
Empirical Software Engineering manuscript No. EMSE-D-19-00234

Supplementary Material: Analysing Time-Stamped Co-Editing Networks in
Software Development Teams using git2net

Christoph Gote · Ingo Scholtes · Frank Schweitzer

Accepted: 17 December 2020

In the following we provide additional information and supporting results for the large scale analysis of
coordination overhead in software teams presented in section 5 of the main manuscript.

First, in section S1 we describe in detail the data cleaning process underlying our results and provide
additional information on the resulting data in section S2. Subsequently, we show feature correlations before
and after feature selection for igraph, bitcoin, libav, FFmpeg, and gentoo in section S3. Further, we show
all results from the model selection step in section S4. Finally, we present additional results supporting the
robustness of our findings with regard to the parameters set during the data cleaning step are in section S5.

Christoph Gote
Chair of Systems Design
ETH Zurich
Zurich, Switzerland
E-mail: cgote@ethz.ch

Ingo Scholtes
Data Analytics Group
Bergische Universität Wuppertal
Wuppertal, Germany
E-mail: scholtes@uni-wuppertal.de

Frank Schweitzer
Chair of Systems Design
ETH Zurich
Zurich, Switzerland
E-mail: fschweitzer@ethz.ch

2 Christoph Gote et al.

S1 Data cleaning

As discussed in section 5.2 of the main manuscript, to test our research hypothesis, only edits in which
existing code was modified are relevant. Therefore, any commits that are not labelled as “replacement”
by git2net are dropped. Any edits that originated from or resulted in an empty line are dropped for the
same reason. Additionally, we do not consider any edits to files for which no cyclomatic complexity can be
computed. These are generally data files, images, etc. which are not part of this analysis. The exact number
of disregarded edits per project are shown in Table S1.

While cleaning the data, we discovered a large number of commits with inter-commit times of 0 and 1
seconds, particularly for linux. Further analysis revealed that developers often make multiple consecutive
commits after working on a section of code. In doing so, individual commit messages can be assigned to
different sets of edits, facilitating the tracking of changes in the project. This behaviour invalidates our
assumption that the inter-commit time represents an upper boundary of the time a developer spent on the
edits is violated. As illustrated in Figure S1 we thus aggregate commits with inter-commit times of less than
a given threshold ∆ to a single code contribution. While the threshold needs to be sufficiently high to avoid
the cases mentioned above, setting it too high will merge commits that belong to adjacent contributions.
After discussions with professional software developers, we aggregated consecutive commits with inter-
commit times of less that ∆ = 5 minutes1. Subsequently, we perform all analyses at the level of (aggregated)
code contributions rather than commits.

The GitHub repository of gentoo only exists since August 2015, whereas development started as early
as 1999. When creating the git repository, an initial commit was made that includes the entire history of
the project until this point. To not falsely attribute all previous development efforts to the author making this
first commit, we drop all edits to lines initially added with the first commit. This amounts to almost 25% of
the remaining edits in the database.

The distribution of developer productivity reveals a small number of outliers with very large values.
A manual inspection showed that these are mostly due to automated changes of code style, or search and
replace operations2. We argue that such commits are not representative of typical software development and
thus consider them as outliers. To not bias our analysis, we removed them from the dataset by excluding
the top ε quantile of contributions with respect to productivity. Similar to the aggregation time window,
the removal threshold cannot be set too low, but setting it too high will also result in the removal of the

1 We highlight that our results are robust with regard to different parameters ∆ . Results for ∆ of 1 and 10 minutes are shown in the
supplementary material.

