Supplementary information for 'IonMonger 2.0: Software for free, fast and versatile simulation of current, voltage and impedance response of planar perovskite solar cells'

Will Clarke $\,\cdot\,$ Laurence J. Bennett $\,\cdot\,$ Yoana Grudeva $\,\cdot\,$ Jamie M. Foster $\,\cdot\,$ Giles Richardson $\,\cdot\,$ Nicola E. Courtier

Received: date / Accepted: date

Yoana Grudeva \cdot Jamie M. Foster Mathematics and Physics, University of Portsmouth, UK

Corresponding author: Will Clarke E-mail: wc3g16@soton.ac.uk

Will Clarke \cdot Laurence Bennett \cdot Giles Richardson Mathematical Sciences, University of Southampton, UK

Nicola E. Courtier Engineering Science, University of Oxford, UK

1 Tables of symbol definitions

This section contains five tables which contain: 1) the model variables, 2) the computational settings, 3) the dimensional input parameters, 4) the computed properties, and 5) the dimensionless parameters for the IonMonger code.

Symbol	Description	Unit
$\overline{n(x,t)}$	Electron concentration	m^{-3}
p(x,t)	Hole concentration	m^{-3}
P(x,t)	Iodide ion vacancy density	m^{-3}
$\phi(x,t)$	Electric potential	V
$j^n(x,t)$	Electron current density	Am^{-2}
$j^p(x,t)$	Hole current density	Am^{-2}
$F^P(x,t)$	Iodide ion vacancy flux	$m^2 s^{-1}$
E(x,t)	Electric field	Vm^{-1}
V(t)	Applied voltage	V
J(t)	Total current density	$mAcm^{-2}$

Table 2Table of computational settings.

Symbol	Description
Ν	Number of subintervals, with $N + 1$
rtol	Relative temporal tolerance for ode15s solver
atol	Absolute temporal tolerance for ode15s solver
$\phi_{ m disp}$	Dimensionless electric potential offset

Symbol	Description	Unit
ε_0	Permittivity of free space	Fm^{-1}
q	Elementary charge	С
F_{ph}	Incident photon flux at 1 Sun	$m^{-2}s^{-1}$
k_B	Boltzmann constant	eVK^{-1}
T	Temperature	K
I_s	Intensity of incident light	Suns
	Perovskite Properties	
α	Absorption coefficient	m^{-1}
b	Width	nm
ε_A	Permittivity	ε_0
D_n	Electron diffusion coefficient	$m^2 s^{-1}$
D_p	Hole diffusion coefficient	$m^{2}s^{-1}$
$\dot{E_C}$	Conduction band minimum	eV
E_V	Valence band maximum	eV
g_c	Conduction band effective DoS	m^{-3}
q_v	Valence band effective DoS	m^{-3}
D_I	Iodide ion vacancy diffusion coefficient	$m^2 s^{-1}$
$\hat{N_0}$	Mean density of ion vacancies	m^{-3}
в	Bimolecular rate constant	$m^{3}s^{-1}$
T_n	Electron SRH pseudo-lifetime	S
$ au_p$	Hole SRH pseudo-lifetime	S
	Interface Properties (interface indicated by superscript)	
$\beta^{E,H}$	Bimolecular rate constant	$m^3 s^{-1}$
$\nu_n^{E,H}$	Electron recombination velocity towards interface	ms^{-1}
$\nu_{E,H}^{E,H}$	Hole recombination velocity towards interface	ms ⁻¹
r p	ETL Properties	
h_{Σ}	Width	nm
d_E	Effective doning density	m^{-3}
	Electron diffusion coefficient	$m^{2}s^{-1}$
	Permittivity	50
E^E	Conduction band reference energy	eV
a^E	Conduction band effective DoS	m^{-3}
g_c	HTI Properties	111
h	Width	
d ₁	Effective doping density	m^{-3}
и _Н Д	Hole diffusion coefficient	$m^{2} m^{2} m^{-1}$
	Pormittivity	ш 5
сн БН	Velence hand reference energy	
\mathcal{L}_v	Valence band reference energy	ev $m=3$
g_v^{-}	valence band effective DoS	m

 ${\bf Table \ 3} \ {\rm Table \ of \ input \ parameters, \ in \ which \ the \ abbreviation \ DoS \ denotes \ the \ density \ of \ states.}$

Table 4 Table of optional input parameters supported with v2.0. If these parameters are omitted, they will be set to their default values.

