A Soundness Proofs

We prove soundness of our basic bound algorithm for $D C P \mathrm{~s}$ (Definition 19 Theorem (1) in Section A. 1 . In Section A. 2 we prove soundness of our reasoning on reset chains (Definition 23. Theorem 22). Throughout this section we assume a well-defined and fan-in free $D C P \Delta \mathcal{P}\left(L, E, l_{b}, l_{e}\right)$ over \mathcal{A} to be given.

We first define some basic notions which we use to state our proofs precisely.
Definition A. 1 (Indices) Let $\pi=l_{0} \xrightarrow{u_{0}} l_{1} \xrightarrow{u_{1}} \ldots$ be a path of $\Delta \mathcal{P}$. By len (π) we denote the length of π, i.e., the total number of transitions on π (possibly ∞). Let $0 \leq i \leq j$. By $\pi_{[i, j]}$ we denote the sub-path of π that starts at l_{i} and ends at l_{j}. By $\pi(i)=l_{i} \xrightarrow{u_{i}} l_{i+1}$ we denote the $(i+1)$ th transition on π.
Let $\tau \in E$. We define $\Theta(\tau, \pi)=\{0 \leq i<\operatorname{len}(\pi) \mid \pi(i)=\tau\}$. Let $E^{\prime} \subseteq E$. We define $\Theta\left(E^{\prime}, \pi\right)=\bigcup_{\tau \in E^{\prime}} \Theta(\tau, \pi)$. We write $\Theta(\mathcal{R}(\mathrm{v}), \pi)$ to denote $\Theta(\{\tau \mid(\tau,-,-) \in \mathcal{R}(\mathrm{v})\}, \pi)$, and $\Theta(\mathcal{I}(\mathrm{v}), \pi)$ to denote $\Theta\left(\left\{\tau \mid\left(\tau,{ }_{-}\right) \in \mathcal{I}(\mathrm{v})\right\}, \pi\right)$. We use the same notation for runs ρ of $\Delta \mathcal{P}$.
I.e., $\Theta(\tau, \pi)$ is the set of all indices of τ on $\pi, \Theta(\mathcal{R}(\mathrm{v}), \pi)$ is the set of indices of all transitions on π which reset v and $\Theta(\mathcal{I}(\mathrm{v}), \pi)$ is the set of indices of all transitions on π which increment v .

On a run of $\Delta \mathcal{P}$ a variable v may take arbitrary values at locations at which v is not defined, i.e., at locations l with $\mathrm{v} \notin \operatorname{def}(l)$. In a well-defined $D C P$ the value of a variable at a location where it is not defined can, however, not affect the program's behaviour. This observation motivates the notion of a normalized run: a normalized run is a run on which a variable takes value ' 0 ' at locations where it is not defined.
Definition A. 2 (Normalized Run) Let $\rho=\left(l_{0}, \sigma_{0}\right) \xrightarrow{u_{0}}\left(l_{1}, \sigma_{1}\right) \xrightarrow{u_{1}} \cdots$ be a run of $\Delta \mathcal{P}$. Let

$$
\sigma_{i}^{\prime}(\mathrm{a})=\left\{\begin{array}{ll}
0 & \text { if } \mathrm{a} \in \mathcal{V} \text { and } \mathrm{a} \notin \operatorname{def}\left(l_{i}\right) \\
\sigma_{i}(\mathrm{a}) \text { else }
\end{array} \text { for all } 0 \leq i \leq \operatorname{len}(\rho) \text { and all } \mathrm{a} \in \mathcal{A} .\right.
$$

We call $\lfloor\rho\rfloor=\left(l_{0}, \sigma_{0}^{\prime}\right) \xrightarrow{u_{0}}\left(l_{1}, \sigma_{1}^{\prime}\right) \xrightarrow{u_{1}} \cdots$ a normalized run.
Let Ξ be a set of runs of $\Delta \mathcal{P}$. We say that Ξ is closed under normalization if $\rho \in \Xi$ implies that $\lfloor\rho\rfloor \in \Xi$.

Lemma A. 1 states that the set of all runs of $\Delta \mathcal{P}$ is closed under normalization.
Lemma A. 1 Let ρ be a run of $\Delta \mathcal{P}$. Then $\lfloor\rho\rfloor$ is a run of $\Delta \mathcal{P}$.
Proof Follows directly from Definition 14 (well-definedness) and Definition A. 2. \square

A. 1 Soundness of Basic Bound Algorithm

In Lemma A. 2 and Lemma A. 3 we formulate the two key insights on which our algorithm is based. Lemma A. 2 formalizes the intuition given in Section 9 Let v be a local transition bound for τ. The question how often τ can appear on a run ρ is translated to the question how often the transitions which increase the value of v (i.e., $(t,-) \in \mathcal{I}(\mathrm{v})$ and $\left(t,_{-},-\mathcal{R}(\mathrm{v})\right)$ can appear on ρ.

Lemma A. 2 Let ρ be a run of $\Delta \mathcal{P}$. Let $\tau \in E$. Let $\mathrm{v} \in \mathcal{V}$ be a local transition bound for τ on $\lfloor\rho\rfloor$. Let $v b: \mathcal{A} \rightarrow \mathbb{Z}$ be s.t. $v b(\mathrm{a})$ is a variable bound for a on ρ for all $(-, \mathrm{a}, ~-) \in \mathcal{R}(\mathrm{v})$. Then

$$
\left(\sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} \sharp(t, \rho) \times \mathrm{c}\right)+\sum_{(t, \mathrm{a}, \mathrm{c}) \in \mathcal{R}(\mathrm{v})} \sharp(t, \rho) \times(v b(\mathrm{a})+\mathrm{c})
$$

is a transition bound for τ on ρ.
Proof We first show that it is sufficient to consider the case $\lfloor\rho\rfloor=\rho$:

1. Let expr be a transition bound for τ on $\lfloor\rho\rfloor$. Then expr is also a transition bound for τ on ρ (follows directly from Definition A.2).
2. By assumption $v b(\mathrm{a})$ is a variable bound for a on ρ. By Definition A. 2 we have that $v b(\mathrm{a})$ is also a variable bound for a on $\lfloor\rho\rfloor$. We thus assume that $\lfloor\rho\rfloor=\rho$.

We have to show:

$$
\sharp(\tau, \rho) \leq\left(\sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} \sharp(t, \rho) \times \mathrm{c}\right)+\sum_{(t, \mathrm{a}, \mathrm{c}) \in \mathcal{R}(\mathrm{v})} \sharp(t, \rho) \times(v b(\mathrm{a})+\mathrm{c})
$$

A) We first show that

$$
\sharp(\tau, \rho) \leq\left(\sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} \sharp(t, \rho) \times \mathrm{c}\right)+\sum_{j \in \Theta(\mathcal{R}(\mathrm{v}), \rho)} \sigma_{j+1}(\mathrm{v})
$$

We have

$$
\begin{aligned}
& \sharp(\tau, \rho) \stackrel{(1)}{\leq} \sharp(\tau, \rho)+\sum_{i=0}^{\operatorname{len}(\rho)-1} \sigma_{i+1}(\mathrm{v})-\sigma_{i}(\mathrm{v}) \\
& \stackrel{(2 a)}{=} \sharp(\tau, \rho)+\sum_{i=0}^{\operatorname{len}(\rho)-1} \max \left(\sigma_{i+1}(\mathrm{v})-\sigma_{i}(\mathrm{v}), 0\right)+\sum_{i=0}^{\operatorname{len}(\rho)-1} \min \left(\sigma_{i+1}(\mathrm{v})-\sigma_{i}(\mathrm{v}), 0\right) \\
& \stackrel{(2)}{\leq} \sum_{i=0}^{\operatorname{len}(\rho)-1} \max \left(\sigma_{i+1}(\mathrm{v})-\sigma_{i}(\mathrm{v}), 0\right) \\
& \stackrel{(3 a)}{=}\left(\sum_{i \in \Theta(\mathcal{I}(\mathrm{v}), \rho)} \max \left(\sigma_{i+1}(\mathrm{v})-\sigma_{i}(\mathrm{v}), 0\right)\right)+\sum_{i \in \Theta(\mathcal{R}(\mathrm{v}), \rho)} \max \left(\sigma_{i+1}(\mathrm{v})-\sigma_{i}(\mathrm{v}), 0\right) \\
& \stackrel{(3)}{\leq}\left(\sum_{i \in \Theta(\mathcal{I}(\mathrm{v}), \rho)} \max \left(\sigma_{i+1}(\mathrm{v})-\sigma_{i}(\mathrm{v}), 0\right)\right)+\sum_{j \in \Theta(\mathcal{R}(\mathrm{v}), \rho)} \sigma_{j+1}(\mathrm{v}) \\
& \stackrel{(4)}{\leq}\left(\sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} 0 \leq i<l e n(\rho) \mathrm{s.t.} \rho(i)=t\right. \\
&\mathrm{c})+\sum_{j \in \Theta(\mathcal{R}(\mathrm{v}), \rho)} \sigma_{j+1}(\mathrm{v}) \\
& \stackrel{(5)}{=}\left(\sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} \sharp(t, \rho) \times \mathrm{c}\right)+\sum_{j \in \Theta(\mathcal{R}(\mathrm{v}), \rho)} \sigma_{j+1}(\mathrm{v})
\end{aligned}
$$

(1) We have $\sum_{i=0}^{\operatorname{len}(\rho)-1} \sigma_{i+1}(\mathrm{v})-\sigma_{i}(\mathrm{v})=\sigma_{l e n(\rho)}(\mathrm{v})-\sigma_{0}(\mathrm{v})=\sigma_{l e n(\rho)}(\mathrm{v})$
because $\sigma_{0}(\mathrm{v})=0$ with i) $\rho=\lfloor\rho\rfloor$ and ii) $\mathrm{v} \notin \operatorname{def}\left(l_{b}\right)$ (Definition 14).
Trivially $\sigma_{\operatorname{len}(\rho)}(\mathrm{v}) \geq 0$. Therefore $\sum_{i=0}^{\operatorname{len}(\rho)-1} \sigma_{i+1}(\mathrm{v})-\sigma_{i}(\mathrm{v}) \geq 0$.
(2a) Case Distinction
(2) We have $\sharp(\tau, \rho) \leq \downarrow(\mathrm{v}, \rho)$ (Definition 9).

