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1 Model Description

The model discussed in this section is that of a 2mm2 patch of the visual cortex. To link macroscopic
phenomena to neuron-to-neuron interactions, we have built our model out of a network of spiking point
neurons, using the voltages and conductances of individual neurons as microscopic variables.

Our network’s architecture reflects some basic physiological features of V1, such as orientation domains
and receptive fields, and is constrained by neurophysiological data (e.g., connection sparsity and synaptic
strengths [1–10]). Even though the network is large and contains many thousands of neurons, it is not overly
detailed, and we have included only a dozen or so of the most important parameters, such as short- and
long-range coupling strengths between neuronal populations, and strengths of feedforward input currents.
Additionally, we have chosen several well-studied V1 phenomena which impose further constraints on our
model parameters [11–34]. These phenomena include, but are not limited to, (i) the structured spatial and
temporal correlations observed in the absence of stimulus [35–40]; (ii) the steady state firing-rate responses
associated with high-contrast drifting-grating stimuli and (iii) the suppression of these responses seen when
the spatial extent of these gratings is increased [41–43].

Taken together, the collection of phenomena above constitutes a substantial constraint on the dynamics
of our model. Given the relatively small number of free parameters, it was by no means guaranteed that our
model would be able to satisfy all of these benchmarks for any choice of parameters. Our principal result, as
demonstrated below, is that there are fairly sizable regions in parameter space for which our model exhibits
simultaneously all of the phenomena studied, even as some of these phenomena appear to place conflicting
demands on the system.

As explained above, we would like to work toward a model that can provide a window into real V1
dynamics. At the same time, we designed our model with an eye towards clarifying the underlying dynamical
processes. Such a model must necessarily involve a fair amount of idealization, both in network architecture
and in its microdynamics; this will be evident in the model description to follow. Our challenge was to
idealize enough to obtain a model that can potentially be dissected and analyzed, but not too much so as to
interfere with biologically relevant mechanisms.

The main features of our model are introduced in Sects. 1.1 and 1.2. The first restrictions on the 20 or
so parameters that appear in this model are discussed in Sect. 1.3.

1.1 Network architecture, equations and parameters

Our model is intended to represent a small patch of layer 2/3 of V1, comprising a handful of hypercolumns
each with multiple orientation domains; within the cat such a patch would have a diameter of∼ 2mm. In order
to emphasize the phenomena of orientation selectivity and patterned background activity, we structure our
model so that each orientation domain in a hypercolumn is represented by a single ‘cluster’ containing both
excitatory and inhibitory cells. There are J orientation domains within each hypercolumn, corresponding
to J different orientations (θj = jπ/J), and there are K hypercolumns in total. Thus, the cluster Cjk

corresponds to the jth orientation domain of hypercolumn k.
The excitatory and inhibitory cells within each cluster are connected to one another sparsely and randomly,

both within and across the orientation domains of a given hypercolumn. The excitatory cells are also sparsely
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connected to orientation domains of similar orientation-preference within other hypercolumns. We will refer
to connections between cluster Cjk and clusters Cj′k (i.e., clusters within the same hypercolumn) as local
connections, and connections between Cjk and Cjk′ , k′ 6= k, as long-range connections. See Fig 1 in the main
text for an illustration of our network architecture.

Each cluster has NE excitatory and NI inhibitory neurons. In order to focus clearly on causal neuron-
neuron interactions we model each neuron using single-compartment leaky integrate-and-fire equations in
which the state-variables are membrane-potential V and a slowly decaying excitatory synaptic conductance
gsyn,Eslow (intended to represent NMDA-type excitation [61–70]). We also include typical fast synaptic currents
associated with AMPA-type excitation and GABA–A type inhibition, but these currents are modeled with
instantaneous rise and infinitely fast decay, thus obviating the need for additional state-variables to track
these quantities. We have made this simplification within our model in order to clearly distinguish the fast-
synaptic dynamics from the slower dynamics associated with leakage currents and slow-synaptic currents,
thus accentuating the causal relationship between a cell and its post-synaptic targets. Nevertheless, our
major results remain valid even when the fast-synaptic time-scales are not infinitely short (see, e.g., section
2.1).

The state-variable V of a typical neuron n evolves according to a set of ODEs which can be described as
follows:

τV
d

dt
V (t) = −

(
V − V L

)
− ginputfast (t)

(
V − V E

)
(1)

−gsyn,Eslow (t)
(
V − V E

)
− gsyn,Efast (t)

(
V − V E

)
− gsyn,Ifast (t)

(
V − V I

)
. (2)

In these equations V L = 0, V E = 14/3, V I = −2/3 (expressed in non-dimensional units) are reversal
potentials associated with the leakage-, excitatory- and inhibitory-currents, and the leakage-timescale τV =
20ms [71]. The voltage V of neuron n evolves continuously until V (t) crosses a membrane-potential threshold
V T = 1, at which point this neuron fires, and its voltage V (t) is reset to V L = 0, and held there for a time
τref.

The term ginputfast models the excitatory conductance associated with feedforward input to neuron n (see

Eq 5 below). The term gsyn,Eslow models the slow excitatory synaptic conductance, and the term gsyn,Qfast models
the fast Q-type synaptic conductance, Q ∈ {E, I}.

The slow-excitatory conductance gsyn,Eslow for the neuron n is given by

gsyn,Eslow (t) =
∑

n′ of type E

Wnn′

slowα
E
slow ? mn′ , (3)

where Wnn′

slow describes the coupling strength between neuron n′ and neuron n, mn′ is a sum of delta-functions
representing the firing activity of neuron n′, and αE

slow (t) is an alpha-function with instantaneous rise-time
and a decay-time of τEslow ∼ 50− 150ms.

In a similar fashion, the fast Q-type conductance gsyn,Qfast , Q ∈ {E, I}, is given by

gsyn,Qfast =
∑

n′ of type Q

Wnn′

fastα
Q
fast ? mn′ . (4)

The alpha-function αQ
fast (t) has instantaneous rise-time and an infinitely fast decay-time of τQfast = 0. Thus,

each time a neuron fires, the fast synaptic-conductances create an instantaneous jump in the voltage of the
postsynaptic neuron and multiple neurons can be driven to fire at any instantaneous point in time.