2 cf. commit 4be44fcd3bf648b782f4460fd06dfae6c42ded4b in linux or commit eaaface92ee81f30a6ac66fe7acbcc42c00dc450 in
gentoo

Table S1: Overview of data collection and cleaning process. Only commits with less than 1000 modified
files were originally mined. Edits were dropped due to not being replacements or not relating to code.

igraph bitcoin libav FFmpeg gentoo linux

of authors 36 803 965 1,785 964 20,581

of commits 5,919 21,196 45,232 94,942 265,453 855,283
mined 5,885 20,545 45,232 90,197 264,559 814,535
% mined 99.43 96.93 100.00 95.00 99.66 95.24

of replacements 85,650 338,733 551,468 835,141 376,102 6,985,866
dropped 13,877 70,060 23,045 31,319 3,464 227,007
% dropped 13.94 17.14 4.01 3.61 0.91 3.15

commit contribution

time

Fig. S1: Aggregation of commits to contributions.

Supplementary Material: Analysing Time-Stamped Co-Editing Networks in Software Development Teams using git2net 3

most productive contributions in the respective project. After discussion with professional developers, we
decided to remove the top ε = 5% contributions with regard to developer productivity from the dataset3.

The git protocol allows developers to use any name and email address when making commits. Hence
it frequently occurs that the same developer appears with differently spelt names (e.g. in the case of names
with special characters) or different email addresses (e.g. work and personal emails) in the same repository
(Bird et al., 2009; German, 2004). This is an essential problem as it adds noise to both the data collection
and any subsequent analyses. Unfortunately, it is also a challenging problem, particularly when dealing with
large-scale data. Aiming to correctly disambiguate authors, we compared two heuristic-based approaches.
For the first approach, we matched authors based on the author email recorded in git. The second approach
performs a matching based on the recorded author names after removing capitalisation and special char-
acters. Upon comparison with a manually created ground-truth for the igraph data set, we found that the
second approach yielded better performance. Therefore, this approach was used for all projects.

S2 Data description

Figure S2 provides an overview of the amount and types of edits made in the projects included in our large-
scale analysis of coordination overhead in software teams based on a line-based extraction of edits. The
first two columns show edit counts as well as relative edit counts for a moving window of 295 days. The
window size was selected based on the finding of Scholtes et al. (2016) that after 295 days of inactivity, the
probability of a subsequent commit of an Open Source Software developer is less than 10% and hence the
developer should no longer be considered as member of the development team. We find that (with values
ranging between 60 and 90%) additions make up most of the largest parts of all edits across projects. In
contrast almost no code is deleted without being replaced as can be seen from the very low amount of
deletions. Code replacements, where an existing line is edited, make up around 20% of the data. As we aim
to study coordination overhead, code replacements are the main focus of our analysis as these allow us to
directly link the consecutive developers editing the same line with a co-editing relationship.

The third column shows the count of replacements for which code by other authors is edited as fraction
of the total number of code replacements. Colours show the development of both team size and communi-
cation requirements over time. The dashed line shows a linear model of the form y = αx+β fitted to the
data. We find that the slope is positive and significant for all projects indicating an increase in coordination
requirements for larger teams. These results confirm the findings made in section 5.1 in the main manuscript
for Levenshtein edit distance also for count data.

S3 Feature correlations

In this section, we report the feature correlations used for the feature selection in section 5.2 of the main
manuscript. There, a description of the all features is provided in Table 2. For the feature correlations for
the linux kernel development project please refer to Figures 13 and 14 in the main manuscript.

3 The results are robust with regard to the removal threshold. Results for ε = 1% and 10% are shown in the supplementary material
(section S5).