Symbol	Description	Default value	Unit
\mathcal{S}_E	ETL statistical integral	exp	dimensionless
\mathcal{S}_H	HTL statistical integral	exp	dimensionless
E_{ct}	Cathode workfunction	E_f^E	eV
E_{an}	Anode workfunction	E_{f}^{H}	eV
A_n	Electron-dominated Auger recombination rate	0	$m^{6}s^{-1}$
A_p	Hole-dominated Auger recombination rate	0	$m^{6}s^{-1}$
$\hat{R_s}$	External series resistance	0	Ω
R_p	Shunt/parallel resistance	Inf	Ω
A	Cell area	1	$\rm cm^2$
$E_f^E = -W_E$	ETL work function (overrides d_E)	$E_c^E + V_T \mathcal{S}_E^{-1} \left(d_E / g_c^E \right)$	eV
$\vec{E_f^H} = -W_H$	HTL work function (overrides d_H)	$E_v^H - V_T \mathcal{S}_H^{-1} \left(d_H / g_v^H \right)$	eV

 ${\bf Table \ 5} \ {\rm Table \ 6} \ {\rm computed \ properties}.$

Symbol	Description	Unit
E_{f_E} (or d_E)	Fermi level in the ETL (or ETL effective doping density)	$eV (or m^{-3})$
E_{f_H} (or d_H)	Fermi level in the HTL (or HTL effective doping density)	eV (or m^{-3})
L_D	Perovskite Debye length	nm
G(x,t)	Photo-generation rate	$m^{-3}s^{-1}$
G_0	Typical generation rate	$m^{-3}s^{-1}$
k_E	Typical electron ratio across ETL interface	-
k_H	Typical hole ratio across HTL interface	-
n_0	Typical electron concentration in perovskite $(k_E d_E)$	m^{-3}
p_0	Typical hole concentration in perovskite $(k_H d_H)$	m^{-3}
R(x,t)	Bulk recombination rate	$m^{-3}s^{-1}$
$R_l(t)$	ETL/perovskite interface recombination flux	$m^{-2}s^{-1}$
$R_r(t)$	Perovskite/HTL interface recombination flux	$m^{-2}s^{-1}$
τ_{ion}	Characteristic timescale	S
V_{bi}	Built-in voltage	V
V_T	Thermal voltage	V

$2~\mathrm{Typical}$ parameter values for a $\mathrm{TiO}_2/\mathrm{MAPI}/\mathrm{spiro-MeOTAD}$ cell

Symbol	Name	Values	\mathbf{Unit}	Ref.
Т	Temperature	298	Κ	
-	Light entering through	ETL	-	
Perovski	te (MAPI)			
b	Perovskite width	400	nm	
ε_p	Permittivity	24.1	ε_0	[1]
α	Absorption coefficient	$1.3 imes 10^7$	m^{-1}	[6]
g_c	Conduction band effective DoS	8.1×10^{24}	${\rm m}^{-3}$	[1]
g_v	Valence band effective DoS	$5.8 imes 10^{24}$	${\rm m}^{-3}$	[1]
E_c	Conduction band edge	-3.7	eV	[10]
E_v	Valence band edge	-5.4	eV	[10]
D_n	Electron diffusivity	1.7×10^{-4}	$\mathrm{m}^{2}\mathrm{s}^{-1}$	[11]
D_p	Hole diffusivity	1.7×10^{-4}	$\mathrm{m}^{2}\mathrm{s}^{-1}$	[11]
N_0	Mean anion vacancy density	1.6×10^{25}	$\rm m^{-3}$	[4]
D_P	Anion vacancy diffusivity	1×10^{-17}	$\mathrm{m}^2\mathrm{s}^{-1}$	
ETL (TiO_2)				
g_c^E	Conduction band effective DoS	2×10^{23}	${\rm m}^{-3}$	[7]
d_E	Effective doping density	2×10^{22}	${\rm m}^{-3}$	
D_E	Electron diffusivity	$1.3 imes 10^{-5}$	$\mathrm{m}^{2}\mathrm{s}^{-1}$	[12]
ε_E	Permittivity	10	ε_0	
b_E	ETL width	100	nm	
E_c^E	Conduction band edge	-4.13	eV	[2]
HTL (sp	HTL (spiro-MeOTAD)			
g_v^H	Valence band effective DoS	1×10^{26}	$\rm m^{-3}$	[8]
d_H	Effective doping density	1×10^{25}	eV	
D_H	Hole diffusivity	1×10^{-6}	$\mathrm{m}^{2}\mathrm{s}^{-1}$	[12]
ε_H	Permittivity	3	ε_0	
b_H	HTL width	200	nm	
E_v^H	Valence band edge	-5.1	eV	[3]

Table 6 Material parameters representative of a typical $TiO_2/MAPI/spiro-MeOTAD$ cell with standard architecture. When non-Boltzmann statistics are used, the TiO_2 is assumed to have parabolic bands and the spiro-MeOTAD is assumed to have Gaussian bands with width s = 3.73 [5,9,13].

