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Supplementary material
Supplementary methods

We give details below to some of the methods and quantitied isthe Results.

SNR

Two of the used methods for noise-correction are based od-§ecific signal-to-noise ratio (SNR) in order to cancel th
effects of background colored-noise in the spectra of @stetn each subject, average PSD was used to calculaté-sigmaise
ratio (SNR). For SNR calculation, few frequency bands wefinéd based on the categorization in Buzsaki & Draguhn (004
0-10 Hz (Slow, Delta and Theta), 11-30 Hz (Beta), 30-80 Hzni@m), 80-200 Hz (Fast oscillation), 200-500 Hz (Ultra-fast
oscillation). SNR was calculated as:
5 10+ log10( %‘g‘;@;) "
n

SNRy

for a given band "b” and sensor "i”, "n” is the frequency ragbn of that band. This method was applied on individuarage
PSD as well as shape preserving spline of each average PSS wdieh PSD was fist smoothed in log10 scale using a shape

preserving spline, i.e, Piecewise Cubic Hermite InteridgPolynomial (PCHIP).

Multiband spectral subtraction

Assuming the additive noise to be stationary and uncogeélatth the clean signal, nearly most spectral subtractiethods
can be formulated using a parametric equation:

— —

[S(K)|“ = aw]Y (K)[* — by [D(K)|* @

where@\, [Y«| and |Dy| refer to enhanced magnitude spectrum estimate (correaedls the noisy magnitude spectrum
(original signal) and noise magnitude spectrum estimateigt”), respectivelyk is the frequency index, whilex andby are
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linear coefficient parameters of the summation. Spectiatraction methods fall into three main categories (Sim ¢t18198).

The simplest of all, a linear method wheag = by = 1, a=2, following Boll (1979) was used here. This linear multida
spectral subtraction (LMSS) method is well-establishedhfiise subtraction (see Loizou, 2007 for a comparativeystfidoise

subtraction methods).

An improved method, wittax, = 1 andby = v, where "v” is the oversubtraction factor. This methodsusgersubtraction and
introduces a spectral flooring to minimize residual noisé muisical noise (Berouti et al., 1979). A second categonpetsal
subtraction is based oa = by = f(k). Third and the most robust methods are based on a non-linetibamd subtraction
(NMSS) whereay = 1 andby = v(Kk); i.e., the oversubtraction factor is adjusted based on efisggand’s SNR. These methods
proposed by (Kamath and Loizou, 2002; Loizou, 2007) areablétfor dealing with colored noise (Boubakir et al., 200im S
etal., 1998), a case similar to MEG recordings. The spectsutivided into N non-overlapping bands, and spectral swation

is performed independently in each band. The Egs. 2 is sineplyced to:

ISK)2 = Y(K)[2— ai&|Di(K)[2.b <k<g 3)

whereb; andeg are the beginning and ending frequency bins of the ith fraquéand g; is the overall oversubtraction factor of
the ith band and is a tweaking factor. The band specific oversubtractiorofagtis a function of the segmenta8NR of the ith
frequency band. After calculating bandspecific SNR (Egswg)used the product of lower 10 percent of crosssubjectgeer
SNR and standard deviation 8N R to estimate the; & subtraction coefficient. Next, simply by multiplying theise PSD by
this coefficient and subtracting it from the measured PS®etthanced PSD was achieved.

Wiener filter (WF) spectral enhancement

The principle of the Wiener filter is to obtain an estimate lué tlean signal from that of the noisy measurement through
minimizing the Mean Square Error (MSE) between the desiratlthe measured signal (Lim and Oppenheim, 1979; Abd
El-Fattah et al., 2008). In the frequency domain, this reteis formulated as filtering transfer function:
Py (k)

WF(k) = ————~2— 4

N YRS “
where, as befores(k) and R, (k) refer to enhanced power spectrum estimate and noise powetrsm estimate respectively
for a signal frame andt is the frequency index. Based on the definition of SNR as, dkie of these two elements, one can
formulate the WF as:

WH = [1+ ﬁrl ®)

After calculation of bandspecific WF, the noisy signal is giyymuliplied by the WF to obtain the enhanced signal.

Partial least square (PLS) approximation of non-noisy $pen

Partial least squares (PLS) regression, combines “Pahcgmponent analysis” (PCA) and “Multiple linear regressi(Abdi,
2010; Abdi and Williams, 2010). While PCA finds hyperplanésnaximum variance between the response and independent
variables, PLS projects the predicted variables and therghkle variables to a new space. Then from this new spdiurdsta
linear regression model for the projected data. Next, uitgmodel, PLS finds the multidimensional direction in thepéace
that explains the maximum multidimensional variance dioecin the Y space (Abdi, 2010; Garthwaite, 1994). If X is 8D

of noise measurement and Y is the PSD of the measured sigmacmated with background noise, one can use PLS to "clean”
one matrix (Y) by predicting Y from X and then using the resitaf the prediction of Y by X as the estimate of pure PSD.
The patterns of the awake spectrum that statistically retesihe patterns of emptyroom spectral noise are thosstbatd be
removed. As during the PLS algorithm used here, the data @reebtracted and z-normalized, the predection of Y from X is
an approximate of the zscored PSD. Therefore, the resefiudiich is taken as the spectral features that can not begbeeld

by noise, also has zscored values. It has too be emphasitetiithapproach of denoising only works in the spectral btitime
time domain.