4 Christoph Gote et al.

2 4 6 8 10
0

20
40
60
80

100

α = 0.0773 (∗∗∗)

foreign code replacement [%]
over team size

2007
2009
2011
2013
2015
2017
2019

2007 2011 2015 2019
0

0.5

1.5
ig

ra
ph

edits over time [105 edits]

deletions replacements additions

2007 2011 2015 2019
0

20
40
60
80

100

edits over time [%]

0 50 100
0

20
40
60
80

100

α = 0.0026 (∗∗∗) 2011
2013
2015
2017
2019

2013 2016 2019
0

0.5

1

bi
tc

oi
n

2013 2016 2019
0

20
40
60
80

100

0 50 100 150
0

20
40
60
80

100

α = 0.0027 (∗∗∗) 2004
2007
2010
2013
2016
2019

2004 2009 2014 2019
0

0.5

1

li
ba

v

2004 2009 2014 2019
0

20
40
60
80

100

0 100 200
0

20
40
60
80

100

α = 0.0012 (∗∗∗) 2004
2007
2010
2013
2016
2019

2004200920142019
0

1

2

FF
mp

eg

2004200920142019
0

20
40
60
80

100

350 400
0

20
40
60
80

100

α = 0.0016 (∗∗∗) 2017

2018

2019

2017 2018 2019
0

5

10

ge
nt

oo

2017 2018 2019
0

20
40
60
80

100

2,000 3,000
0

20
40
60
80

100

α = 0.0001 (∗∗∗)

team size

2007
2009
2011
2013
2015
2017
2019

2007 2011 2015 2019
0

10

20

time

li
nu

x

2007 2011 2015 2019
0

20
40
60
80

100

time

Fig. S2: Summary statistics for all edits made in the repositories analysed in section 5 of the main manusc
based on a rolling window analysis with a window size of 295 days and a time increment of four weeks.
The first column shows the total count of lines edits made within the time window. Colours show the sub-
division of the edits into deletions, replacements, and additions. The second column shows the proportion of
the different edit types over time. Deletions only account for a very small fraction of edits and replacements
amount to around 20% of the edits made. The third column shows the fraction of foreign code replace-
ment for different team sizes based on counts. Colours show the development over time. The parameter α

represents the slope of a linear y = αx+β for the the plots. The asterisks indicate p < 0.05 (*), p < 0.01
(**), and p < 0.001 (***) for the slope being positive. Results confirm the findings of section 5 of the main
manuscript for count data.

Supplementary Material: Analysing Time-Stamped Co-Editing Networks in Software Development Teams using git2net 5

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cyc_l

cyc_f

nol_l

nol_f

nof

noc_d

noc_t

wkd

tfc

own

tpe_l

tpe_e

0.98

0.75

0.73

0.07

−0.22

−0.01

−0.03

−0.13

−0.22

0.14

0.14

0.73

0.75

0.04

−0.22

0

−0.02

−0.13

−0.21

0.15

0.15

0.95

0.03

−0.05

0.05

−0.02

−0.01

−0.15

0.2

0.2

0.01

−0.04

0.05

−0.01

−0.01

−0.14

0.2

0.2

−0.03

−0.21

0.01

−0.09

−0.06

0.02

0.02

0.56

0.02

0.92

0.28

0.06

0.07

−0.03

0.73

−0.11

0.3

0.31

0.02

0

0

0

0.15

0.17

0.17

−0.31

−0.31 0.99

Fig. S3: Spearman’s rank-order correlations for igraph before feature selection.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cyc_l

cyc_f

nol_l

nol_f

nof

noc_d

noc_t

wkd

tfc

own

tpe_l

tpe_e

0.98

0.86

0.84

0.1

0.01

−0.02

0

0.04

−0.05

0.11

0.11

0.85

0.86

0.08

0.01

−0.02

0

0.04

−0.06

0.11

0.11

0.98

0.09

0.01

−0.04

0

0.04

−0.03

0.1

0.1

0.06

0.01

−0.03

0

0.04

−0.04

0.1

0.1

0.05

−0.05

−0.03

−0.01

0.12

0.08

0.08

0.06

0.07

0.73

0.22

0.03

0.03

0.11

0.37

−0.19

0.31

0.32

0.09

−0.02

0

0

0.04

0.17

0.17

−0.37

−0.37 0.98

Fig. S4: Spearman’s rank-order correlations for bitcoin before feature selection.