Now we must emphasize that, due to the singular nature of Eq 4 (as well as Eq 5 below), the Eq 1 is not

actually a well-posed ordinary differential equation. We model the instantaneous currents gsyn,Qfast by starting

with fast time-scales τQfast which are not zero, and then taking the formal limit as these time-scales, as well as

τref, tend to 0+. The order in which we take these limits affects the dynamics. We assume that τref � τQfast, so
each neuron can only fire once at each instant in time, and τ Ifast ∼ τEfast as τEfast, τ

I
fast → 0+. This assumption

allows for a biologically realistic competition between excitatory and inhibitory populations.
The coupling strengths Wnn′

fast and Wnn′

slow encode the connectivity of the network, n′ being the transmitting
and n the receiving neuron. We assume that the neurons are sparsely connected, so many of these weights
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will be 0. Since our model incorporates a slow excitatory synaptic current but not a slow inhibitory synaptic
current, Wnn′

slow = 0 when n′ is inhibitory. Also, since only excitatory cells broadcast long-range connections,

Wnn′

fast = Wnn′

slow = 0 when n′ is inhibitory and in a different hypercolumn than n.
If two neurons are connected, then we assume that their connection strengths depend only on (i) their

types, (ii) whether or not they share the same orientation preference, and (iii) whether or not they lie in the
same hypercolumn. That is to say, given two connected neurons n and n′ of types Q and Q′ in clusters Cjk

and Cj′k′ respectively, Wnn′

fast and Wnn′

slow depend only on Q and Q′, δjj′ and δkk′ . Thus for pairs of neurons

with δkk′ = 1, there are 6 local-coupling parameters, which we denote by SQ,Q′

fast and SQ,E
slow . If δjj′ = 1, there

are 4 long-range-coupling parameters, which we denote by LQ,E
fast and LQ,E

slow. For ease of notation we will later

use SQQ′
to refer to SQ,Q′

fast , and LQ to refer to LQ,E
slow. We will also refer to gsyn,Eslow as gslow and τEslow as τslow.

1.2 Two types of input

We will consider two general classes of input ginputfast for this system: (i) an input which models the unstimulated
or ‘background’ state of the cortex, and (ii) an input which models a ‘stimulus’ intended to represent a drifting
grating of some diameter. Both the background drive and the stimulus to neuron-n are modeled by an input
of the form

ginputfast = SQ
drive

∑
h

αE
fast

(
t− T drive

h

)
, (5)

where the spike-times T drive
h are chosen from a Poisson process with rate ηQ,j,k,l (t) that depends on Q, j and

k, as well as on the neuron’s index l. In background the rate of this Poisson input is chosen to be constant
across all orientations j and hypercolumns k, as well as all indices l. The stimulus is modeled by increasing
this Poisson input drive to selected clusters. For example, in order to model a drifting grating stimulus of
orientation θj with a small spatial diameter, we increase the drive to the jth cluster in a single hypercolumn
1. If, on the other hand, we wish to model a drifting grating stimulus of orientation θj with a very large
spatial diameter, we would increase the drive to the jth cluster of every hypercolumn. Thus, in general, the
drive, i.e., the rate of the Poisson input, to each cluster is given by a cluster-independent background drive
plus a cluster-dependent stimulus-specific drive:

ηQ,j,k,l (t) = ηbkgQ + ηstimQ,j,k,l (t) .

We simulate the type of input a ‘simple’-like cell would receive under a drifting-grating stimulus by setting

ηstimQ,j,k,l (t) = CQ,j,kη
bkg
Q (1 + sin (ω (t− φl))) .

In this expression CQ,j,k represents the effective contrast of the stimulus as perceived by the neurons in
question, and is high only for those clusters j, k which would be influenced given the orientation and size
of the drifting-grating. We choose CE,k,j = 3CI,k,j to simulate the excess of orientation-tuned feedforward
input to the excitatory population which may arise from feedback from other layers [33]. The frequency ω
(which we take to be 4Hz) is the temporal-frequency at which the grating passes over the cell’s receptive
field center, and is related to the spatial-frequency of the grating, as well as the grating’s drift speed. The
phase φl is related to the spatial-phase preference of the cell, and is randomly distributed within each cluster
[8, 69, 73, 74]. We will not consider the distinction between simple and complex cells, except to note that our
main conclusions do not change when we take ηstim (t) = C [75].

1.3 Constraints from physiology

The following are parameters in our model:

(a) network size (J , K, NQ),
(b) sparsity of connections,

1Within the real V1, cells in any given orientation-hypercolumn tend to have overlapping receptive fields of ∼ 1◦, and
localized visual stimulus typically directly stimulates ∼ 1−2 adjacent hypercolumns [7, 72]. Our model is designed to reflect this
physiology; we model a localized drifting grating stimulus by increasing the input drive to all the neurons in 1− 2 hypercolumns
with the appropriate orientation preference.
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(c) synaptic coupling strengths (SQQ′

fast , SQQ′

slow , LQ,E
fast , LQ,E

slow),
(d) time-scale of slow-excitation τslow, and the ratio τ Ifast/τ

E
fast,

(e) input (SQ
drive, η

bkg
Q , ηstimQ,j,k).

Many of these parameters are constrained in one way or another by the physiology and architecture of the
real V1 as we now discuss.

(a) and (b): With regard to network size and connectivity, a typical small patch of layer 2/3 of V1 with
a radius comparable to an ocular dominance column comprises ∼ 5 − 10 hypercolumns, each comprising
a continuum of orientation domains [7, 22, 76, 77]. To grossly capture the facts that (i) each orientation
domain is influenced locally by domains of differing orientation preference, and (ii) each orientation domain is
influenced laterally by multiple nearby orientation domains of similar orientation preference, we choose K = 8
and J = 3. Our results do not change qualitatively if we include more hypercolumns or resolve orientation-
space more finely 2. One feature not incorporated is the spatial structure of the long-range connections across
scales of several mm — in our model long-range connections between pairs of hypercolumns are statistically
identical. A typical orientation-domain within layer 2/3 of cat V1 has ∼ 700 excitatory cells and ∼ 200
inhibitory cells [5, 78–81] 3 and many types of inhibitory neurons are known to arborize densely [82–85]. We
use NE = NI = 128 for the simulations and parameter-sweeps presented in this section; too small an NQ

(e.g. NQ = 8) will not produce a dynamic regime with statistics that are physiologically acceptable. We
take NI comparable to NE to reflect the fact that inhibitory neurons arborize more densely The regimes
(and underlying mechanisms) discussed here persist for larger values of NQ. For an example, see section 4.3.
Experiments also indicate that excitatory neurons are not connected together in an all-to-all fashion [32]. We
use a network connectivity of about 25%.