Further $\downarrow(\mathrm{v}, \tau) \leq\left(\sum_{i=0}^{\operatorname{len}(\rho)-1} \min \left(\sigma_{i+1}(\mathrm{v})-\sigma_{i}(\mathrm{v}), 0\right)\right) \times-1$.
Thus $\sharp(\tau, \rho)+\sum_{i=0}^{l e n(\rho)-1} \min \left(\sigma_{i+1}(\mathrm{v})-\sigma_{i}(\mathrm{v}), 0\right) \leq 0$.
(3a) $\sigma_{i+1}(\mathrm{v})-\sigma_{i}(\mathrm{v})>0$ implies in particular that $\sigma_{i+1}(\mathrm{v})>0$. Thus $\mathrm{v} \in \operatorname{def}\left(l_{i+1}\right)$ because $\rho=\lfloor\rho\rfloor$ by assumption. With $\sigma_{i+1}(\mathrm{v})>\sigma_{i}(\mathrm{v})$ we have that either:
Case 1) $\left(\rho(i),{ }_{-}\right) \in \mathcal{I}(\mathrm{v})$, i.e., $i \in \Theta(\mathcal{I}(\mathrm{v}), \rho)$, or
Case 2) $\left(\rho(i),{ }_{-},-\right) \in \mathcal{R}(\mathrm{v})$, i.e., $i \in \Theta(\mathcal{R}(\mathrm{v}), \rho)$.
(3) Since $\sigma_{i}(\mathrm{v}) \geq 0$ we have that $\sigma_{i+1}(\mathrm{v})-\sigma_{i}(\mathrm{v}) \leq \sigma_{i+1}(\mathrm{v})$.
(4) If $i \in \Theta(\mathcal{I}(\mathrm{v}), \rho)$ then there is $(t, \mathrm{c}) \in \operatorname{Incr}(\mathrm{v})$ s.t. $\rho(i)=t$ (Definition A.1). Further $\sigma_{i+1}(\mathrm{v})-\sigma_{i}(\mathrm{v}) \leq \mathrm{c}$ and $\mathrm{c}>0$ (Definition 18).
(5) By definition of $\sharp(t, \rho)$ (Definition 7).
B) We show that $\sum_{j \in \Theta(\mathcal{R}(\mathrm{v}), \rho)} \sigma_{j+1}(\mathrm{v}) \leq \sum_{(t, \mathrm{a}, \mathrm{c}) \in \mathcal{R}(\mathrm{v})} \sharp(t, \rho) \times(v b(\mathrm{a})+\mathrm{c})$:

$$
\begin{aligned}
\sum_{j \in \Theta(\mathcal{R}(\mathrm{v}), \rho)} \sigma_{j+1}(\mathrm{v}) & \stackrel{(1)}{=} \sum_{(t, \mathrm{a}, \mathrm{c}) \in \mathcal{R}(\mathrm{v})} \sum_{j \in \Theta(t, \rho)} \sigma_{j+1}(\mathrm{v}) \\
& \stackrel{(2)}{\leq} \sum_{(t, \mathrm{a}, \mathrm{c}) \in \mathcal{R}(\mathrm{v})} \sum_{j \in \Theta(t, \rho)} \sigma_{j}(\mathrm{a})+\mathrm{c} \\
& \stackrel{(3)}{\leq} \sum_{(t, \mathrm{a}, \mathrm{c}) \in \mathcal{R}(\mathrm{v})} \sum_{j \in \Theta(t, \rho)} v b(\mathrm{a})+\mathrm{c} \\
& \stackrel{(4)}{=} \sum_{(t, \mathrm{a}, \mathrm{c}) \in \mathcal{R}(\mathrm{v})} \sharp(t, \rho) \times(v b(\mathrm{a})+\mathrm{c})
\end{aligned}
$$

(1) By commutativity: Let $j \in \Theta(\mathcal{R}(\mathrm{v}), \rho)$. By the assumption that $\Delta \mathcal{P}$ is fan-in free there is only exactly one $\mathrm{a} \in \mathcal{A}$ and exactly one $\mathrm{c} \in \mathbb{Z}$ s.t. $(\rho(j), \mathrm{a}, \mathrm{c}) \in \mathcal{R}(\mathrm{v})$.
(2) With $(\rho(j), \mathrm{a}, \mathrm{c}) \in \mathcal{R}(\mathrm{v})$ we have that $\sigma_{j+1}(\mathrm{v}) \leq \sigma_{j}(\mathrm{a})+\mathrm{c}$ (Definition 18).
(3) Let $\left(t, \mathrm{a},{ }_{-}\right) \in \mathcal{R}(\mathrm{v})$. By assumption $v b(\mathrm{a})$ is a variable bound for a on ρ. Let $j \in$ $\Theta(t, \rho)$. We have that $\mathrm{a} \in \operatorname{def}\left(l_{j}\right)$ by well-definedness of $\Delta \mathcal{P}$. Thus $\sigma_{j}(\mathrm{a}) \leq v b(\mathrm{a})$.
(4) Let $(t, \mathrm{a}, \mathrm{c}) \in \mathcal{R}(\mathrm{v})$. We have $\sum_{j \in \Theta(t, \rho)} v b(\mathrm{a})+\mathrm{c}=|\Theta(t, \rho)| \times(v b(\mathrm{a})+\mathrm{c})$.

Further $|\Theta(t, \rho)|=\sharp(t, \rho)$ (Definition 7).

With A) and B) we have

$$
\sharp(\tau, \rho) \leq\left(\sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} \sharp(t, \rho) \times \mathrm{c}\right)+\sum_{(t, \mathrm{a}, \mathrm{c}) \in \mathcal{R}(\mathrm{v})} \sharp(t, \rho) \times(v b(\mathrm{a})+\mathrm{c}) .
$$

Lemma A. 3 states that the value of a variable $v \in \mathcal{V}$ on a run ρ of $\Delta \mathcal{P}$ is limited by the maximum over all values to which v is reset on ρ plus the total amount by which v is incremented on ρ.

Lemma A. 3 Let $\mathrm{v} \in \mathcal{V}$. Let ρ be a run of $\Delta \mathcal{P}$. Let $v b: \mathcal{A} \rightarrow \mathbb{Z}$ be s.t. $v b(\mathrm{a})$ is a variable bound for a on ρ for all $\left(-, a_{-}\right) \in \mathcal{R}(\mathrm{v})$. Then

$$
\max _{(-, \mathrm{a}, \mathrm{c}) \in \mathcal{R}(\mathrm{v})}(v b(\mathrm{a})+\mathrm{c})+\sum_{(\tau, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} \sharp(\tau, \rho) \times \mathrm{c}
$$

is a variable bound for v on ρ.
Proof We have to show that

$$
\sigma_{i}(\mathrm{v}) \leq \max _{(-, \mathrm{a}, \mathrm{c}) \in \mathcal{R}(\mathrm{v})}(v b(\mathrm{a})+\mathrm{c})+\sum_{(\tau, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} \sharp(\tau, \rho) \times \mathrm{c}
$$

holds for all $0 \leq i \leq l e n(\rho)$ with $\mathrm{v} \in \operatorname{def}\left(l_{i}\right)$.
Let $0 \leq i \leq \operatorname{len}(\rho)$ be s.t. $\mathrm{v} \in \operatorname{def}\left(l_{i}\right)$. By well-definedness of $\Delta \mathcal{P}$ there is a $0 \leq j<i$, a $b \in \mathcal{A}$ and a $c \in \mathbb{Z}$ s.t. $(\rho(j), b, c) \in \mathcal{R}(\mathrm{v})$ and v is not reset on $\rho_{[j+1, i]}$, i.e., for all $j<k<i\left(\rho(k),{ }_{-},-\right) \notin \mathcal{R}(\mathrm{v})$. In other words: there is a maximal index $j<i$ such that v is reset on $\rho(j)$. We have:

$$
\begin{aligned}
\sigma_{i}(\mathrm{v}) & \stackrel{(1)}{\leq} \sigma_{j+1}(\mathrm{v})+\sum_{(\tau, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} \sharp\left(\tau, \rho_{[j+1, i]}\right) \times \mathrm{c} \\
& \stackrel{(2)}{\leq} \sigma_{j+1}(\mathrm{v})+\sum_{(\tau, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} \sharp(\tau, \rho) \times \mathrm{c} \\
& \stackrel{(3)}{\leq} \sigma_{j}(b)+c+\sum_{(\tau, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} \sharp(\tau, \rho) \times \mathrm{c} \\
& \stackrel{(4)}{\leq} v b(b)+c+\sum_{(\tau, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} \sharp(\tau, \rho) \times \mathrm{c} \\
& \stackrel{(5)}{\leq} \max _{(-, \mathrm{a}, \mathrm{c}) \in \mathcal{R}(\mathrm{v})}(v b(\mathrm{a})+\mathrm{c})+\sum_{(\tau, c) \in \mathcal{I}(\mathrm{v})} \sharp(\tau, \rho) \times \mathrm{c}
\end{aligned}
$$

(1) We have that v is not reset on $\rho_{[j+1, i]}$. If v is incremented on $\rho_{[j+1, i]}$ there are indices $j<k<i$ s.t. $(\rho(k),-) \in \mathcal{I}(\mathrm{v})$. Let $(\tau, \mathrm{c}) \in \mathcal{I}(\mathrm{v})$. An execution of τ can increase the value of v by at most c (Definition 18). Therefore the total number $\sharp\left(\tau, \rho_{[j+1, i]}\right)$ of executions of τ on $\rho_{[j+1, i]}$ adds at most $\sharp\left(\tau, \rho_{[j+1, i]}\right) \times \mathrm{c}$ to v . Thus in total v cannot be increased by more than $\sum_{(\tau, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} \sharp\left(\tau, \rho_{[j+1, i]}\right) \times \mathrm{c}$ on ρ.
(2) $\sharp\left(\tau, \rho_{[j+1, i]}\right) \leq \sharp(\tau, \rho)$. Further for all $(-, c) \in \mathcal{I}(v) c \geq 0$ (Definition 18).
(3) $\sigma_{j+1}(\mathrm{v}) \leq \sigma_{j}(b)+c$ (Definition 12).
(4) With $(\rho(j), b, c) \in \mathcal{R}(v)$ we have by assumption that $v b(b)$ is a variable bound for b on ρ. Further $b \in \operatorname{def}\left(l_{j}\right)$ by well-definedness of $\Delta \mathcal{P}$. Thus $\sigma_{j}(b) \leq v b(b)$.
(5) We have $(\rho(j), b, c) \in \mathcal{R}(\mathrm{v})$. Therefore $v b(b)+c \leq \max _{(-, \mathrm{a}, \mathrm{c}) \in \mathcal{R}(\mathrm{v})}(v b(\mathrm{a})+\mathrm{c})$.

