\left(2 q \cdot\binom{q}{2}\right) /\left(N^{2}\right)$ or $\left(2 q_{l} \cdot\binom{q}{2}\right) /\left(N^{2}\right)$ (where the relevant permutation is $\left.P_{l}\right)$.