(c) and (d): The synaptic strengths are constrained by several electrophysiological experiments within
V1, which indicate that typical EPSPs and IPSPs are not much larger than 1.5mV [4, 9, 86, 87]. Thus a
typical cell near reset will require ∼ 10 − 20 synaptic excitatory ‘kicks’ (in quick succession) to be driven

over threshold. This constraint places an upper bound on the local and long-range coupling strengths SQQ′

fast

and LQ,E
fast . The time-integrated slow-excitatory EPSPs observed in the cortex are not much larger than the

time-integrated fast EPSPs [64, 68, 70, 88]; that too will impose constraints in our parameter choices. The
time-scale of slow-excitation in V1 varies from ∼ 40− 120ms [61, 63, 65]. In our model we use τEslow = 128ms
for most of our simulations, but this choice is not critical to our results. With regard to the fast time scales,
the ratio τ Ifast/τ

E
fast, which determines the order in which events are resolved, is taken to be 1; our results

are not especially sensitive to this ratio provided it is not too large or too small.

(e): The input to our system is similarly constrained by experiments. Within the real V1 the EPSPs due to
input are rarely large, and consist of many micro-EPSPs as well as many feedback and feedforward connections
from other layers [89]. Moreover, it is observed that when V1 is driven by stimulus, a large portion of the
feedforward input is orientation-tuned and may also preferentially target the excitatory population [33, 90].

Thus, we constrain our system by requiring that (i) the magnitude of SQ
drive is small (say, < SQ,E

fast ), and (ii)
the additional input associated with an oriented visual stimulus should affect the excitatory population more
than the inhibitory population (i.e., ηstimE,j,k > ηstimI,j,k via CE,j,k > CI,j,k when cluster j, k is stimulated).

In V1 it is observed that typical dynamic regimes in background produce excitatory firing-rates of a few
Hz, with inhibitory firing-rates that are not much higher [27, 91–93]. This places a lower bound on the input

2While our discretization into J = 3 orientation domains per hypercolumn is somewhat of an idealization, the local interaction
between these clusters qualitatively captures the continuum of orientation-domains in V1, and we are not sure if a choice of
J > 3 would be substantially more realistic. Specifically, while the division of V1 into orientation domains is well documented,
the local architecture associated with these domains is not as well documented. The ‘messiness’ in the local architecture seems
far greater than that assumed in a linearly parametrized ring model [32]. Moreover, the orientation tuning seen in many cells
in V1 is quite broad [96, 134], with a width at half-height comparable to pi/3. Thus, there are probably no more than 4 − 7
clearly distinguishable orientation domains in the real V1. Our choice J = 3 seems like it can coarsely capture the ‘activated’,
and ‘inactivated’ sections of any given hypercolumn under strong grating stimulus, while allowing us to coarsely canvass the
emergence of background patterns. Increasing J in our model would require the introduction of extra parameters, which we did
not feel could be appropriately constrained.

3There are roughly 40, 000 neurons per mm3 in the cat V1, and layer 2/3 is about 0.38mm thick. Thus, there are around
14, 000 cells per mm2 in layer 2/3. There are between 4-7 orientation pinwheels per mm2 in the cat, so there are around 2800
neurons per orientation pinwheel. With each pinhweel divided into 3 orientation domains, there would be roughly 700 excitatory
neurons and 200 inhibitory neurons per orientation domain.
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current to our system. If the combination SE
drive · η

bkg
E is too low, then our system will not fire sufficiently

frequently in background. Also, even though our model is structured specifically to allow many neurons to
fire concurrently, we do not consider parameter regimes which admit synchronous firing or firing events that
involve too a large fraction of the population, as that is unbiological. See Fig 1.

Last but not least, many different experiments have demonstrated that V1 typically operates in a regime of
high-gain [44–60]. We build that into our model by requiring that the background input to the system places
the network in a state that can be easily excited by stimulus. Note that, unlike the restriction associated with
background firing-rate (which constrains SE

drive ·η
bkg
E ), the restriction associated with a high-gain regime places

an upper bound on SE
drive. If SE

drive is too large, then the system will respond linearly as ηE,j,k increases [94].
Within a high gain regime SE

drive is small, ηE,j,k is relatively large, and each neuron receives many relatively
weak input EPSPs. This type of input ensures that the membrane-potential of each neuron is often close to
V T , and that a small additional input can drive many neurons to fire.

How good is the model described above? One way to find out is to try to replicate some of the empirical
observations of V1 that are not direct consequences of the modeling, i.e., they are not directly implied by
our model architecture or by the rules of dynamics. The following sections discuss several such empirical
observations. In each case, we will demonstrate (via simulations) that the phenomenon occurs for suitable
choices of parameters, give a sense of how they constrain the network, and discuss briefly the main features
of the dynamical regimes. Our aim is to produce, at the end of section 5, regions in parameter space each
point of which corresponds to a model which exhibits all of the phenomena considered.

Recall that SQQ′

fast is abbreviated as SQQ′
, and LQE

slow as LQ.

2 Dynamics: generation of MFEs

2.1 Fast time scales and MFEs

In the main text of this paper we often refer to MFEs (multiple firing events), which are idealizations of a
concept that can only be defined precisely in the limit τE → 0, for in this limit, no other forces can intervene
between the start and completion of a synaptic event. Taking τE to be a small but strictly positive number
will introduce a small amount of fuzziness, in that it may not always be possible to determine whether a
spiking is ‘directly caused’ by another spike. As long as τE and τI are significantly smaller than the other
timescales in the system, multiple firing events should remain clearly identifiable, if not precisely defined. In
Fig 2 we show that MFEs can manifest within more realistic clusters of conductance-based LIF neurons for
which the fast synaptic conductances have timescales τE , τI > 0.

2.2 Conduction velocity and synaptic delays

The horizontal conduction velocity in mammalian visual cortex has been measured to lie between 0.1 and
0.4 mm/ms, with a mean of roughly 0.3 mm/ms. In other words, the delay due to horizontal transmission is
roughly 3− 10 ms/mm [4, 18, 97, 98].

For simplicity, the model we discuss in the main text does not include any transmission delay between
hypercolumns, nevertheless our main results hold even if we were to include such a delay. Specifically, the
dynamic regime of our model continues to generate plenty of MFEs even after we incorporate transmission
delays of 5− 10 ms between hypercolumns (note that with the relatively small spatial extent of our system
different hypercolumns are ∼ 1 − 2mm apart). The reason why our results are robust with regards to
transmission delay is that, in the regime we discuss in the main text, the majority of the MFEs result from
fast synaptic interactions within individual orientation domains. The long-range horizontal connections are
important for setting the mean level of input to the clusters, but play a subsidiary role in the actual nucleation
and execution of most MFEs.