A.1.1 Proof of Theorem 1

We show the more general claim formulated in Theorem A. 1
Theorem A. 1 Let $\Delta \mathcal{P}\left(L, E, l_{b}, l_{e}\right)$ be a well-defined and fan-in free DCP over atoms \mathcal{A}. Let Ξ be a set of runs of $\Delta \mathcal{P}$ closed under normalization. Let $\zeta: E \mapsto \operatorname{Expr}(\mathcal{A})$ be a local bound mapping for all $\rho \in \Xi$. Let $T \mathcal{B}$ and $V \mathcal{B}$ be defined as in Definition 19 . Let $\mathrm{a} \in \mathcal{A}$ and $\tau \in E$. Let $\rho \in \Xi$. Let σ_{0} be the initial state of ρ. We have: $(I) \llbracket T \mathcal{B}(\tau) \rrbracket\left(\sigma_{0}\right)$ is a transition bound for τ on ρ. (II) $\llbracket V \mathcal{B}(\mathrm{a}) \rrbracket\left(\sigma_{0}\right)$ is a variable bound for a on ρ.

Proof Let $\rho=\left(\sigma_{0}, l_{0}\right) \xrightarrow{u_{0}}\left(\sigma_{1}, l_{1}\right) \xrightarrow{u_{1}} \cdots \in \Xi$.
If $\llbracket T \mathcal{B}(\tau) \rrbracket=\infty(\mathrm{I})$ holds trivially. If $\llbracket V \mathcal{B}(\mathrm{a}) \rrbracket=\infty$ (II) holds trivially.
Assume $\llbracket T \mathcal{B}(\tau) \rrbracket \neq \infty$ and $\llbracket V \mathcal{B}(\mathrm{a}) \rrbracket \neq \infty$. Then in particular the computation of $T \mathcal{B}(\tau)$ resp. $V \mathcal{B}(\mathrm{a})$ terminates. We proceed by induction over the call tree of $T \mathcal{B}(\tau)$ resp. $V \mathcal{B}(\mathrm{a})$.

Base Case:
(I) No function call is triggered when computing $\operatorname{VB}(\mathrm{a})$. This is the case iff $\mathrm{a} \in \mathcal{C}$ (Definition 19). Then $V \mathcal{B}(\mathrm{a})=\mathrm{a}$ and the claim holds trivially with $\mathrm{a} \in \mathcal{C}$ (Definition 13).
(II) No function call is triggered when computing $T \mathcal{B}(\tau)$. This is the case iff $\zeta(\tau) \notin \mathcal{V}$ (Definition 19). Then $\llbracket T \mathcal{B}(\tau) \rrbracket\left(\sigma_{0}\right)=\llbracket \zeta(\tau) \rrbracket\left(\sigma_{0}\right)$ is a transition bound for τ on ρ by Definition 17 .

Step Case:
(I) a $\notin \mathcal{C}$, thus $\mathrm{a} \in \mathcal{V}$. Let $\mathrm{v}=\mathrm{a}$. Let $0 \leq i \leq \operatorname{len}(\rho)$ be $\mathrm{s} . \mathrm{t} . \mathrm{v} \in \operatorname{def}\left(l_{i}\right)$. We have:

$$
\begin{aligned}
\sigma_{i}(\mathrm{v}) & \stackrel{(1)}{\leq} \max _{(-, b, \mathrm{c}) \in \mathcal{R}(\mathrm{v})}\left(\llbracket V \mathcal{B}(b) \rrbracket\left(\sigma_{0}\right)+\mathrm{c}\right)+\sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} \sharp(t, \rho) \times \mathrm{c} \\
& \stackrel{(2)}{\leq} \max _{(-, b, \mathrm{c}) \in \mathcal{R}(\mathrm{v})}\left(\llbracket V \mathcal{B}(b) \rrbracket\left(\sigma_{0}\right)+\mathrm{c}\right)+\sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} \llbracket T \mathcal{B}(t) \rrbracket\left(\sigma_{0}\right) \times \mathrm{c} \\
& \stackrel{(3)}{=} \llbracket \max _{(-, b, \mathrm{c}) \in \mathcal{R}(\mathrm{v})}(V \mathcal{B}(b)+\mathrm{c}) \rrbracket\left(\sigma_{0}\right)+\llbracket \operatorname{Incr}(\mathrm{v}) \rrbracket\left(\sigma_{0}\right) \\
& \stackrel{(4)}{=} \llbracket V \mathcal{B}(\mathrm{v}) \rrbracket\left(\sigma_{0}\right)
\end{aligned}
$$

(1) By Lemma A.3. Let $\left.\left(_, b,\right)^{-}\right) \in \mathcal{R}(v)$. We have that $V \mathcal{B}(b)$ is recursively called when computing $V \mathcal{B}(\mathrm{v})$ (Definition 19). Note that with $\llbracket V \mathcal{B}(\mathrm{v}) \rrbracket \neq \infty$ also $\llbracket V \mathcal{B}(b) \rrbracket \neq \infty$. By I.H. $\llbracket V \mathcal{B}(b) \rrbracket\left(\sigma_{0}\right)$ is a variable bound for b on ρ.
(2) Let $\left(t,,_{-}\right) \in \mathcal{I}(\mathrm{v})$. We have that $T \mathcal{B}(t)$ is called when computing $V \mathcal{B}(\mathrm{v})$ (Definition 19). Note that with $\llbracket V \mathcal{B}(\mathrm{v}) \rrbracket \neq \infty$ also $\llbracket T \mathcal{B}(t) \rrbracket \neq \infty$. By I.H. $\sharp(t, \rho) \leq$ $\llbracket T \mathcal{B}(t)) \rrbracket\left(\sigma_{0}\right)$. We thus get $\sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} \sharp(t, \rho) \times \mathrm{c} \leq \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} \llbracket T \mathcal{B}(t) \rrbracket\left(\sigma_{0}\right) \times \mathrm{c}$ because for all $(\mathrm{c}, \mathrm{c}) \in \mathcal{I}(\mathrm{v})$ we have $\mathrm{c}>0$ (Definition 18).
(3) $\llbracket \operatorname{Incr}(\mathrm{v}) \rrbracket\left(\sigma_{0}\right)=\sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} \llbracket T \mathcal{B}(t) \rrbracket\left(\sigma_{0}\right) \times \mathrm{c}$ (Definition 19 and Definition 15$)$.
(4) Definition 19 and Definition 15
(II) $\zeta(\tau) \in \mathcal{V}$. We have:

$$
\begin{aligned}
\sharp(\tau, \rho) & \stackrel{(1)}{\leq}\left(\sum_{(t, c) \in \mathcal{I}(\zeta(\tau))} \sharp(t, \rho) \times c\right)+\sum_{(t, b, c) \in \mathcal{R}(\zeta(\tau))} \sharp(t, \rho) \times \llbracket V \mathcal{B}(b) \rrbracket\left(\sigma_{0}\right)+c \\
& \stackrel{(2)}{\leq} \sum_{(t, c) \in \mathcal{I}(\zeta(\tau))} \llbracket T \mathcal{B}(t) \rrbracket\left(\sigma_{0}\right) \times c+\sum_{(t, b, c) \in \mathcal{R}(\zeta(\tau))} \sharp(t, \rho) \times \llbracket V \mathcal{B}(b) \rrbracket\left(\sigma_{0}\right)+c \\
& \stackrel{(3)}{=} \llbracket \operatorname{Incr}(\zeta(\tau)) \rrbracket\left(\sigma_{0}\right)+\sum_{(t, b, c) \in \mathcal{R}(\zeta(\tau))} \sharp(t, \rho) \times \llbracket V \mathcal{B}(b) \rrbracket\left(\sigma_{0}\right)+c \\
& \stackrel{(4)}{\leq} \llbracket \operatorname{Incr}(\zeta(\tau)) \rrbracket\left(\sigma_{0}\right)+\sum_{(t, b, c) \in \mathcal{R}(\zeta(\tau))} \llbracket T \mathcal{B}(t) \rrbracket\left(\sigma_{0}\right) \times \max \left(\llbracket V \mathcal{B}(b) \rrbracket\left(\sigma_{0}\right)+c, 0\right) \\
& \stackrel{(5)}{=} \llbracket T \mathcal{B}(\tau) \rrbracket\left(\sigma_{0}\right)
\end{aligned}
$$

(1) By Lemma A.2. Since Ξ is closed under normalization we have that $\zeta(\tau)$ is a local transition bound for τ on $\lfloor\rho\rfloor$. Further: Let $\left({ }_{-}, b,{ }_{-}\right) \in \mathcal{R}(\zeta(\tau))$. We have that $V \mathcal{B}(b)$ is called during the computation of $T \mathcal{B}(\tau)$ (Definition 19). Note that with $\llbracket T \mathcal{B}(\tau) \rrbracket \neq \infty$ also $\llbracket V \mathcal{B}(b) \rrbracket \neq \infty$. By I.H. $\llbracket V \mathcal{B}(b) \rrbracket\left(\sigma_{0}\right)$ is a variable bound for b.
(2) Let $\left(t,{ }_{-}\right) \in \mathcal{I}(\zeta(\tau))$. We have that there is a recursive call to $T \mathcal{B}(t)$ during the computation of $T \mathcal{B}(\tau)$ (Definition 19). Note that with $\llbracket T \mathcal{B}(\tau) \rrbracket \neq \infty$ also $\llbracket T \mathcal{B}(t) \rrbracket \neq \infty$. By I.H. $\sharp(t, \rho) \leq \llbracket T \mathcal{B}(t) \rrbracket\left(\sigma_{0}\right)$. Further for all $(-, \mathrm{c}) \in \mathcal{I}(\mathrm{v}) \mathrm{c} \geq 0$ (Definition 18).
(3) Definition 19 and Definition 15
(4) Let $(t,-,-) \in \mathcal{R}(\zeta(\tau))$. We have that $T \mathcal{B}(t)$ is recursively called during the computation of $T \mathcal{B}(\tau)$ (Definition 19). Note that with $\llbracket T \mathcal{B}(\tau) \rrbracket \neq \infty$ also $\llbracket T \mathcal{B}(t) \rrbracket \neq \infty$. By I.H. $\sharp(t, \rho) \leq \llbracket T \mathcal{B}(t) \rrbracket\left(\sigma_{0}\right)$.
(5) Definition 19 and Definition 15
A. 2 Soundness of Reasoning Based on Reset Chains

Lemma A. 7 extends Lemma A. 2 by chained resets. Lemma A.4 Lemma A. 5 and Lemma A. 6 are helper lemmas needed for the proof of Lemma A. 7.