6 Christoph Gote et al.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cyc_l

cyc_f

nol_l

nol_f

nof

noc_d

noc_t

wkd

tfc

own

tpe_l

tpe_e

0.98

0.8

0.78

−0.01

0.03

−0.07

0

−0.02

0.03

0.14

0.15

0.79

0.8

−0.02

0.04

−0.07

0

−0.02

0.04

0.14

0.14

0.98

−0.03

0.02

−0.1

0

−0.02

0.03

0.08

0.08

−0.05

0.03

−0.1

0

−0.02

0.04

0.07

0.08

0.02

0.01

−0.01

−0.01

0.02

0.09

0.08

0.22

0

0.71

0.17

0.1

0.1

0.04

0.49

−0.15

0.25

0.25

0.01

−0.02

0.02

0.02

0.02

0.18

0.18

−0.4

−0.39 0.99

Fig. S5: Spearman’s rank-order correlations for libav before feature selection.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cyc_l

cyc_f

nol_l

nol_f

nof

noc_d

noc_t

wkd

tfc

own

tpe_l

tpe_e

0.98

0.78

0.76

−0.03

0.05

−0.02

0

0.05

0.02

0.17

0.17

0.77

0.78

−0.05

0.05

−0.02

0

0.06

0.02

0.17

0.17

0.98

−0.04

−0.01

−0.04

0.01

0.01

0.02

0.12

0.12

−0.05

−0.01

−0.04

0.01

0.01

0.02

0.11

0.12

−0.02

−0.03

0

−0.04

0.03

0.07

0.07

0.25

−0.02

0.82

0.11

0.06

0.06

0.01

0.37

−0.09

0.16

0.16

−0.02

−0.02

0.01

0.01

0.01

0.12

0.13

−0.33

−0.33 0.99

Fig. S6: Spearman’s rank-order correlations for FFmpeg before feature selection.

Supplementary Material: Analysing Time-Stamped Co-Editing Networks in Software Development Teams using git2net 7

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cyc_l

cyc_f

nol_l

nol_f

nof

noc_d

noc_t

wkd

tfc

own

tpe_l

tpe_e

0.97

0.72

0.7

0.07

0.06

0

−0.01

0.01

−0.05

−0.1

−0.1

0.7

0.72

0.1

0.05

0

−0.01

0.01

−0.03

−0.1

−0.1

0.97

0.02

0.02

−0.01

−0.01

0

−0.01

−0.13

−0.14

0.06

0.01

−0.01

0

0

0.01

−0.14

−0.14

0.18

0.08

−0.03

0.05

−0.13

0.06

0.06

0.45

−0.06

0.61

−0.07

0

0

−0.02

0.85

−0.05

0.17

0.17

−0.03

0.04

−0.04

−0.03

0.03

0.14

0.14

−0.16

−0.15 0.99

Fig. S7: Spearman’s rank-order correlations for gentoo before feature selection.

●

●

● ●

●

●

●

●

●

●

●

●

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cyc_l

nof

noc_d

noc_t

wkd

own

tpe_l

0.07

−0.22

−0.01

−0.03

−0.22

0.14

−0.03

−0.21

0.01

−0.06

0.02

0.56

0.02

0.28

0.06

−0.03

−0.11

0.3

0

0 −0.31

Fig. S8: Spearman’s rank-order correlations for igraph after feature selection.

8 Christoph Gote et al.

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cyc_l

nof

noc_d

noc_t

wkd

own

tpe_l

0.1

0.01

−0.02

0

−0.05

0.11

0.05

−0.05

−0.03

0.12

0.08

0.06

0.07

0.22

0.03

0.11

−0.19

0.31

−0.02

0 −0.37

Fig. S9: Spearman’s rank-order correlations for bitcoin after feature selection.