Shown in Fig 3 is a dynamic regime associated with our model when we incorporate long-range trans-
mission delays of 9ms between hypercolumns. The coupling strengths of the system have been adjusted by
±10% so that the regime still retains the same dynamical properties as discussed in the main text. The
individual orientation domains still generate MFEs, and the MFEs are still responsible for the large-scale
dynamic phenomena (e.g., spontaneous background patterns and surround suppression).
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3 Orientation selectivity and localized receptive field

3.1 Two basic features in real V1 and in our model

Orientation selectivity

A large fraction of the excitatory and inhibitory cells in real V1 are orientation-selective, and V1 itself is
organized into iso-orientation domains [10, 96, 99–101]. Each iso-orientation domain is ∼ 0.25mm in diameter
and is modeled in our network via a single cluster Cjk. Two commonly observed features of orientation
selectivity are that (i) excitatory cells tend to be sharply tuned for orientation, and (ii) inhibitory cells tend
to be weakly to moderately tuned for orientation. We will try to capture the gross phenomenon of orientation
selectivity in our model in the following way: we assume that a parameter regime exhibits physiologically
reasonable orientation selectivity if (i) a stimulation of a subset of clusters corresponding to a given orientation
(say, θ1) does not increase the excitatory firing-rates within the other orientations (i.e., θ2, . . . , θJ) above their
unstimulated background level, and (ii) when a particular orientation is stimulated, the inhibitory neurons
associated with that orientation fire more than the inhibitory neurons associated with other unstimulated
orientations.

Localized receptive fields

In real V1, it is a fact that presentation of a grating at a cell’s preferred orientation, but away from
its receptive field center, will not produce additional spiking activity; there may be associated subthreshold
activity but it does not give rise to firing-events [33, 104, 105]. A commonly held assumption which can
rationalize this phenomenon is that the connectivity within V1 is dominated by local circuitry, implying
that activation of the lateral/long-range circuitry alone will not be sufficient to cause firing events (although
long-range excitation can give rise to a measurable increase in the average subthreshold voltage of areas far
from the stimulated site — see [23, 33, 106]). For our model, this translates into the following: we assume
that a parameter regime exhibits localized receptive fields in a physiologically reasonable manner if, when a
particular cluster is stimulated, excitatory neurons in other clusters corresponding to the same orientation
are not driven to fire appreciably more than they would in background.

3.2 Sample results and constraints on network parameters

To illustrate the ideas above, we first present a sample of simulation results showing the excitatory and
inhibitory firing rates in a cluster we call Cjk, i.e., a cluster with orientation j and located in hypercolumn
k.

unstim stim Cjk stim Cjk′ stim Cj′k

[E]jk 2.7 31 1.7 1.0

[I]jk 6.6 36 12 5.4

Caption for Table 1. Here we present steady-state excitatory and inhibitory firing-rates for a typical
cluster Cjk in our model, recorded under a variety of stimulus paradigms. ‘Unstim’ means no cluster is
stimulated. ‘Stim Cmn’ means Cmn is the only cluster stimulated, and in the data shown, j′ 6= j, k′ 6= k. In
each case involving stimulation the contrast (or stimulus magnitude) is relatively low, and the responses of
our system have not saturated.

The data shown illustrate the following: Both excitatory and inhibitory firing in Cjk are elevated signifi-
cantly when Cjk is directly stimulated (from 2.7 to 31 for E, from 6.6 to 36 for I). Excitatory firing rate in
Cjk when Cj′k, j

′ 6= j, is stimulated is significantly lower than when no cluster is stimulated (1.0 vs 2.7),
illustrating the fact that excitatory neurons are sharply tuned for orientation. Inhibitory firing rate in Cjk

when Cj′k is stimulated is lower than when Cj,k itself is stimulated (5.4 vs 36), illustrating the fact that
inhibitory neurons are weakly tuned. Finally, excitatory and inhibitory firing rates in Cjk in background are
not significantly lower than when Cjk′ , a cluster of the same orientation but in a different hypercolumn, is
stimulated (3,7 vs 2,12), illustrating the idea of localized receptive fields [107].

We discuss next how the properties discussed above restrict network parameters:
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With respect to connectivity, they tell us that, within a hypercolumn, there must be connections across
orientation domains; at the same time, these connections should be no denser than within a cluster. This is
the case in our model.

With respect to constraints on synaptic couplings, the properties discussed in this section do not impose
strong constraints on our system beyond those already imposed at the end of Section 1, and they are mild
compared to those to be imposed in the next two sections. Mainly, the orientation selectivity properties
above suggest that local inhibition extends to other clusters within the same hypercolumn, whereas local
excitation alone cannot cause other clusters within the same hypercolumn to fire. This suggests that SEE

should not be large relative to SEI and SIE . The receptive field property suggests that (i) direct stimulation
affects E-neurons more than it does E-neurons in other hypercolumns, i.e. LE cannot be too large relative
to LI , and (ii) the net effect of long-range excitation should be suppressive, i.e. LI > LE . These restrictions
are not severe; they make the viable parameter corridor in panel [A] of Fig 1 slightly narrower, and impose
no additional conditions on the region in panel [B] of Fig 1.

3.3 Sharp tuning

Finally, we comment on an an additional phenomenon regarding orientation tuning – sometimes referred
to as ‘sharpening’. The orientation tuning observed in the real V1 is rather sharp and various theoretical
investigations have pointed out that this sharp tuning can manifest even when the feedforward inputs into
V1 are not sharply tuned. Moreover, modeling work has indicated that the recurrent connectivity within V1
itself may be sufficient to give rise to such a phenomenon (see, e.g., [138]). Our model, as it currently stands,
only coarsely resolves orientation space and is not quite detailed enough to clearly investigate this sharpening;
we cannot easily disambiguate sharply tuned inputs/responses from broadly tuned inputs/responses.

Here we show that, by increasing the number of orientations in our model, we can indeed qualitatively
capture sharpening. We present an example in which we increase J from 3 to 4, and retune the local coupling
strengths to maintain the same type of regime discussed in the main text. This J = 4 model has fewer
inhibitory cells per cluster (64 instead of 128), but otherwise has the same architecture as the J = 3 model
we discuss in the rest of the paper. In terms of the dynamical regime, we retune the coupling strengths to
ensure that (i) MFEs still manifest, and (ii) these MFEs still give rise to spontaneous background patterns,
surround suppression, the appropriately structured LFP, etc. As shown in Fig 4A, the MFE distribution for
this model has a long tail – MFEs of small to moderate size are typical.

