Supporting Information for "IonMonger: a free and fast planar perovskite solar cell simulator with coupled ion vacancy and charge carrier dynamics"

N. E. Courtier^{1,*}, J. M. Cave², A. B. Walker², G. Richardson¹, and J. M. Foster³

¹Mathematical Sciences, University of Southampton, Southampton, UK

²Department of Physics, University of Bath, Bath, UK

³School of Mathematics and Physics, University of Portsmouth, Portsmouth, UK

*Corresponding author: N.E.Courtier@soton.ac.uk

This document contains five tables which contain: 1) the model variables, 2) the computational settings, 3) the dimensional input parameters, 4) the computed properties, and 5) the dimensionless parameters for the IonMonger code. This code is freely available (under an AGPL-3.0 copyleft license) on GitHub at https://github.com/PerovskiteSCModelling/IonMonger.

Symbol	Description	\mathbf{Unit}
$\overline{n(x,t)}$	Electron concentration	m^{-3}
p(x,t)	Hole concentration	m^{-3}
P(x,t)	Iodide ion vacancy density	m^{-3}
$\phi(x,t)$	Electric potential	V
$j^n(x,t)$	Electron current density	Am^{-2}
$j^p(x,t)$	Hole current density	Am^{-2}
$F^P(x,t)$	Iodide ion vacancy flux	$\mathrm{m}^2\mathrm{s}^{-1}$
E(x,t)	Electric field	Vm^{-1}
V(t)	Applied voltage	V
J(t)	Total current density	${ m mAcm^{-2}}$

Table 1: Table of model variables.

Table 2: Table of computational settings.

Symbol	Description
Ν	Number of subintervals, with $N + 1$ as the number of grid points
rtol	Relative temporal tolerance for ode15s solver
atol	Absolute temporal tolerance for ode15s solver

¹Note that the effective doping densities $(d_E \text{ and } d_H)$ should be chosen to be less than 20 times smaller than the effective DoS in each transport layer $(g_c^E \text{ and } g_c^H, \text{ respectively})$ for compatibility with the use of the Boltzmann approximation in the model.

Symbol	Description	Unit
$\overline{\varepsilon_0}$	Permittivity of free space	Fm^{-1}
q	Elementary charge	
F_{ph}	Incident photon flux at 1 Sun	$\mathrm{m}^{-2}\mathrm{s}^{-1}$
k_B	Boltzmann constant	
T	Temperature	Κ
I_s	Intensity of incident light	Suns
	Perovskite Properties	
α	Absorption coefficient	m^{-1}
b	Width	nm
ε_A	Permittivity	ε_0
D_n	Electron diffusion coefficient	$\mathrm{m}^{2}\mathrm{s}^{-1}$
D_p	Hole diffusion coefficient	$\mathrm{m}^{2}\mathrm{s}^{-1}$
E_C	Conduction band minimum	eV
E_V	Valence band maximum	eV
g_c	Conduction band DoS	${ m m}^{-3}$
g_v	Valence band DoS	m^{-3}
D_I	Iodide ion vacancy diffusion coefficient	$\mathrm{m}^{2}\mathrm{s}^{-1}$
\hat{N}_0	Mean density of ion vacancies	m^{-3}
β	Bimolecular rate constant	$\mathrm{m}^{3}\mathrm{s}^{-1}$
$ au_n$	Electron SRH pseudo-lifetime	S
$ au_p$	Hole SRH pseudo-lifetime	S
	Interface Properties	
$\beta^{E,H}$	Bimolecular rate constant for interface indicated by superscript	$\mathrm{m}^{3}\mathrm{s}^{-1}$
$ u_n^{E,H}$	Electron recombination velocity towards interface indicated by superscript	ms^{-1}
$ u_p^{E,H}$	Hole recombination velocity towards interface indicated by superscript	ms^{-1}
	ETL Properties	
b_E	Width	nm
d_E	Effective doping density ¹	m^{-3}
D_E	Electron diffusion coefficient	$\mathrm{m}^{2}\mathrm{s}^{-1}$
ε_{E}	Permittivity	ε_0
E_c^E	Conduction band maximum	eV
g_c^E	Effective conduction band DoS	m^{-3}
	HTL Properties	
b_H	Width	nm
d_H	Effective doping density ¹	m^{-3}
D_H	Hole diffusion coefficient	$\mathrm{m}^{2}\mathrm{s}^{-1}$
ε_H	Permittivity	ε_0
E_v^H	Valence band minimum	eV
g_v^H	Effective valence band DoS	m^{-3}

Table 3: Table of input parameters, in which the abbreviation DoS denotes the density of states.

Symbol	Description	Unit
E_{f_E}	Fermi level in the ETL	eV
E_{f_H}	Fermi level in the HTL	eV
L_D	Perovskite Debye length	nm
G(x,t)	Photo-generation rate	$m^{-3}s^{-1}$
G_0	Typical generation rate	$\mathrm{m}^{-3}\mathrm{s}^{-1}$
n_0	Typical electron concentration in perovskite $(k_E d_E)$	m^{-3}
p_0	Typical hole concentration in perovskite $(k_H d_H)$	m^{-3}
R(x,t)	Bulk recombination rate	$m^{-3}s^{-1}$
$\bar{R}_l(t)$	ETL/perovskite interface recombination flux	$m^{-2}s^{-1}$
$\bar{R_r}(t)$	Perovskite/HTL interface recombination flux	${\rm m}^{-2}{\rm s}^{-1}$
$ au_{ion}$	Characteristic timescale	S
V_{bi}	Built-in voltage	V
V_T	Thermal voltage	mV

Table 4: Table of computed properties.

Table 5: Table of dimensionless parameters.

Symbol	Definition	Description
δ	$d_E/\hat{N_0}$	Ratio between the ETL doping and the ion vacancy densities
χ	d_H/d_E	Ratio between the HTL and ETL doping densities
σ	$d_E/(G_0 \tau_{ion})$	Characteristic ratio between the timescales of electronic and ionic motion
κ_p	$D_p d_H / (G_0 b^2)$	Dimensionless hole diffusion coefficient in perovskite
κ_n	$D_n d_E/(G_0 b^2)$	Dimensionless electron diffusion coefficient in perovskite
κ_E	$D_E \kappa_n / D_n$	Dimensionless electron diffusion coefficient in ETL
κ_H	$D_H \kappa_p / D_p$	Dimensionless hole diffusion coefficient in HTL
λ	L_D/b	Dimensionless (ionic) Debye length in perovskite
λ_E	$\sqrt{\frac{\varepsilon_E \hat{N_0}}{\varepsilon_A d_E}} \lambda$	Dimensionless Debye length in ETL
λ_H	$\sqrt{rac{arepsilon_H\hat{N}_0}{arepsilon_A d_H}}\lambda$	Dimensionless Debye length in HTL
Φ	\dot{V}/V_T	Dimensionless applied voltage
Φ_{bi}	V_{bi}/V_T	Dimensionless built-in voltage
r_E	$\varepsilon_E/\varepsilon_A$	Ratio between the ETL and perovskite permittivities
r_H	$\varepsilon_H/\varepsilon_A$	Ratio between the HTL and perovskite permittivities
w_E	b_E/b	Dimensionless ETL width
w_H	b_H/b	Dimensionless HTL width