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cyc_l

nof

noc_d

noc_t

wkd

own

tpe_l

−0.01

0.03

−0.07

0

0.03

0.14

0.02

0.01

−0.01

0.02

0.09

0.22

0

0.17

0.1

0.04

−0.15

0.25

−0.02

0.02 −0.4

Fig. S10: Spearman’s rank-order correlations for libav after feature selection.

Supplementary Material: Analysing Time-Stamped Co-Editing Networks in Software Development Teams using git2net 9

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cyc_l

nof

noc_d

noc_t

wkd

own

tpe_l

−0.03

0.05

−0.02

0

0.02

0.17

−0.02

−0.03

0

0.03

0.07

0.25

−0.02

0.11

0.06

0.01

−0.09

0.16

−0.02

0.01 −0.33

Fig. S11: Spearman’s rank-order correlations for FFmpeg after feature selection.

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

cyc_l

nof

noc_d

noc_t

wkd

own

tpe_l

0.07

0.06

0

−0.01

−0.05

−0.1

0.18

0.08

−0.03

−0.13

0.06

0.45

−0.06

−0.07

0

−0.02

−0.05

0.17

0.04

−0.04 −0.16

Fig. S12: Spearman’s rank-order correlations for gentoo after feature selection.

10 Christoph Gote et al.

S4 Model selection

In this section, we report the AIC as well as Chi-square test based model selection results finding that ME+
is the most suitable model to describe the productivity in all considered projects. The three candidate models
models are defined in Table 4 of the main manuscript. For the model selection results for the linux kernel
development project please refer to Table 5.

Table S2: AIC as well as Chi-squared test for the three candidate models for igraph.

igraph Df AIC Chisq Chi Df Pr(>Chisq)

LM 9 16.75 — — —
ME- 11 11.39 9.36 2.0 0.01
ME+ 12 0.00 13.39 1.0 0.00

Table S3: AIC as well as Chi-squared test for the three candidate models for bitcoin.

bitcoin Df AIC Chisq Chi Df Pr(>Chisq)

LM 9 69.40 — — —
ME- 11 8.69 64.71 2.0 0.0
ME+ 12 0.00 10.69 1.0 0.0

Table S4: AIC as well as Chi-squared test for the three candidate models for libav.

libav Df AIC Chisq Chi Df Pr(>Chisq)

LM 9 362.64 — — —
ME- 11 38.31 328.33 2.0 0.0
ME+ 12 0.00 40.31 1.0 0.0

Table S5: AIC as well as Chi-squared test for the three candidate models for FFmpeg.

FFmpeg Df AIC Chisq Chi Df Pr(>Chisq)

LM 9 787.62 — — —
ME- 11 13.95 777.67 2.0 0.0
ME+ 12 0.00 15.95 1.0 0.0

Table S6: AIC as well as Chi-squared test for the three candidate models for gentoo.

gentoo Df AIC Chisq Chi Df Pr(>Chisq)

LM 9 1364.22 — — —
ME- 11 36.72 1331.50 2.0 0.0
¡ ME+ 12 0.00 38.72 1.0 0.0

S5 Results for alternative cleaning parameters

In this section, we report the regression results of our large-scale analysis of coordination overhead in
software teams for alternative data cleaning parameters. The results show that our findings are robust against

Supplementary Material: Analysing Time-Stamped Co-Editing Networks in Software Development Teams using git2net 11

the parameters for commit aggregation (∆) and outlier removal (ε) selected during the data cleaning process
described in section S1. For a full description of the results with the selected parameters please refer to Table
6 and section 5.4 of the main manuscript.