With this new J = 4 model we can present weakly tuned input, and measure how sharply tuned the
output firing rates are. More precisely, we choose one orientation, say, θ3, and stimulate 3 clusters of this
orientation (i.e., we choose ηstimQ,3,k,l as described in section 1.2 with strength CE,3,k = 0.75 and CI,3,k = 0.25,
for k = 1, 2, 3, and with strength 0 for k > 3). We then stimulate the first 3 clusters of the ‘adjacent’
orientations θ2 and θ4 half as strongly (i.e., with CE,2,k = CE,4,k = 0.375 and CI,2,k = CI,4,k = 0.125 for
k = 1, 2, 3). We do not stimulate the final ‘orthogonal’ orientation θ1 at all – the only stimulus received by

θ1 is the background ηbkgQ . This input is broadly tuned, as can be seen in the Fig 4B. We then measure the
time-averaged output firing-rates across the first three clusters of each orientation. This data is also shown in
Fig 4B, and is much more sharply tuned than the input. This behavior is typical for this model, and persists
when we change the number of clusters stimulated or the overall strength of the stimulus.

4 Spontaneous correlated background activity

It has been observed in several mammals (e.g., ferret, cat, and monkey) that, when unstimulated, i.e., in
background, the activity in the visual cortex is not homogeneous, but has spatial and temporal structure.
The spatial correlations are on the order of 1-2mm and the temporal correlations are on the order of 50-500ms
[35–37, 108, 109]. It has also been found that, much of the time, the distinct cortical regions which exhibit
correlated behavior are orientation domains of similar orientation preference separated by ∼ 0.5 − 2mm
[23, 35].
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4.1 Model regimes exhibiting realistic V1 background activity

By interpreting a collection of experiments [33, 35–40, 108], we propose that the following dynamic picture of
our network correctly represents the phenomenon observed: When unstimulated, our network should admit
epochs of sustained activity across a collection of orientation domains with equivalent orientation, i.e., a
collection of clusters {Cjk, j = θ} for some θ. When a pattern is activated, the sustained activity corresponds
to increases in both mean firing-rate and mean subthreshold voltage, and clusters with a different θ are
usually not concurrently activated during this period (though some concurrent patterns are permitted from
time to time). Any given sustained activity pattern can persist for ∼ 50 − 500ms before either decaying to
a homogeneous state or evolving into another sustained pattern associated with a different θ. Fig 2 in the
main text illustrates a typical background dynamic regime for our model. Here we also replot the psd of the
LFP for this background regime on a log-log scale (see Fig 5).

Notice the following characteristics of the dynamical regimes we propose as candidates for exhibiting
realistic background activity: First, the durations of the patterns are quite random and sometimes ill-defined,
but they have a characteristic persistent time τpersistbkgrnd which can be considerably longer than τslow; this is

consistent with several experimental observations [35, 108, 109]. In the regime shown, τpersistbkgrnd ∼ 300 ms,

compared with τslow = 128 ms. It is not hard to make τpersistbkgrnd last as long as 1-2 s by increasing LE and
decreasing the local couplings

One may be concerned that τpersistbkgrnd may increase with system size, and therefore τpersistbkgrnd may become
unphysically large if the cluster size in our model were increased to match that of the real V1. This is
a legitimate concern, as such increases in switching times are predicted in a number of theoretical studies
[110, 112, 113]. In our model, however, there are several parameters that can be tuned to control the values of

τpersistbkgrnd. We demonstrate below (section 4.3) that by tuning these parameters, switching times can be made
longer or shorter as desired for clusters 4 times the size of those used in Fig 2 of the main text.

Also notice that, following the onset of each pattern, activity among E-cells in the orientation domain
in question continues well past the point when their inhibitory counterparts have been fully activated. This
characteristic, which is very much in evidence in panel [A] and also reflected in the shapes of the cross-
covariance curves in panel [B], is consistent with experimental measurements [39, 40].

One reason we draw attention to the two characteristics in the last paragraph is that they are at odds with
[111], which previously proposed a different network regime also exhibiting correlated background activity.
Unlike ours, their regime is highly inhibition-driven. The model network described in Section 1 is, in fact,
flexible enough that it can also support the scenario described in [111] – for a different set of parameters
than the ones proposed here, of course. We believe the scenario presented in this subsection fits better with
experimental data.

4.2 Constraints on network parameters

The phenomenon associated with the background regimes discussed above places quite a strong constraint on
the parameters of our model. The emergence of patterns hinges on the ability of the E-population to nucleate
MFEs (which however must not involve too large a fraction of the cluster since such synchronous firing is not
typically observed in functional regimes of real V1). That in turn depends on a number of factors, notably

the strengths of the background drives SQ
drive and ηbkgQ (see Section 1.2), and the local couplings SQQ′

fast .
Other things being equal, the closer to threshold a system operates, the more readily it generates MFEs.

We have chosen the background drive in such a way the system is operating quite close to threshold. Long-
range fast excitation LE

fast must not be too small as it is responsible for recruiting clusters in multiple

hypercolumns. Once recruitment takes place, τbkgrndpersist depends strongly on the ratio of LI
slow to LE

slow (SE
slow

and SI
slow are fixed for definiteness). If LI

slow is too small and LE
slow is too large, then an orientation which

has recruited will dominate nearly indefinitely (i.e., τbkgrndpersist → ∞). In general, for the regimes we have

investigated, a larger ratio of LI/LE leads to a more rapid interference with the E-dominated MFEs, hence

a shorter τbkgrndpersist . Finally, SQQ′

fast and the local connectivity across clusters have the greatest influence on

non-iso-oriented exclusion, which also affects τbkgrndpersist and the patterned activity.
It is obviously impossible to balance all of the relationships in the last paragraph ‘by hand’. To locate the

relevant parameter regions, we performed many parameter sweeps, using the results of simulations to help
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identify parameters with desired properties. See Fig 6, which tracks the same two panels shown in Fig 1.

4.3 Background patterns in larger systems

The switching time τbkgrndpersist of the regime exhibiting background patterns shown in section 4 does not neces-
sarily increase with the system size. If the sizes NE , NI of the clusters in our model are increased, then the
network parameters can be retuned slightly to maintain qualitatively similar background fluctuations with a
comparable switching timescale τbkgrndpersist . In Fig 10A we show background patterns obtained from a system
very similar to the one shown in Fig 2 of the main text, except that NE and NI are increased to 512 and
the coupling parameters have been retuned slightly. As can be seen in Fig 10A, τbkgrndpersist for this regime is

∼ 300ms. By taking this regime and modifying the local coupling strengths SIE + SEI and SEE by ±50%,
as done in Fig 6, we can obtain qualitatively different regimes for which τbkgrndpersist can be larger or smaller than
300ms. Examples of these other regimes are shown in Fig 10B,C.