Supplementary table

A. Mean and standard deviation
MEG (awake) MEG(empty) LMSS

All -1.33+0.19 -1.24+0.26 -1.04+0.13  -1.24+0.28
FRROI | -1.364+0.25 -0.97+0.10 -0.97+£0.06  -0.96+0.11
VXROI | -1.21+0.13 -1.36+0.10 -1.10+0.09  -1.36+0.10
PTROI | -1.36+0.12 -1.30+0.29 -1.08+0.15  -1.31+0.32

NMSS WF PLS ES

All -1.06+£0.29 -1.05+0.27 -0.50+0.11 -0.20+0.23
FRROI | -0.76+0.09 -0.76+0.08 -0.40+0.05 -0.00+ 0.09
VXROI | -1.14+0.11 -1.12+0.11 -0.50+0.04 -0.26+ 0.08
PTROI | -1.16+£0.32 -1.14+0.30 -0.54+0.11 -0.22+0.26

B. Pearson correlation of EEG vs.

MEG LMSS NMSS WF PLS ES
All 0.29 0.29 0.32 0.33 0.37 0.35

FRROI | 0.41 0.39 0.32 0.37 0.01 0.17

VXROI | -0.17 -0.10 -0.15 -0.13 0.01 -0.28

PTROI | 0.35 0.34 0.38 0.39 0.46 041

C. Kendall Rank Corr of EEG vs.

MEG LMSS NMSS WF PLS ES
All 0.21 0.21 0.24 0.25 0.29 0.23

FRROI | 0.29 0.23 0.21 0.27 -0.06 0.12

VXROI | -0.03 0.04 -0.04 -0.03 0.07 -0.09

PTROI | 0.23 0.23 0.26 0.26 0.30 0.27

Table 1 ROI statistical comparison for different noise correctiorthods. A. mean and std of frequency scale exponent foegitbms and individual
ROI. B. numerical values of linear Pearson correlation.a@kfbased Kendall correlation.
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Supplementary figures

MAG GRAD1 GRAD2

log PSD

MEG (awake)

Empty-room

4 -2 0 2 4 -2 0 2 4

log f
Figure S1: Frequency spectra of magnetometers and gradisn€omparison of awake (blue) vs empty-room (red) rengstbetween Magnetometers
(MAG) and Gradiometers (GRAD1, GRAD?2) in a sample subjestféx the EEG, the MEG signal is characterized by a peak anar®Q Hz, which is
presumably due to residual alpha rhythm (although the stibped eyes open). This is also visible from the MEG signalg. (E) as well as from their
PSD (Fig. 3 and MAG panel here). The power spectrum from thetymoom signals also show a peak at around 10 Hz, but this gisappears from
the gradiometer empty-room signals, while the 10 Hz peak BEMtill persists for gradiometers awake recordings. Tinggests that these two 10 Hz
peaks are different oscillation phenomena. All other sttbjshowed a similar pattern.
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Figure S2: Signal-to-noise ratio (SNR) of Magnetometer®\@Yl for multiple frequency bands: 0-10 Hz (Slow, Delta ance®®), 11-30 Hz (Beta),
30-80 Hz (Gamma), 80-200 Hz (Fast oscillation), 200-500 Blré-fast oscillation). In the scatterplots, red astisklate to individual sensors and
the blue line is the band-specific mean across the sensdsxpiots, the box has lines at the lower quartile, mediad)(rend upper quartile values.
Smallest and biggest non-outlier observations (1.5 tirhesriterquartile range IRQ) are shown as whiskers. Outlieesdata with values beyond the
ends of the whiskers and are displayed with a red + sign. Isudijects, the SNR shows a band-specific trend and has theshigalue for lower
frequencies and gradually drops down as band frequencyugéss the frequency drops, the variability of SNR (amongsses) rises; therefore, the
SNR of the lowest band (1-10 Hz) shows the highest sensesertsor variability and the highest SNR in comparison teoffequency bands.
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Figure S3: Noise correction comparison. Every horizorited showes a voxel of the topographical maps shown in Figr#ddased on the scaling
exponent values of awake MEG (left stripe). Using a contirsucolor spectrum, these stripes show that minimal comedt achived by LMSS. As
indicated in the text, the performance of this method is alible due to the nonlinear nature of SNR (see Suppl. Fig.N#4SS yields higher degree
of correction. WF performs almost identical to NMSS (notwhdere). Exponent subtraction almost abolishes the gpalifogether (far right stripe).
PLS results in values between NMSS and "Exponent subtrectitor details of each of these correction procedures, sethddls. LMSS, NMSS and
WF rely on additive uncorrelated nature of noise. “Exporgeititraction” assumes that the noise is intrinsic to SQUILS Bscertains the characteristics
of noise to the collective obeserved pattern of spectraladoracross all frequencies. See text for more details.
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