Table S7: Regression results of ME+ for all projects in the case study for ∆ = 1 minute and ε = 5%. The
asterisks indicate p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***).

igraph bitcoin libav FFmpeg gentoo linux

own -20.72 22.11** 33.11*** 11.95*** 4.43* 11.04***

(IC) 178.63* 63.24*** 115.12*** 99.37*** 85.98*** 91.27***

cycl 0.1* 0.01 0.0 -0.0 -1.16*** 0.0

noct 2.16 -0.78 -2.11*** -0.59*** -0.11*** -0.09***

no f 3.68** 2.04*** 1.22*** 1.6*** 4.17*** 3.09***

t pel -2.44 4.1 11.48*** 4.91*** 47.65*** 4.35***

nocd -0.15 7.3* 5.39** 3.8*** 1.52*** 5.18***

wkd -12.06 4.93 -9.56* -6.94* -10.26*** -13.59***

Table S8: Regression results of ME+ for all projects in the case study for ∆ = 10 minutes and ε = 5%. The
asterisks indicate p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***).

igraph bitcoin libav FFmpeg gentoo linux

own 25.28** 3.9 9.28*** 4.17*** 5.02*** 3.25***

(IC) 15.47 26.67*** 28.53*** 24.28*** 18.7*** 10.65***

cycl 0.04** 0.01* -0.0 -0.0 -0.2*** 0.0***

noct 2.99 -0.39 -0.45*** -0.12*** -0.04*** -0.01***

no f 1.98*** 0.71*** 1.12*** 1.34*** 0.86*** 1.07***

t pel -0.01 -0.75 3.05*** 1.53*** 7.6*** 0.57***

nocd -0.09 3.88. 1.69*** 0.97*** 0.2*** 1.03***

wkd 2.81 5.94. -4.24** -2.26* -1.98** -0.74*

Table S9: Regression results of ME+ for all projects in the case study for ∆ = 5 minutes and ε = 1%. The
asterisks indicate p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***).

igraph bitcoin libav FFmpeg gentoo linux

own -23.15 22.41 30.08*** 10.93* 18.39*** 12.57***

(IC) 111.24** 45.09* 89.25*** 82.3*** 83.09*** 62.14***

cycl 0.09* 0.06** -0.0 -0.01. -1.28*** 0.01**

noct -4.07 -0.1 -1.36** -0.37** -0.12*** -0.08***

no f 6.01*** 4.35*** 2.79*** 3.54*** 2.52*** 6.39***

t pel -3.91 9.95* 14.54*** 5.48*** 32.17*** 4.67***

nocd 2.36 10.6*** 3.16* 2.59*** 0.67* 4.7***

wkd 9.05 6.74 -14.2* -7.4. -9.55** -12.5***

12 Christoph Gote et al.

Table S10: Regression results of ME+ for all projects in the case study for ∆ = 5 minutes and ε = 10%.
The asterisks indicate p < 0.05 (*), p < 0.01 (**), and p < 0.001 (***).

igraph bitcoin libav FFmpeg gentoo linux

own 12.36* 3.71. 8.47*** 3.58*** 2.61*** 1.71***

(IC) 25.66*** 22.49*** 27.07*** 21.05*** 19.19*** 7.67***

cycl 0.0 0.0 -0.0 -0.0 -0.19*** 0.0*

noct 0.86 -0.62** -0.49*** -0.12*** -0.03*** -0.01***

no f 1.08*** 0.37*** 0.77*** 0.91*** 0.7*** 0.62***

t pel -0.22 0.65 2.5*** 1.2*** 6.7*** 0.34***

nocd 28.26 2.45** 1.79*** 1.08*** 0.25*** 0.76***

wkd 1.83 3.78. -3.84** -1.96** -1.84*** -0.33.

References

Bird C, Rigby PC, Barr ET, Hamilton DJ, German DM, Devanbu P (2009) The promises and perils of
mining git. In: 2009 6th IEEE International Working Conference on Mining Software Repositories, IEEE,
pp 1–10

German DM (2004) Mining CVS repositories, the softChange experience. In: MSR, Citeseer, vol 4, pp
17–21

Scholtes I, Mavrodiev P, Schweitzer F (2016) From Aristotle to Ringelmann: A large-scale analysis of
team productivity and coordination in Open Source Software projects. Empirical Software Engineering
21(2):642–683