Symbol	Name	Values	Unit	
Perovski	te bulk			
β	Bi-molecular rate constant	1.5×10^{-14}	$\mathrm{m}^{3}\mathrm{s}^{-1}$	
$ au_p$	Hole SRH psuedo-lifetime	3×10^{-7}	s	
$ au_n$	Electron SRH psuedo-lifetime	3×10^{-7}	s	
A_n	Electron Auger coefficient	0	${ m m^6 s^{-1}}$	
A_p	Hole Auger coefficient	0	${\rm m}^{6}{\rm s}^{-1}$	
ETL/per	ovskite interface			
ν_p^E	Hole recombination velocity	10	ms^{-1}	
ν_n^E	Electron recombination velocity	10^{5}	ms^{-1}	
β_E	Bi-molecular rate constant	0	$\mathrm{m}^4\mathrm{s}^{-1}$	
HTL/perovskite interface				
ν_p^H	Hole recombination velocity	10^{5}	ms^{-1}	
ν_n^H	Electron recombination velocity	0.1	ms^{-1}	
β_H	Bi-molecular rate constant	0	$\mathrm{m}^4\mathrm{s}^{-1}$	

Table 7 Recombination parameters for a typical ${\rm TiO}_2/{\rm MAPI}/{\rm spiro-MeOTAD}$ cell.

References

- 1. F. BRIVIO, K. T. BUTLER, A. WALSH, AND M. VAN SCHILFGAARDE, Relativistic quasiparticle self-consistent electronic structure of hybrid halide perovskite photovoltaic absorbers, Physical Review B, 89 (2014).
- M. M. BYRANVAND, T. KIM, S. SONG, G. KANG, S. U. RYU, ET AL., p-type CuI islands on TiO2 electron transport layer for a highly efficient planar-perovskite solar cell with negligible hysteresis, Advanced Energy Materials, 8 (2018), p. 1702235.
- 3. W.-J. CHI, Q.-S. LI, AND Z.-S. LI, Exploring the electrochemical properties of hole transport materials with spiro-cores for efficient perovskite solar cells from first-principles, Nanoscale, 8 (2016), pp. 6146–6154.
- 4. M. H. FUTSCHER, J. M. LEE, L. MCGOVERN, L. A. MUSCARELLA, T. WANG, ET AL., Quantification of ion migration in CH3NH3PbI3 perovskite solar cells by transient capacitance measurements, Materials Horizons, 6 (2019), pp. 1497–1503.
- 5. J. KIRKPATRICK AND J. NELSON, Theoretical study of the transfer integral and density of states in spiro-linked triphenylamine derivatives, The Journal of Chemical Physics, 123 (2005), p. 084703.
- P. LÖPER, M. STUCKELBERGER, B. NIESEN, J. WERNER, M. FILIPIČ, ET AL., Complex refractive index spectra of CH3NH3Pb13 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry, The Journal of Physical Chemistry Letters, 6 (2015), pp. 66–71.
- R. T. MOUCHOU, T. C. JEN, O. T. LASEINDE, AND K. O. UKOBA, Numerical simulation and optimization of p-NiO/n-TiO2 solar cell system using SCAPS, Materials Today: Proceedings, 38 (2021), pp. 835–841.
- 8. K. A. PETERSON, A. PATTERSON, A. VEGA-FLICK, B. LIAO, AND M. L. CHABINYC, Doping molecular organic semiconductors by diffusion from the vapor phase, Materials Chemistry Frontiers, 4 (2020), pp. 3632–3639.
- X. SALLENAVE, M. SHASTI, E. H. ANARAKI, D. VOLYNIUK, J. V. GRAZULEVICIUS, ET AL., Interfacial and bulk properties of hole transporting materials in perovskite solar cells: spiro-MeTAD versus spiro-OMeTAD, Journal of Materials Chemistry A, 8 (2020), pp. 8527–8539.
- 10. P. SCHULZ, E. EDRI, S. KIRMAYER, G. HODES, D. CAHEN, ET AL., Interface energetics in organo-metal halide perovskitebased photovoltaic cells, Energy & Environmental Science, 7 (2014), p. 1377.
- C. C. STOUMPOS, C. D. MALLIAKAS, AND M. G. KANATZIDIS, Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties, Inorganic Chemistry, 52 (2013), pp. 9019–9038.
- H. WANG, G. WU, X. CAI, Y. ZHAO, Z. SHI, ET AL., Effect of growth temperature on structure and optical characters of NiO films fabricated by PA-MOCVD, Vacuum, 86 (2012), pp. 2044–2047.
- I. YAVUZ AND K. N. HOUK, Mesoscale ordering and charge-transport of crystalline Spiro-OMeTAD organic semiconductors, The Journal of Physical Chemistry C, 121 (2017), pp. 993–999.