Definition A. 3 (Matching of a Reset Chain) Let $\kappa=\mathrm{a}_{n} \xrightarrow{\tau_{n}, \mathrm{c}_{n}} \mathrm{a}_{n-1} \xrightarrow{\tau_{n-1}, \mathrm{c}_{n-1}}$ $\cdots \mathrm{a}_{0}$ be a reset chain of $\Delta \mathcal{P}$. Let ρ be a run of $\Delta \mathcal{P}$. We call $i_{n}, i_{n-1} \ldots i_{1} \in \mathbb{N}$ with $0 \leq i_{n}<i_{n-1} \cdots<i_{1}<\operatorname{len}(\rho)$ a matching of κ on ρ iff $\rho\left(i_{j}\right)=\tau_{j}$ holds for all $n \geq j \geq 1$. We call i_{n} the first index and i_{1} is the last index. A matching $i_{n}, i_{n-1}, \ldots, i_{1}$ of κ on ρ is precise iff for all $n>j \geq 1$ it holds that a_{j} is not reset on $\rho_{\left[i_{j+1}+1, i_{j}\right]}$, i.e., $\left(\rho(k),,_{-}\right) \notin \mathcal{R}\left(\mathrm{a}_{j}\right)$ for all $i_{j+1}<k<i_{j}$.
Informally: There is a matching of $\kappa=\mathrm{a}_{n} \xrightarrow{\tau_{n}, \mathrm{c}_{n}} \mathrm{a}_{n-1} \xrightarrow{\tau_{n-1}, \mathrm{c}_{n-1}} \cdots \mathrm{a}_{0}$ on a run ρ if ρ contains the transitions $\tau_{n}, \tau_{n-1}, \ldots, \tau_{1}$ in that order. A matching $i_{n}, i_{n-1}, \ldots i_{1}$ is precise if for all $n>j \geq 1$ it holds that a_{j} flows into a_{j-1} when executing $\rho\left(i_{j}\right)$ because a_{j} is not reset between the reset of a_{j} to a_{j+1} on $\rho\left(i_{j+1}\right)$ and the reset of a_{j-1} to a_{j} on $\rho\left(i_{j}\right)$.
Definition A. 4 (First- and Last-Indices of Precise Matchings) Let ρ be a run of $\Delta \mathcal{P}$. Let $\kappa=\mathrm{a}_{n} \xrightarrow{\tau_{n}, c_{n}} \mathrm{a}_{n-1} \xrightarrow{\tau_{n}, c_{n}} \ldots \xrightarrow{\tau_{1}, c_{1}} \mathrm{a}_{0}$ be a reset chain. We define
$\alpha(\kappa, \rho)$ to denote the set
$\left\{\left(i_{n}, i_{1}\right) \mid \exists i_{n-1}, \ldots, i_{2}\right.$ s.t. $i_{n}, i_{n-1}, i_{n-2}, \ldots, i_{2}, i_{1}$ is a precise matching of κ on $\left.\rho\right\}$.
I.e., $\alpha(\kappa, \rho)$ is the set of first- and last-indices of all precise matchings of κ on ρ. Note that in particular $i \leq j$ for all $(i, j) \in \alpha(\kappa, \rho)$, i.e., the interval $[i \ldots j]$ is non-empty.

Given a reset chain κ from b to v and a precise matching of κ on a run ρ with first index i and last index j, Lemma A.4 states that the value of v in state σ_{j} on ρ is bounded by the value of b in state σ_{i} on ρ and the increments of a $\in \operatorname{atm}(\kappa)$ between index i and index j on ρ.

Lemma A. 4 Let ρ be a run of $\Delta \mathcal{P}$. Let $b \in \mathcal{A}$ and $\mathrm{v} \in \mathcal{V}$. Let κ be a reset chain from b to v. Let $(i, j) \in \alpha(\kappa, \rho)$. Then

$$
\sigma_{j+1}(\mathrm{v}) \leq \sigma_{i}(b)+c(\kappa)+\sum_{\mathrm{a} \in \operatorname{atm}(\kappa) \backslash\{\mathrm{v}\}} \sum_{(\tau, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp\left(\tau, \rho_{[i+1, j]}\right) \times \mathrm{c}
$$

holds.
Proof We show the claim by induction on the length of κ.
Base Case: Let $\kappa=b \xrightarrow{\tau, c}$ v. With $(i, j) \in \alpha(\kappa, \rho)$ we have that $i=j$ and $\rho(i)=$ $\rho(j)=\tau$. Further we have that $(\tau, b, \mathrm{c}) \in \mathcal{R}(\mathrm{v})$ (Definition 20). Thus $\sigma_{j+1}(\mathrm{v})=$ $\sigma_{i+1}(\mathrm{v}) \leq \sigma_{i}(b)+\mathrm{c}$ (Definition 18). Note that $\operatorname{atm}(\kappa) \backslash\{\mathrm{v}\}=\emptyset$ since $b \notin \operatorname{atm}(\kappa)$ (Definition 20).

Step Case: Let $\kappa=\mathrm{a}_{n+1} \xrightarrow{\tau_{n+1}, c_{n+1}} \mathrm{a}_{n} \xrightarrow{\tau_{n}, c_{n}} \ldots \xrightarrow{\tau_{1}, c_{1}} \mathrm{v}$ with $\mathrm{a}_{n+1}=b$. Let $i_{n+1}, i_{n}, i_{n-1}, \ldots, i_{1}$ be a precise matching of κ on ρ with $i_{n+1}=i$ and $i_{1}=j$.

$$
\begin{aligned}
& \sigma_{j+1}(\mathrm{v})=\sigma_{i_{1}+1}(\mathrm{v}) \stackrel{(1)}{\leq} \sigma_{i_{n}}\left(\mathrm{a}_{n}\right)+c\left(\kappa_{[n, 0]}\right)+\sum_{\mathrm{a} \in \operatorname{atm}\left(\kappa_{[n, 0]}\right) \backslash\{\mathrm{v}\}} \sum_{(\tau, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp\left(\tau, \rho_{\left[i_{n}+1, i_{1}\right]}\right) \times \mathrm{c} \\
& \stackrel{(2)}{\leq} \sigma_{i_{n+1}+1}\left(\mathrm{a}_{n}\right)+\left(\sum_{(\tau, \mathrm{c}) \in \mathcal{I}\left(\mathrm{a}_{n}\right)} \sharp\left(\tau, \rho_{\left[i_{n+1}+1, i_{n}\right]}\right) \times \mathrm{c}\right) \\
& +c\left(\kappa_{[n, 0]}\right)+\sum_{\mathrm{a} \in \operatorname{atm}\left(\kappa_{[n, 0]}\right) \backslash\{\mathrm{v}\}} \sum_{(\tau, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp\left(\tau, \rho_{\left[i_{n}+1, i_{1}\right]}\right) \times \mathrm{c} \\
& \stackrel{(3)}{\leq} \sigma_{i_{n+1}}\left(\mathrm{a}_{n+1}\right)+c_{n+1}+\left(\sum_{(\tau, \mathrm{c}) \in \mathcal{I}\left(\mathrm{a}_{n}\right)} \sharp\left(\tau, \rho_{\left[i_{n+1}+1, i_{n}\right]}\right) \times \mathrm{c}\right) \\
& +c\left(\kappa_{[n, 0]}\right)+\sum_{\mathrm{a} \in \operatorname{atm}\left(\kappa_{[n, 0]}\right) \backslash\{\mathrm{v}\}} \sum_{(\tau, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp\left(\tau, \rho_{\left[i_{n}+1, i_{1}\right]}\right) \times \mathrm{c} \\
& \stackrel{(4)}{\leq} \sigma_{i_{n+1}}\left(\mathrm{a}_{n+1}\right)+c_{n+1}+\left(\sum_{(\tau, \mathrm{c}) \in \mathcal{I}\left(\mathrm{a}_{n}\right)} \sharp\left(\tau, \rho_{\left[i_{n+1}+1, i_{1}\right]}\right) \times \mathrm{c}\right) \\
& +c\left(\kappa_{[n, 0]}\right)+\sum_{\mathrm{a} \in \operatorname{atm}\left(\kappa_{[n, 0]}\right) \backslash\{\mathrm{v}\}} \sum_{(\tau, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp\left(\tau, \rho_{\left[i_{n+1}+1, i_{1}\right]}\right) \times \mathrm{c} \\
& \stackrel{(5)}{=} \sigma_{i_{n+1}}\left(\mathrm{a}_{n+1}\right)+c(\kappa)+\sum_{\mathrm{a} \in \operatorname{atm}(\kappa) \backslash\{\mathrm{v}\}} \sum_{(\tau, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp\left(\tau, \rho_{\left[i_{n+1}+1, i_{1}\right]}\right) \times \mathrm{c}
\end{aligned}
$$