5 Surround suppression of inhibitory and excitatory firing-rates

It has been observed that the firing rate of many excitatory cortical cells is lower when stimulated with
an optimally-oriented full-field grating than with an optimally-oriented small grating subtending only the
neuron’s classical receptive field [31, 42, 43, 117, 118]. Typical theories regarding this type of effect invoke
long-range or lateral connectivity (or feedback), as well as a strong inhibitory agent which is triggered
by the activation of the surrounding hypercolumns, and which serves to suppress excitation within the
central/measured hypercolumn [34, 119]. As there is no strong evidence for long-range inhibition within the
cortex, the typical assumption is that the inhibitory mechanism leading to surround suppression must involve
long-range excitation of the local inhibitory circuit. As such, many theories regarding surround suppression
predict that, as the surround is stimulated, local inhibitory firing rates in the center would increase, thus
suppressing excitatory firing-rates in the center.

Recent results of Ozeki et al. [42, 120] challenge the view expressed at the end of the last paragraph: their
intracellular measurements infer that, when the surround and center are both stimulated with an optimally-
oriented grating, both inhibitory and excitatory firing rates are lower than the corresponding rates when only
the center is stimulated.

We mention also another set of results, by Haider et al. [43], which finds, using images that are rich in
spatio-temporal structure, an increase in the firing-rate of fast-spiking interneurons when one stimulates the
surround in addition to the center.

In this section we will focus primarily on iso-oriented surround suppression a la [42]. A few related results
including contrast dependence and other kinds of stimuli are discussed in section 5.2.

5.1 Network regimes exhibiting surround-suppression a la [42]

We fix in our network an orientation j and a hypercolumn k. It will be assumed throughout that all
stimulations take the form of drifting gratings with orientation j. We view the kth hypercolumn as the
‘center’, and any subset of the other hypercolumns as the ‘surround’. (Recall from Section 1 that connectivity
between all pairs of hypercolumns are statistically identical in our model.) We will compare the firing rates
of excitatory and inhibitory neurons in the center, i.e. in the cluster Cjk, in the following two scenarios: In
Scenario 1, we stimulate Cjk alone; in Scenario 2, we stimulate some subcollection of {Cjk′ ,∀ k′} including
Cjk; for simplicity, we denote the latter by ∪k′Cjk′ .

Following Ozeki et al. [42], we say a regime exhibits surround-suppression if, under strong stimulation,
there is decreased firing for both excitatory and inhibitory neurons in Cjk as one goes from Scenario 1 to
Scenario 2. All stimuli considered in section 5.1 are assumed to have high contrast.

We will demonstrate that there are parameter regions for which the system exhibits surround-suppression
in the sense above. A sample of results is shown in Table 2, and a more detailed illustration of this phenomenon
is presented in Fig 5 in the main text.
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unstim stim Cjk stim ∪k′Cjk′

[E]jk 2.8 56 7.6

[I]jk 6.6 63 39

Caption for Table 2. Here we present steady-state excitatory and inhibitory firing-rates for a typical cluster
Cjk in our model, recorded under a variety of stimulus paradigms. ‘Unstim’ means no cluster is stimulated.
‘Stim Cjk’ means Cjk is the only cluster stimulated, and ‘Stim ∪k′Cjk′ ’ means that several clusters of the
same orientation (including Cjk) are stimulated.

Fig 7 shows two panels analogous to those in Fig 6, illustrating the parameter constraints placed on the
network with regard to surround-suppression a la [42]. One sees from Fig 7 that, in each of the panels, the
intersection of the grey region with the domain bounded by the solid black curve is nonempty. This is the
set of parameters which simultaneously satisfy all requirements in the studies reported in the main text of this
paper. To get a rough idea of the size of this viable parameter region, see Fig 7, in which the highlighted
square region shows a two-fold variation in parameters.

5.2 Related results

5.2.1 Contrast dependence

We report here on some very preliminary results regarding the response to stimuli of low- versus high-
constrast, for optimally oriented drifting gratings of increasing diameters. We think of the constant CE,k,j

in our external input (see Sect. 1.2) as varying from 0 to 1; with 0.125 corresponding to low and 0.5 to high
contrast; these numbers are chosen to elicit roughly desirable firing rates as seen in real V1. Since there is no
notion of geometric distance among hypercolumns in our model, we represent the ‘diameter’ of a stimulus by
the total number of clusters stimulated. That is to say, we fix an orientation j, think of Cj1 as the ‘center’ or
cluster 1, and study the firing rates in cluster 1 when clusters 1 through n, i.e., Cj1, . . . , Cjn are stimulated.
Plots of E-firing rates as functions of n for a few different contrasts are shown in Fig. 3A in the main text.
These results show some resemblance to the experimental data in [41].

The effects of a high contrast stimulation are discussed in previous sections. For very low contrast, one
may rationalize the small increase in firing rate in cluster 1 as n goes from 1 to 2 as follows: For a system
that operates very close to threshold but in a low firing regime (such as in background or when very weakly
stimulated), there is a tendency to nucleate MFEs when any amount of additional excitation is received,
and MFEs lead to the formation and reinforcement of a theta-pattern, which leads to increased firing rates.
On the other hand, long-range effects are, on average, suppressive. It appears that the tendency to form
MFEs outweighs this suppressive effect for a system in a low enough firing regime, but the scale is tipped
(quickly) as one raises its level of excitation. That would explain the initial increase in firing rate, as well as
the decrease for n > 2 for the regime shown in Fig 3A in the main text. This thinking is corroborated by
simulations.

5.2.2 Regimes in which I-firing increases with grating diameter

For nearly all reasonable parameters (not necessarily close to the patch considered in this paper) that we
have investigated, excitatory firing rates at the center drop very definitively as we stimulate the surround in
addition to the center. This, however, is not true for inhibitory firing rates, which can go in either direction.
That is to say, there exist sizable regions in parameters away from the patch we consider on which our model
exhibits behavior opposite to that described in Sect. 5.1 with respect to inhibitory firing. One way to get
into such a regime is to start from our reference parameters, and alter the coupling strengths SEI + SEI as
well as the input ηbkgI in order to decrease the relative fraction of I-firing that is triggered by MFEs. The
fact that our model supports such a range of behaviors is testimony to its versatility; it also points to the
importance of constraining parameters by experimental data and the need for further work.