(1) By I.H.: We have that $\kappa_{[n, 0]}$ is also a reset chain (Definition 20 , note that $\kappa_{[n, 0]}$ is non-empty by definition of κ) and since $i_{n+1}, i_{n}, \ldots, i_{1}$ is a precise matching of κ on $\rho, i_{n}, \ldots, i_{1}$ is a precise matching of $\kappa_{[n, 0]}$ on ρ (Definition A.3).
(2) We have that for all $i_{n+1}<j<i_{n}(\rho(j),-,-) \notin \mathcal{R}\left(\mathrm{a}_{n}\right)$ (Definition A.3), i.e., a_{n} is not reset on $\rho_{\left[i_{n+1}+1, i_{n}\right]}$. In the proof of Lemma A.3 we show that $\sigma_{i_{n}}\left(\mathrm{a}_{n}\right) \leq \sigma_{i_{n+1}+1}\left(\mathrm{a}_{n}\right)+\sum_{(\tau, \mathrm{c}) \in \mathcal{I}\left(\mathrm{a}_{n}\right)} \sharp\left(\tau, \rho_{\left[i_{n+1}+1, i_{n}\right]}\right) \times \mathrm{c}$.
(3) $\sigma_{i_{n+1}+1}\left(\mathrm{a}_{n}\right) \leq \sigma_{i_{n}+1}\left(\mathrm{a}_{n+1}\right)+\mathrm{c}_{n+1}$ (Definition 20)
(4) Note that $\left[i_{n+1}+1 \ldots i_{n}\right]$ is a sub-interval of $\left[i_{n+1}+1 \ldots i_{1}\right]$. Therefore $\sharp\left(\tau, \rho_{\left[i_{n+1}+1, i_{n}\right]}\right) \leq \sharp\left(\tau, \rho_{\left[i_{n+1}+1, i_{1}\right]}\right)$ for all $\tau \in E$. Accordingly $\left[i_{n}+1 \ldots i_{1}\right]$ is a sub-interval of $\left[i_{n+1}+1 \ldots i_{1}\right]$. Therefore $\sharp\left(\tau, \rho_{\left[i_{n}+1, i_{1}\right]}\right) \leq \sharp\left(\tau, \rho_{\left[i_{n+1}+1, i_{1}\right]}\right)$ for all $\tau \in E$. We thus get
$\sum_{(\tau, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp\left(\tau, \rho_{\left[i_{n+1}+1, i_{n}\right]}\right) \times \mathrm{c} \leq \sum_{\left(\tau, \sum_{(\tau, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp\left(\tau, \rho_{\left[i_{n+1}+1, i_{1}\right]}\right) \times \mathrm{c} \text { and }\right.}^{\sum_{(\tau, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp\left(\tau, \rho_{\left[i_{n}+1, i_{1}\right]}\right) \times \mathrm{c} \leq \sum_{(\tau, c) \in \mathcal{I}(\mathrm{a})} \sharp\left(\tau, \rho_{\left[i_{n+1}+1, i_{1}\right]}\right) \times \mathrm{c}}$.
because we have that for all $\mathrm{v} \in \mathcal{V}$ and for all $(\mathrm{c}, \mathrm{c}) \in \mathcal{I}(\mathrm{v})$ it holds that $\mathrm{c}>0$ (Definition 18).
(5) We have $c(\kappa)=c\left(\kappa_{[n, 0]}\right)+\mathrm{c}_{n+1}$ and $\operatorname{atm}(\kappa)=\operatorname{atm}\left(\kappa_{[n, 0]}\right) \cup\left\{\mathrm{a}_{n}\right\}$ (Definition 20).

Let $\mathrm{v} \in \mathcal{V}$. Lemma A. 5 states that for each index j on a run ρ s.t. v is reset on $\rho(j)$, there is a corresponding optimal reset chain κ and a precise matching of κ on ρ ending at j.
Lemma A. 5 Let ρ be a run of $\Delta \mathcal{P}$. Let $\mathrm{v} \in \mathcal{V}$. Let $\left(\tau,,_{-}\right) \in \mathcal{R}(\mathrm{v})$. Let j be s.t. $\rho(j)=\tau$. There is a $\kappa \in \mathfrak{R}(\mathrm{v})$ and $a i \leq j$ s.t. $(i, j) \in \alpha(\kappa, \rho)$.
Proof Let $\mathrm{a} \in \mathcal{A}$ and $\mathrm{c} \in \mathbb{Z}$ be such that $(\tau, \mathrm{a}, \mathrm{c}) \in \mathcal{R}(\mathrm{v})$ (note that by determinism of $\Delta \mathcal{P}$ there is exactly one such a and c). We proof the claim by the following recursive reasoning:
[Start] We show that there is a sound reset chain κ that ends at v and a precise matching of κ on ρ that ends at j : Obviously a $\xrightarrow{\tau, \mathrm{c}} \mathrm{v}$ is a reset chain. Further $\mathrm{a} \xrightarrow{\tau, \mathrm{c}} \mathrm{v}$ is trivially sound (Definition 20). We have that j is a precise matching for $\mathrm{a} \xrightarrow{\tau, \mathrm{c}} \mathrm{v}$ on ρ because by assumption $\rho(j)=\tau$ (Definition A.3).
[Recursive Step] We thus have that there is a sound reset chain $\kappa=\mathrm{a}_{n} \xrightarrow{\tau_{n}, c_{n}}$ $\mathrm{a}_{n-1} \xrightarrow{\tau_{n-1}, c_{n-1}} \ldots \xrightarrow{\tau_{1}, c_{1}} \mathrm{v}$ and a precise matching $i_{n}, i_{n-1}, \ldots, i_{1}$ of κ on ρ with $i_{1}=j$. If κ is optimal then $\kappa \in \mathfrak{R}(\mathrm{v})$ (Definition 20) and with $\left(i_{n}, j\right) \in \alpha(\kappa, \rho)$ the claim is proven. Assume κ is not optimal. Then $\mathrm{a}_{n} \in \mathcal{V}$ because κ is not maximal (Definition 20). By well-definedness of $\Delta \mathcal{P} \mathrm{a}_{n}$ is reset on $\rho_{\left[0, i_{n}\right]}$, i.e., there is a $0 \leq k<i_{n}$ s.t. $\left(\rho(k),,_{-}\right) \in \mathcal{R}\left(\mathrm{a}_{n}\right)$. Let i_{n+1} denote the maximal such k. Let $\tau_{n+1}=\rho\left(i_{n+1}\right)$. Let $\mathrm{a}_{n+1} \in \mathcal{A}$ and $\mathrm{c}_{n+1} \in \mathbb{Z}$ be s.t. $\left(\tau_{n+1}, \mathrm{a}_{n+1}, \mathrm{c}_{n+1}\right) \in \mathcal{R}\left(\mathrm{a}_{n}\right)$. Then $\varkappa=a_{n+1} \xrightarrow{\tau_{n+1}, \mathrm{c}_{n+1}} \mathrm{a}_{n} \xrightarrow{\tau_{n}, \mathrm{c}_{n}} \mathrm{a}_{n-1} \ldots \mathrm{v}$ is a reset chain ending in v and $i_{n+1}, i_{n}, \ldots, i_{1}$ is a precise matching of \varkappa on ρ (Definition A.3). We show that \varkappa is sound: First note that $\varkappa_{[n, 0]}=\kappa$ and because κ is sound we have that for all $1 \leq i<n$ it holds that a_{i} is reset on all paths from the target location of τ_{1} to the source location of τ_{i}. It remains to show that this also holds for a_{n}. Since κ is not optimal there is a sound reset chain that extends κ (Definition 20). Now, because a_{n} is on that extended sound reset chain we have that also a_{n} is reset on all paths from the target location of τ_{1} to the source location of τ_{n} (Definition 20). We conclude that \varkappa is sound. We can thus recursively apply our reasoning on \varkappa.
[Termination] Since by assumption the reset graph is acyclic and its node set \mathcal{A} is finite, a optimal reset chain $\kappa \in \mathfrak{R}(\mathrm{v})$ and a matching of κ that ends at j is constructed by iterating the stated reasoning finitely often.

Note that with Lemma A. 4 and Lemma A. 5 we can bound the value to which v is reset at index j in terms of the value of $i n(\kappa)$ at index i, where i is the start-index of the matching that ends at j.

Lemma A. 6 states that precise matchings of optimal reset chains that share a common suffix never overlap.
Lemma A. 6 Let ρ be a run of $\Delta \mathcal{P}$. Let $\mathrm{v} \in \mathcal{V}$. Let $\kappa, \varkappa \in \mathfrak{R}(\mathrm{v})$ be s.t. κ and \varkappa have a common suffix, i.e., there exists $l>0$ s.t. $\kappa_{[l, 0]}=\varkappa_{[l, 0]}$. Let $\left(i_{k}, i_{1}\right) \in \alpha(\kappa, \rho)$ and $\left(j_{n}, j_{1}\right) \in \alpha(\varkappa, \rho)$. Either $\kappa=\varkappa$ and $\left[i_{k} \ldots i_{1}\right]=\left[j_{n} \ldots j_{1}\right]$ or the two intervals $\left[i_{k} \ldots i_{1}\right]$ and $\left[j_{n} \ldots j_{1}\right]$ are disjoint, i.e., $i_{1}<j_{n}$ or $j_{1}<i_{k}$.
Proof Let $\kappa=\mathrm{a}_{k} \xrightarrow{\tau_{k}, \mathrm{c}_{k}} \mathrm{a}_{k-1} \ldots \mathrm{a}_{1} \xrightarrow{\tau_{1}, \mathrm{c}_{1}} \mathrm{v}$. Let $\varkappa=b_{n} \xrightarrow{t_{n}, c_{n}} b_{n-1} \ldots b_{1} \xrightarrow{t_{1}, c_{1}} \mathrm{v}$.
Let $i_{k}, i_{k-1}, \ldots i_{1}$ be a precise matching of κ on ρ.
Let $j_{n}, j_{n-1}, \ldots j_{1}$ be a precise matching of \varkappa on ρ.
[A] We show that if $i_{1}=j_{1}$ then $i_{k}=j_{n}$ and $\kappa=\varkappa$: W.l.o.g. assume $k \leq n$.
[A.1] We show that for all $k \leq l \leq 1 i_{l}=j_{l}$: By assumption $i_{1}=i_{1}=j_{1}=j_{1}$. We conclude that $\mathrm{a}_{1}=b_{1}$ because since $\Delta \mathcal{P}$ is fan-in free there is exactly one a_{1} s.t. $\left(\mathrm{a}_{1},{ }_{-}, \rho\left(i_{1}\right)\right) \in \mathcal{R}(\mathrm{v})$. Assume $i_{2} \neq j_{2}$. Case $j_{2}<i_{2}$: By Definition A. 3 a a_{1} is not reset on $\rho_{\left[j_{2}+1, j_{1}\right]}$, i.e., $\left(\rho(k),{ }_{--}\right) \notin \mathcal{R}\left(\mathrm{a}_{1}\right)$ for all $j_{2}<k<j_{1}$. Note that $j_{2}<i_{2}<i_{1}=j_{1}$. We have $\left(\rho\left(i_{2}\right),,_{-}\right) \in \mathcal{R}\left(b_{1}\right)$ (Definition A. 3 and Definition 20). With $\mathrm{a}_{1}=b_{1}$ we have $\left(\rho\left(i_{2}\right),,_{-}\right) \in \mathcal{R}\left(\mathrm{a}_{1}\right)$. Contradiction. Case $i_{2}<j_{2}$: Analogous. Thus $i_{2}=j_{2}$. We apply the same reasoning for $i_{3}, i_{4} \ldots i_{k}$ consecutively.
[A.2] We show that $k=n$: By [A.1] we have that $\varkappa_{[k, 1]}=\kappa$ (Definition A.3). Thus κ is a suffix of \varkappa. But by assumption κ is optimal. Thus $\kappa=\varkappa$ (Definition 20).
[A] is proven with [A.1] and [A.2].
[B] We show that if $i_{1} \neq j_{1}$ then $i_{1}<j_{n}$ or $j_{1}<i_{k}$, i.e., the intervals $\left[i_{k} \ldots i_{1}\right]$ and [$j_{n} \ldots j_{1}$] are disjoint:
[B.1] We have $\rho\left(i_{1}\right)=\rho\left(j_{1}\right)=t_{1}$ because by assumption κ and \varkappa have a common suffix.
[B.2] We show [B.2.i] that for all l with $j_{n} \leq l<j_{1}$ it holds that $\rho(l) \neq t_{1}$ and [B.2.ii] that for all l with $i_{k} \leq l<i_{1}$ it holds that $\rho(l) \neq t_{1}$.
[B.2.i] Assume there is some l with $j_{n} \leq l<j_{1}$ s.t. $\rho(l)=t_{1}$. Then there is some $n \geq r>1$ s.t. $j_{r} \leq l<j_{r-1}$. Since $j_{n}, j_{n-1}, \ldots j_{1}$ is a precise matching of \varkappa we have that for all $j_{r}<s<j_{r-1}\left(\rho(s),_{-},{ }_{-}\right) \notin \mathcal{R}\left(\mathrm{a}_{r-1}\right)$ (Definition A.3). But since \varkappa is sound a_{r-1} must be reset on all paths from the target location of t_{1} to the source location of t_{r-1}, i.e., in particular on $\rho_{\left[l+1, j_{r-1}\right]}$ because $\rho(l)=t_{1}$ and $\rho\left(j_{r-1}\right)=t_{r-1}$ (Definition A.3). Thus there must be some s with $j_{r} \leq l<s<j_{r-1}$ s.t. $\left(\rho(s),_{-},-\right) \in \mathcal{R}\left(\mathrm{a}_{r-1}\right)$. Contradiction.
[B.2.ii] Analogous.
[B.1] and [B.2] imply [B]: By assumption $i_{1} \neq j_{1}$. W.l.o.g. let $i_{1}<j_{1}$. With $i_{k} \leq i_{1}$ and $j_{n} \leq j_{1}$ we have $i_{k}<j_{1}$. We thus have to show that $i_{1}<j_{n}$: Assume $j_{n} \leq i_{1}$: Then $j_{n} \leq i_{1}<j_{1}$. But with [B.1] this contradicts [B.2]. Therefore $i_{1}<j_{n}$. With $[\mathrm{A}]$ and $[\mathrm{B}]$ the claim is proven.

Lemma A. 7 extends Lemma A. 2 by chained resets. Let v be a local bound for τ : The question how often a given transition τ may appear on a run ρ is translated to the question how often the transitions that increase the value of the local bound v are executed. But in contrast to Lemma A. 2 Lemma A. 7 takes the context under which these transitions may increase v into account. See Section 3.3 for more details.

Lemma A. 7 Let $\rho=\left(\sigma_{0}, l_{0}\right) \xrightarrow{u_{0}}\left(\sigma_{1}, l_{1}\right) \xrightarrow{u_{1}} \ldots$ be a run of $\Delta \mathcal{P}$. Let $\tau \in E$. Let $\mathrm{v} \in \mathcal{V}$ be a local bound for τ on $\lfloor\rho\rfloor$. Let $v b: \mathcal{A} \rightarrow \mathbb{Z}$ be s.t. $v b(\mathrm{a})$ is a variable bound for a on ρ for all $\mathrm{a} \in\{i n(\kappa) \mid \kappa \in \mathfrak{R}(\mathrm{v})\}$. Then

$$
\begin{aligned}
& \left(\sum_{\left.\mathrm{a} \in \bigcup_{\kappa \in \mathfrak{R}(\mathrm{v})} \sum_{\operatorname{atm}_{1}(\kappa)} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp(t, \rho) \times \mathrm{c}\right)}^{+\sum_{\kappa \in \Re(\mathrm{i})}\left(\min _{t \in \operatorname{trn}(\kappa)} \sharp(t, \rho)\right) \times \max (v b(i n(\kappa))+c(\kappa), 0)} \quad \begin{array}{l}
\quad \sum_{\mathrm{a} \in \operatorname{atm}_{2}(\kappa)} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp(t, \rho) \times \mathrm{c}
\end{array} .\right.
\end{aligned}
$$

is a transition bound for τ on ρ.
Proof As argued in the proof of Lemma A. 2 it is sufficient to consider the case $\rho=\lfloor\rho\rfloor$.
A) As shown in the proof of Lemma A. 2 we have that
$\sharp(\tau, \rho) \leq\left(\sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{v})} \sharp(t, \rho) \times \mathrm{c}\right)+\sum_{j \in \Theta(\mathcal{R}(\mathrm{v}), \rho)} \sigma_{j+1}(\mathrm{v})$
B) We show that

$$
\begin{aligned}
\sum_{j \in \Theta(\mathcal{R}(\mathrm{v}), \rho)} \sigma_{j+1}(\mathrm{v}) \leq & \left(\sum_{\left.\mathrm{a} \in \underset{\kappa \in \mathfrak{R}(\mathrm{v})}{ } \sum_{a m_{1}(\kappa) \backslash\{\mathrm{v}\}} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp(t, \rho) \times \mathrm{c}\right)}\right. \\
& +\sum_{\kappa \in \Re(\mathrm{v})}\left(\min _{t \in \operatorname{trn}(\kappa)} \sharp(t, \rho)\right) \times \max (v b(i n(\kappa))+c(\kappa), 0) \\
& +\sum_{\mathrm{a} \in \operatorname{atm}_{2}(\kappa)} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp(t, \rho) \times \mathrm{c}
\end{aligned}
$$

With Lemma A.5 we have that for each $j \in \Theta(\mathcal{R}(\mathrm{v}), \rho)$ there is at least one $\kappa \in \mathfrak{R}(\mathrm{v})$ and one $i \leq j$ s.t. $(i, j) \in \alpha(\kappa, \rho)$.

Further: Let $\kappa \in \mathfrak{R}(\mathrm{v})$. Let $(i, j) \in \alpha(\kappa, \rho)$. With Lemma A. 4 we have that:
$\sigma_{j+1}(\mathrm{v}) \leq \sigma_{i}(i n(\kappa))+c(\kappa)+\sum_{\mathrm{a} \in \operatorname{atm}(\kappa) \backslash\{\mathrm{v}\}(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp\left(t, \rho_{[i+1, j]}\right) \times \mathrm{c}$
Therefore:

$$
\begin{aligned}
& \sum_{j \in \Theta(\mathcal{R}(\mathrm{v}), \rho)} \sigma_{j+1}(\mathrm{v}) \leq \sum_{\kappa \in \mathfrak{R}(\mathrm{v})} \sum_{(i, j) \in \alpha(\kappa, \rho)} \sigma_{i}(i n(\kappa))+c(\kappa) \\
&+\sum_{\mathrm{a} \in \operatorname{atm}(\kappa) \backslash\{\mathrm{v}\}(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp\left(t, \rho_{[i+1, j]}\right) \times \mathrm{c}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(1 a)}{=} \sum_{\kappa \in \mathfrak{R}(\mathrm{v})}\left(\sum_{(i, j) \in \alpha(\kappa, \rho)} \sigma_{i}(i n(\kappa))+c(\kappa)\right) \\
& \quad+\left(\sum_{(i, j) \in \alpha(\kappa, \rho)} \sum_{\mathrm{a} \in \operatorname{atm}(\kappa) \backslash\{\mathrm{v}\}} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp\left(t, \rho_{[i+1, j]}\right) \times \mathrm{c}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(1 b)}{=} \sum_{\kappa \in \mathfrak{R}(\mathrm{v})}\left(\sum_{(i, j) \in \alpha(\kappa, \rho) \rho} \sigma_{i}(i n(\kappa))+c(\kappa)\right) \\
&+\sum_{\mathrm{a} \in \operatorname{atm}(\kappa) \backslash\{\mathrm{v}\}} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})}\left(\sum_{(i, j) \in \alpha(\kappa, \rho)} \sharp\left(t, \rho_{[i+1, j]}\right)\right) \times \mathrm{c} \\
& \stackrel{(1)}{=} \sum_{\kappa \in \mathfrak{R}(\mathrm{v})}\left(\sum_{(i, j) \in \alpha(\kappa, \rho) \rho} \sigma_{i}(i n(\kappa))+c(\kappa)\right) \\
&+\sum_{\mathrm{a} \in \operatorname{atm}_{1}(\kappa) \backslash\{\mathrm{v}\}(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})}\left(\sum_{(i, j) \in \alpha(\kappa, \rho)} \sharp\left(t, \rho_{[i+1, j]}\right)\right) \times \mathrm{c} \\
&+\sum_{\mathrm{a} \in \operatorname{atm}_{2}(\kappa)} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})}\left(\sum_{(i, j) \in \alpha(\kappa, \rho)} \sharp\left(t, \rho_{[i+1, j]}\right)\right) \times \mathrm{c}
\end{aligned}
$$