5.2.3 Stimulus type influences surround-suppression

Our model is not capable of fully capturing the results of Haider et al. in part because their work studied fast-
spiking interneurons, which are not well modeled by the integrate-and-fire neurons we use. More importantly,
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the stimulus used in Haider et al. is in the form of a ‘natural movie’, with broadband spatio-temporal
structures, and not a drifting grating with a fixed orientation (which is the only type of stimulus used in
all of our results so far). However, for the same set of parameters used to generate the inhibitory surround-
suppression shown in Fig 5 of the main text, we have seen that a full-field stimulus that affects multiple
orientations produces significantly lower firing rates in the center compared to stimuli of comparable strengths
directed at a single orientation. This has motivated us to crudely approximate the ‘natural’ stimuli of the
kind used by Haider by a drive of the form:

ηstimQ,j,k,l (t) = CQ,j,kη
bkg
Q (1 + sin (θj + ω (t− φl))) ,

where j varies across all angles, and k varies across the hypercolumns directly affected by the stimulus.
Using this ‘natural’ stimulus, we have found that our reference parameter-set (shown in Fig 5 of the main
text) produces a rather different response; the inhibitory cells show a slight surround facilitation, whereas
the excitatory cells remain suppressed. These observations are consistent with, respectively, the fast-spiking
interneurons and regular-spiking pyramidal cells observed by [43]. An example of this is shown in Fig 8.

6 Comparison with related works

A variety of theories have been proposed to explain background phenomena and surround suppression in V1.
We compare and contrast our findings with a few previous results.

6.1 Rate models

We mention first some results involving firing-rate models which can explain, to varying degrees, spontaneous
background activity within V1. Work by [110] applies linear stability analysis to a nonlinear firing-rate
model to reveal marginally stable states. By suitably balancing a noisy background input, their system can
exhibit a background regime which fluctuates between different marginal modes with biologically realistic
timescales. Further work by [110, 112, 121, 122] has investigated linear firing-rate models which are designed
to amplify weak inputs to produce transient impulse responses. Using background drives with the appropriate
spatio-temporal correlations these models can also exhibit background-fluctuations with biologically realistic
spatio-temporal scales.

An important difference between our results and [112] is that our regime does not rely on correlations
in the drive to produce patterned activity. While background drive is likely correlated, there is evidence
that these correlations may not be directly responsible for the patterns observed in V1 (see [108]). We also
differ from [110] in that, though not the most common scenario, it is not rare for multiple orientations to
be represented within the same sustained pattern. This phenomenon, present in our regime but excluded in
[110], is consistent with [38]. In addition to these differences, the regimes produced by our model exhibit
MFEs (see main text). This self-organized collaborative activity among neurons (i.e., the interplay of MFEs
and the characteristic times between them) are not readily captured by current firing-rate or population-
dynamics models. Because our network does not coarse-grain over individual firing-events, our model can
capture the structure of correlated firing-events, both in terms of magnitude and distribution [39, 40]. These
correlated firing-events may be important for coding [123–131] and they cannot be readily captured by
firing-rate models.

6.2 Network Models

There are network-based models of V1 that are closer in spirit to our approach than the firing-rate models
discussed above. One such network model is included in Murphy and Miller [112]; this model exhibits
dynamics which are well captured by the firing-rate model discussed in the same paper. Another network
model of V1 is Cai et al. [111]. This model, which was used earlier to investigate spontaneous background
activity, has influenced some of the thinking in the present paper. The regimes that we regard as correctly
reflecting experimental observations, however, differ substantially from those proposed in [111], and we would
like to discuss that in some detail.

The most significant difference between the regime proposed in [111] and ours is that the former is largely
inhibition-dominated, while the regime proposed here is balanced in a way that permits serious sustained
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competition between its excitatory and inhibitory populations; in that sense, our regime is poised in a position
of much higher gain. These differences manifest themselves clearly in the firing patterns in background: In
[111], the initiation of a pattern, called a ‘recruitment event’, takes the form of a single burst of excitatory
firing. Following a recruitment, the regime invokes strong slow-excitation to sustain θ-specific inhibitory
firing. Further excitatory firing beyond that one initial burst is prohibited in these post-recruitment periods
of θ-specific activity, which often conclude with the initiation of a new recruitment-event within a different
θ. See Fig 9. As a result of this dynamic mechanism, the persistence timescale for background patterns in
[111] is directly controlled by τslow, and can never be substantially longer than τslow. Another byproduct
of its mostly-inhibitory firing in background is that this regime has unrealistically low firing rates both in
background and under drive.

Our model is flexible enough that it has the capability to produce, in different parameter regions, both the
regimes we propose and the scenario in [111]; for the latter, take LI

fast or LI
slow >> LE

slow. We have a number
of reasons, however, for believing that the regimes we propose in this paper more accurately reflect real V1
dynamics: (1) The parameter regions associated with the inhibitory-dominated regime similar to [111] do
not exhibit biologically-realistic firing-rates, whereas our regimes do, as ensured by the benchmarking process
in section 1.3; see Fig 1. (2) Sustained excitatory firing in background is supported by direct experimental

data from [39]. (3) We know of no evidence to suggest that the time scale τbkgrndpersist should be directly tied to
τslow. On the contrary, spontaneous activity in eye-closed ferret V1 can last many seconds, which is longer
than the persistence timescales of many (but not all) types of NMDA receptors [108], and certain types
of spontaneous cortical activity persist with similar timescales even under NMDA blockade [115]. (4) Our
fourth reason has to do with another V1 phenomenon, namely surround suppression, which we discussed
in section 5. Due to their extreme inhibitory suppression, regimes we have found that exhibit background
patterns similar to those in [111] exhibit classical surround-suppression of the excitatory population but not
surround-suppression of the excitatory and inhibitory population as is observed in recent experiments [42].

For these reasons, we believe that the regimes presented in the main text of this paper are more realistic
than the regimes presented in [111], and that the mechanisms discussed in this paper and in [95] are relevant
to the functioning of V1.

7 Appendix

All of the parameters in our model are identified in Sects. 1.2 and 1.3. Many sweeps were conducted to locate
regions in this rather high dimensional parameter space. Our search was semi-systematic: We began with
some initial educated guesses. At the same time, we attempted to identify ‘opposing forces’ in the system
that need to be balanced. Suppose X and Y form such a pair (examples of which are given below). We
pitched them against one another in simulations of regimes corresponding to 2D panels in which both X
and Y are varied and other parameters are guessed. Computation results were used to identify pairs (X,Y )
that manifest the desired phenomena. Information on this 2D study (especially when it failed to produce
reasonable parameters) gave feedback to our initial guesses, which were successively improved.