$$
\begin{aligned}
\stackrel{(2)}{\leq} \sum_{\kappa \in \mathfrak{R}(\mathrm{v})}(& \left.\sum_{(i, j) \in \alpha(\kappa, \rho)} \sigma_{i}(i n(\kappa))+c(\kappa)\right) \\
& +\sum_{\mathrm{a} \in \operatorname{atm} m_{1}(\kappa) \backslash\{\mathrm{v}\}} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})}\left(\sum_{(i, j) \in \alpha(\kappa, \rho)} \sharp\left(t, \rho_{[i+1, j]}\right)\right) \times \mathrm{c} \\
& +\sum_{\mathrm{a} \in \operatorname{atm}_{2}(\kappa)} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp(t, \rho) \times \mathrm{c}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(3 a)}{=}\left(\sum_{\kappa \in \mathfrak{R}(\mathrm{v})} \sum_{\mathrm{a} \in a t m_{1}(\kappa) \backslash\{\mathrm{v}\}} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})}\left(\sum_{(i, j) \in \alpha(\kappa, \rho)} \sharp\left(t, \rho_{[i+1, j]}\right)\right) \times \mathrm{c}\right) \\
& \quad+\sum_{\kappa \in \mathfrak{R}(\mathrm{v})}\left(\sum_{(i, j) \in \alpha(\kappa, \rho)} \sigma_{i}(i n(\kappa))+c(\kappa)\right)+\sum_{\mathrm{a} \in \operatorname{atm}_{2}(\kappa)} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp(t, \rho) \times \mathrm{c}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(3 b)}{=}\left(\sum_{\mathrm{a} \in \underset{\kappa \in \mathfrak{R}(\mathrm{v})}{ } \sum_{\text {atm }} \sum_{(\kappa) \backslash\{\mathrm{v}\}}(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sum_{\kappa \in \mathfrak{R}(\mathrm{v})}\left(\sum_{\text {s.t. a } \in a t m_{1}(\kappa)}\left(\sum_{(i, j) \in \alpha(\kappa, \rho)} \sharp\left(t, \rho_{[i+1, j]}\right)\right) \times \mathrm{c}\right)\right. \\
& +\sum_{\kappa \in \mathfrak{R}(\mathrm{v})}\left(\sum_{(i, j) \in \alpha(\kappa, \rho)} \sigma_{i}(i n(\kappa))+c(\kappa)\right)+\sum_{\mathrm{a} \in \operatorname{atm}_{2}(\kappa)} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp(t, \rho) \times \mathrm{c}
\end{aligned}
$$

$$
\begin{aligned}
& \stackrel{(3 c)}{=}\left(\sum_{\left.\mathrm{a} \in \underset{\kappa \in \mathfrak{R}(\mathrm{v})}{ } \sum_{a t m_{1}(\kappa) \backslash\{\mathrm{v}\}} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})}\left(\sum_{\kappa \in \mathfrak{R}(\mathrm{v})} \sum_{\mathrm{s.t.} \mathrm{a} \in \operatorname{atm}(\kappa)} \sum_{(i, j) \in \alpha(\kappa, \rho)} \sharp\left(t, \rho_{[i+1, j]}\right)\right) \times \mathrm{c}\right)}^{\quad+\sum_{\kappa \in \mathfrak{R}(\mathrm{v})}\left(\sum_{(i, j) \in \alpha(\kappa, \rho)} \sigma_{i}(i n(\kappa))+c(\kappa)\right)+\sum_{\mathrm{a} \in a t m_{2}(\kappa)} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp(t, \rho) \times \mathrm{c}} .\right.
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\kappa \in \mathfrak{R}(\mathrm{v})}\left(\sum_{(i, j) \in \alpha(\kappa, \rho)} \sigma_{i}(i n(\kappa))+c(\kappa)\right)+\sum_{\mathrm{a} \in \operatorname{atm}_{2}(\kappa)} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp(t, \rho) \times \mathrm{c} \\
& \stackrel{(4)}{\leq}\left(\sum_{\mathrm{a} \in \bigcup_{\kappa \in \mathfrak{R}(\mathrm{v})}} \sum_{\operatorname{atm}_{1}(\kappa) \backslash\{\mathrm{v}\}} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp(t, \rho) \times \mathrm{c}\right) \\
& +\sum_{\kappa \in \mathfrak{R}(\mathrm{v})}\left(\sum_{(i, j) \in \alpha(\kappa, \rho)} v b(i n(\kappa))+c(\kappa)\right)+\sum_{\mathrm{a} \in \operatorname{atm}_{2}(\kappa)} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp(t, \rho) \times \mathrm{c}
\end{aligned}
$$

$$
\begin{aligned}
& +\sum_{\kappa \in \mathfrak{R}(\mathrm{v})}|\alpha(\kappa, \rho)| \times(v b(\text { in }(\kappa))+c(\kappa)) \\
& +\sum_{\mathrm{a} \in \operatorname{atm}_{2}(\kappa)} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp(t, \rho) \times \mathrm{c} \\
& \stackrel{(5)}{\leq}\left(\sum_{a \in \underset{\kappa \in \mathfrak{R}(v)}{\cup} \sum_{\text {atm }}(\kappa) \backslash\{v\}(t, c) \in \mathcal{I}(\mathrm{a})} \sharp(t, \rho) \times \mathrm{c}\right) \\
& +\sum_{\kappa \in \mathfrak{R}(\mathrm{v})}\left(\min _{t \in \operatorname{trn}(\kappa)} \sharp(t, \rho)\right) \times \max (v b(i n(\kappa))+c(\kappa), 0) \\
& +\sum_{\mathrm{a} \in \operatorname{atm}_{2}(\kappa)} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp(t, \rho) \times \mathrm{c}
\end{aligned}
$$

(1a) Commutativity.
(1b) Distributivity.
(1) We have $\operatorname{atm}(\kappa)=\operatorname{atm}_{1}(\kappa) \cup \operatorname{atm}_{2}(\kappa), \operatorname{atm}_{1}(\kappa) \cap \operatorname{atm}_{2}(\kappa)=\emptyset$ and $\mathrm{v} \in \operatorname{atm}_{1}(\kappa)$ (Definition 22).
(2) With Lemma A. 6 we have that all intervals in $\alpha(\kappa, \rho)$ are pairwise disjoint. Therefore $\sum_{(i, j) \in \alpha(\kappa, \rho)} \sharp\left(t, \rho_{[i+1, j]}\right) \leq \sharp(t, \rho)$. Further note that $\mathrm{c}>0$ for $(-, \mathrm{c}) \in$ $\mathcal{I}(\mathrm{a})$.
(3a) Commutativity.
(3b) Commutativity.
(3c) Distributivity.
(3) Let $\kappa_{1}, \kappa_{2} \in \mathfrak{R}(\mathrm{v})$. Assume $\mathrm{a} \in \operatorname{atm}_{1}\left(\kappa_{1}\right) \cap \operatorname{atm}_{1}\left(\kappa_{2}\right)$ and $\mathrm{a} \neq \mathrm{v}$. By Definition 22 there is exactly one path in the reset graph from a to v . Thus κ_{1} and κ_{2} have a common suffix: they share the single path from a to v in the reset graph. We therefore have by Lemma A. 6 that all intervals in $\alpha\left(\kappa_{1}, \rho\right) \cup \alpha\left(\kappa_{2}, \rho\right)$ are
pairwise disjoint. Therefore $\sum_{\kappa \in \mathfrak{R}(\mathrm{v})} \sum_{\text {s.t. } \mathrm{a} \in \operatorname{atm}_{1}(\kappa)} \sum_{(i, j) \in \alpha(\kappa, \rho)} \sharp\left(t, \rho_{[i+1, j]}\right) \leq \sharp(t, \rho)$.
Further note that $c>0$ for $(-, c) \in \mathcal{I}(a)$.
(4) Let $\kappa \in \mathfrak{R}(\mathrm{v})$. By assumption $v b(i n(\kappa))$ denotes a variable bound for $i n(\kappa)$ on ρ.
(5a) With $\sum_{(i, j) \in \alpha(\kappa, \rho)} v b(i n(\kappa))+c(\kappa)=|\alpha(\kappa, \rho)| \times(v b(i n(\kappa))+c(\kappa))$
(5) Let $\kappa \in \mathfrak{R}(\mathrm{v})$. Let $\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right) \in \alpha(\kappa, \rho)$. We have by Lemma A. 6 that all intervals in $\alpha(\kappa, \rho)$ are pairwise disjoint. Further each transition $t \in \operatorname{trn}(\kappa)$ appears at least once on each sub-run $\rho_{[i, j]}$ with $(i, j) \in \alpha(\kappa, \rho)$. Therefore: $|\alpha(\kappa, \rho)| \leq \min _{t \in \operatorname{trn}(\kappa)} \sharp(t, \rho)$.
C)

$$
\begin{aligned}
& +\sum_{\kappa \in \mathfrak{R}(\mathrm{v})}\left(\min _{t \in \operatorname{trn}(\kappa)} \sharp(t, \rho)\right) \times \max (v b(i n(\kappa))+c(\kappa), 0) \\
& +\sum_{\mathrm{a} \in \operatorname{atm}_{2}(\kappa)} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp(t, \rho) \times \mathrm{c} \\
& \stackrel{(2)}{=}\left(\sum_{a \in \bigcup_{\kappa \in \mathfrak{R}(\mathrm{v})} \operatorname{atm}_{1}(\kappa)} \not \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp(t, \rho) \times \mathrm{c}\right) \\
& +\sum_{\kappa \in \mathfrak{R}(\mathrm{v})}\left(\min _{t \in \operatorname{trn}(\kappa)} \sharp(t, \rho)\right) \times \max (v b(\text { in }(\kappa))+c(\kappa), 0) \\
& +\sum_{\mathrm{a} \in \operatorname{atm}_{2}(\kappa)} \sum_{(t, \mathrm{c}) \in \mathcal{I}(\mathrm{a})} \sharp(t, \rho) \times \mathrm{c}
\end{aligned}
$$

(1) With A) and B).
(2) We have $\mathcal{R}(\mathrm{v}) \neq \emptyset$ by well-definedness of $\Delta \mathcal{P}$ and therefore $\mathfrak{R}(\mathrm{v}) \neq \emptyset$. Further $\mathrm{v} \in \operatorname{atm}_{1}(\kappa)$ for all $\kappa \in \mathfrak{R}(\mathrm{v})$.

A.2.1 Proof of Theorem 2

We prove the more general claim formulated in Theorem A.2.
Theorem A. 2 (Soundness of Bound Algorithm based on Reset Chains) Let $\Delta \mathcal{P}\left(L, E, l_{b}, l_{e}\right)$ be a well-defined and fan-in free $D C P$ over atoms \mathcal{A} with a reset dag. Let Ξ be a set of runs of $\Delta \mathcal{P}$ that is closed under normalization. Let $\zeta: E \mapsto \operatorname{Expr}(\mathcal{A})$ be a local bound mapping for all $\rho \in \Xi$. Let $T \mathcal{B}$ and $V \mathcal{B}$ be defined as in Definition 23 . Let $\tau \in E$ and $\mathrm{a} \in \mathcal{A}$. Let $\rho \in \Xi$. Let σ_{0} be the initial state of ρ. We have: (I) $\llbracket T \mathcal{B}(\tau) \rrbracket\left(\sigma_{0}\right)$ is a transition bound for τ on ρ. $(I I) \llbracket V \mathcal{B}(\mathrm{a}) \rrbracket\left(\sigma_{0}\right)$ is a variable bound for a on ρ.

Proof Let $\rho=\left(\sigma_{0}, l_{0}\right) \xrightarrow{u_{0}}\left(\sigma_{1}, l_{1}\right) \xrightarrow{u_{1}} \cdots \in \Xi$.
If $\llbracket T \mathcal{B}(\tau) \rrbracket=\infty$ (I) holds trivially. If $\llbracket V \mathcal{B}(\mathrm{a}) \rrbracket=\infty$ (II) holds trivially.

Assume $\llbracket T \mathcal{B}(\tau) \rrbracket \neq \infty$ and $\llbracket V \mathcal{B}(\mathrm{a}) \rrbracket \neq \infty$. Then in particular the computation of $T \mathcal{B}(\tau)$ resp. $V \mathcal{B}(\mathrm{a})$ terminate. We proceed by induction over the call tree of $T \mathcal{B}(\tau)$ resp. $V \mathcal{B}(\mathrm{a})$.

Base Case: As in the proof of Theorem A.1 (Section A.1.1).
Step Case:
I) As in the proof of Theorem A.1 (Section A.1.1).
II)

$$
\begin{aligned}
& \sharp(\tau, \rho) \stackrel{(1)}{\leq}\left(\sum_{b \in \sum_{\kappa \in \mathfrak{R}(\zeta(\tau))}} \sum_{a t m_{1}(\kappa)} \sharp(t, c) \in \mathcal{I}(b)\right. \\
&+\sum_{\kappa \in \mathfrak{R}(\zeta, \rho) \times c}\left(\min _{t \in \operatorname{trn}(\kappa)} \sharp(t, \rho)\right) \times \max \left(\llbracket V \mathcal{B}(i n(\kappa)) \rrbracket\left(\sigma_{0}\right)+c(\kappa), 0\right) \\
& \quad+\sum_{b \in \operatorname{atm} 2(\kappa)} \sum_{(t, c) \in \mathcal{I}(b)} \sharp(t, \rho) \times c
\end{aligned}
$$

$$
\stackrel{(2)}{\leq}\left(\sum_{b \in \sum_{\kappa \in \mathfrak{R}(\zeta(\tau))}} \sum_{a t m_{1}(\kappa)} \sharp(t, c) \in \mathcal{I}(b) \operatorname{t,\rho)} \times \mathrm{c}\right)
$$

$$
+\sum_{\kappa \in \mathfrak{R}(\zeta(\tau))}\left(\min _{t \in \operatorname{trn}(\kappa)} \llbracket T \mathcal{B}(t) \rrbracket\left(\sigma_{0}\right)\right) \times \max \left(\llbracket V \mathcal{B}(\operatorname{in}(\kappa)) \rrbracket\left(\sigma_{0}\right)+c(\kappa), 0\right)
$$

$$
+\sum_{b \in \operatorname{atm}_{2}(\kappa)} \sum_{(t, c) \in \mathcal{I}(b)} \sharp(t, \rho) \times \mathrm{c}
$$

$$
\stackrel{(3)}{\leq}\left(\sum_{b \in \sum_{\kappa \in \mathfrak{R}(\zeta(\tau))}} \sum_{a t m_{1}(\kappa)(t, c) \in \mathcal{I}(b)} \sharp(t, \rho) \times c\right)
$$

$$
+\sum_{\kappa \in \mathfrak{R}(\zeta(\tau))} \llbracket T \mathcal{B}(\operatorname{trn}(\kappa)) \rrbracket\left(\sigma_{0}\right) \times \max \left(\llbracket V \mathcal{B}(i n(\kappa)) \rrbracket\left(\sigma_{0}\right)+c(\kappa), 0\right)
$$

$$
+\sum_{b \in \operatorname{atm}_{2}(\kappa)} \sum_{(t, c) \in \mathcal{I}(b)} \sharp(t, \rho) \times \mathrm{c}
$$

$$
\stackrel{(4)}{\leq}\left(\sum_{b \in \sum_{\kappa \in \mathfrak{R}(\zeta(\tau))}} \sum_{a t m_{1}(\kappa)} \llbracket T \mathcal{A}(t) \in \mathcal{I}(b) \rrbracket\left(\sigma_{0}\right) \times \mathrm{c}\right)
$$

$$
+\sum_{\kappa \in \mathfrak{R}(\zeta(\tau))} \llbracket T \mathcal{B}(\operatorname{trn}(\kappa)) \rrbracket\left(\sigma_{0}\right) \times \max \left(\llbracket V \mathcal{B}(i n(\kappa)) \rrbracket\left(\sigma_{0}\right)+c(\kappa), 0\right)
$$

$$
+\sum_{b \in \operatorname{atm}_{2}(\kappa)} \sum_{(t, c) \in \mathcal{I}(b)} \llbracket T \mathcal{B}(t) \rrbracket\left(\sigma_{0}\right) \times c
$$

$$
\begin{aligned}
& \stackrel{(5)}{=} \llbracket \operatorname{Incr}\left(\bigcup_{\kappa \in \mathfrak{R}(\zeta(\tau))} \operatorname{atm}_{1}(\kappa)\right) \rrbracket\left(\sigma_{0}\right) \\
& \quad+\sum_{\kappa \in \mathfrak{R}(\zeta(\tau))} \llbracket T \mathcal{B}(\operatorname{trn}(\kappa)) \rrbracket\left(\sigma_{0}\right) \times \max \left(\llbracket V \mathcal{B}(\operatorname{in}(\kappa)) \rrbracket\left(\sigma_{0}\right)+c(\kappa), 0\right) \\
& \quad+\llbracket \operatorname{Incr}\left(\operatorname{atm}_{2}(\kappa)\right) \rrbracket\left(\sigma_{0}\right) \\
& \stackrel{(6)}{=} \llbracket T \mathcal{B}(\tau) \rrbracket\left(\sigma_{0}\right)
\end{aligned}
$$

(1) By Lemma A. 7 Since Ξ is closed under normalization we have that $\zeta(\tau)$ is a local bound for τ on $\lfloor\rho\rfloor$. Further: Let $\kappa \in \mathfrak{R}(\zeta(\tau))$. We have that $V \mathcal{B}($ in $(\kappa))$ is called during the computation of $T \mathcal{B}(\tau)$ (Definition 23). Note that with $\llbracket T \mathcal{B}(\tau) \rrbracket \neq \infty$ also $\llbracket V \mathcal{B}(i n(\kappa)) \rrbracket \neq \infty$. By I.H. $\llbracket V \mathcal{B}(i n(\kappa)) \rrbracket\left(\sigma_{0}\right)$ is a variable bound for in (κ).
(2) Let $\kappa \in \mathfrak{R}(\zeta(\tau))$. Let $t \in \operatorname{trn}(\kappa)$. We have that $T \mathcal{B}(t)$ is called during the computation of $T \mathcal{B}(\tau)$. Thus for $t \in \operatorname{trn}(\kappa)$ with $\llbracket T \mathcal{B}(t) \rrbracket \neq \infty$ we have that $\llbracket T \mathcal{B}(t) \rrbracket\left(\sigma_{0}\right)$ is a transition bound for t on ρ by I.H.. Note that with $\llbracket T \mathcal{B}(\tau) \rrbracket \neq \infty$ there is a $t \in \operatorname{trn}(\kappa)$ s.t. $\llbracket T \mathcal{B}(t) \rrbracket \neq \infty$. Thus $\min _{t \in \operatorname{trn}(\kappa)} \sharp(t, \rho) \leq \min _{t \in \operatorname{trn}(\kappa)} \llbracket T \mathcal{B}(t) \rrbracket\left(\sigma_{0}\right)$.
(3) With $T \mathcal{B}(\operatorname{trn}(\kappa))=\min _{t \in \operatorname{trn}(\kappa)} T \mathcal{B}(t)$ (Definition 23) and Definition 15
(4) Let $\kappa \in \mathfrak{R}(\zeta(\tau))$. Let $b \in \operatorname{atm}(\kappa)$. Let $(t,-) \in \mathcal{I}(b)$. We have that $T \mathcal{B}(t)$ is called when computing $T \mathcal{B}(\tau)$ (Definition 23). Note that with $\llbracket T \mathcal{B}(\tau) \rrbracket \neq \infty$ also $\llbracket T \mathcal{B}(t) \rrbracket \neq \infty$. By I.H. $\sharp(t, \rho) \leq \llbracket T \mathcal{B}(t) \rrbracket\left(\sigma_{0}\right)$.
(5) Definition 23 and Definition 15
(6) Definition 23 and Definition 15 .