Via these parameter sweeps, we located an open region in parameter space with all of the desired prop-
erties. This region is reasonably sized: in most directions, one can vary the parameter in question by 40%
and remain in the viable set. A specific set of parameters in the interior of this region is fixed and is used in
many of the simulations shown. We will refer to this set of parameters as our ‘reference set’; its precise values
are given below. Our search is by no means exhaustive, and we do not claim that parameters in this region
are the only viable ones. Among the choices that we made, the most important are parameters related to
background drive: we set them to put our system in a ‘high-gain’ mode, so it responds sensitively to changes
in input (see Sect. 1.3). Two sets of ‘opposing forces’ we have found to require the most delicate balancing
are, not surprisingly,

(i) local fast excitation vs inhibition, i.e. the coupling strengths SQQ′
, and

(ii) long-range slow excitation to E vs I-neurons, i.e. the coupling strengths LE vs LI .

Other parameters are relatively stable, which is not to say that they can be arbitrarily fixed (e.g. too small a
LEE
fast will hamper the generation of MFEs discussed in the main text). They are relatively stable in the sense

that once appropriately chosen, varying them by reasonable amounts will not lead to dramatic qualitative
changes in the dynamics, though precise values of other parameters have to be adjusted.
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With regard to (i), we set SII = 0, our rationale being that a positive SII amounts to weaker inhibition.
To further simplify the situation, we chose to vary SEI and SIE together, viewing the combined value
of these two parameters as a measure of the effectiveness of the inhibitory population. Thus in (i), we
pitch SEE , representing the effectiveness of the local fast excitation, against SEI and SIE , which are varied
simultaneously. Among all of the 2D panels we have studied, this is quite possibly the one that placed the
most serious constraints on the model. The panel LE vs LI also revealed important constraints, especially
with regard to producing data that fit with experimental observations in unstimulated background activity
(see Section 4). Constraints on parameters in these two 2D-slices are tracked in successive steps in Figs 1, 6
and 7.

Reference parameter set

The network size is given by: NI = NE = 128, J = 3, K = 8.
The feedforward input is governed by: SI

drive = 0.0134, SE
drive = 0.01364, ηbkgI = 0.2875, ηbkgE = 0.5324.

The local network architecture is determined by the local connectivity fractions pQQ′

jjkk between the presy-
naptic Q′ and postsynaptic Q populations in a single orientation domain, as well as the analogous fraction and

pQQ′

jj′kk between populations in different orientation domains within the same hypercolumn. These fractions

are given by: and pIIjjkk = 1, pIEjjkk = 0.5, pEI
jjkk = 1, pEE

jjkk = 0.25, pIIjj′kk = 0.75, pIEjj′kk = 0.375, pEI
jj′kk = 0.75,

pEE
jj′kk = 0.0625. The long-range network architecture is determined by the connectivity fractions pQE

jjkk′

between the presynaptic E and postsynaptic Q populations in different orientation domains of equivalent
orientation preference. These fractions are: pQE

jjkk′ = 0.125.

The connection strengths are given by: SII
fast = 0, SIE

fast = 0.008175, SEI
fast = 0.007619, SEE

fast = 0.026593,
SII
slow = 0, SIE

slow = 0.000313, SEI
slow = 0, SEE

slow = 0.002345, LII
fast = 0, LIE

fast = 0.006250, LEI
fast = 0, LEE

fast =
0.003910, LII

slow = 0, LIE
slow = 0.008281, LEI

slow = 0, LEE
slow = 0.000938.

The long-range time-constant is given by τEslow = 128ms.

parameter set for larger models used in section 4.3 The local connectivity fractions pIIjjkk, pEI
jjkk,

pIIjj′kk, and pEI
jj′kk have been modified to 0.75, 0.75, 0.42 and 0.42, respectively. The connection strengths

have also been modified slightly, and are given by: SII
fast = 0.00217, SIE

fast = 0.003153, SEI
fast = 0.004621,

SEE
fast = 0.009366, SII

slow = 0, SIE
slow = 0.000078, SEI

slow = 0, SEE
slow = 0.000584, LII

fast = 0, LIE
fast = 0.001563,

LEI
fast = 0, LEE

fast = 0.000977, LII
slow = 0, LIE

slow = 0.001464, LEI
slow = 0, LEE

slow = 0.000234. The rest of the
parameters are the same as those given in the reference parameter set above.
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Figure 1:
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Caption for Fig 1: Illustration of parameter exclusion for biological plausibility. Viable values of param-
eters in two 2D-slices of parameter space passing through our ‘reference set’ are shown. In panel [A] we fix
all parameters except for SEE , SIE and SEI , varying SIE and SEI simultaneously (the combination of SIE

and SEI represents the effectiveness of the inhibitory mechanism). The variation in parameters is performed
with small multiplicative steps of size 2ˆ(1/4) so that the extreme endpoints differ by a factor of 16. In panel
[B] we fix all parameters except for LE and LI , which we vary with the same multiplicative step sizes as in
panel [A]. The central point in both of these panels corresponds to the reference set given in Supp. Mat. A.

We consider here the steady state firing rates of our system in background (denoted by mbkg
Q ), and under

drive (mstim
Q ). Within both panels [A] and [B], the dashed red curves bound a parameter region wherein 1Hz

< mbkg
E < 5Hz. The dashed blue curves bound a region wherein 3Hz < mbkg

I < 15Hz. The solid red curves
bound the region 20Hz < mstim

E < 75Hz. The solid blue curves bound the region 20Hz < mstim
I < 75Hz. To

the right of the black curve the system exhibits frequent strong synchronous firing-events, which we regard
as unbiological. Finally, the two vertical green lines within panel [A] indicate the boundaries of the region
where the fast local EPSPs lie within a biologically plausible range (i.e, 0.5→ 1.5mV). Thus, the parameters
in the grey region are the only ones that satisfy all of the constraints above, and we will henceforth consider
only parameters in this region.
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Figure 2:
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Caption for Fig 2:
Each panel shows typical trajectories for one of a family of networks. Each network in this family is a

single cluster of NE = 1024 excitatory neurons and NI = 1024 inhibitory neurons driven by a uniform Poisson
background input. Each neuron is modeled using the conductance-based integrate-and-fire equations with
a nonzero τE , τI . The ratio of τI/τE is fixed to be 2 in accordance with physiologically observed timescales
for GABA-type inhibition and AMPA-type excitation (the precise ratio here is not critical to our results).
The different networks are identical except for the value of τI , which ranges from 1ms (in panel-A) to 4ms
(in panel-C). In the top two strips of each panel we show the voltage-distributions for the neurons in the
network. Each vertical strip represents the voltage histogram for the EX or IN neurons in the network at a
particular time within a 128ms-long trajectory. The bottom two strips in each panel show the raster plots
for the EX and IN neurons in the network. Note that the presence of MFEs is very apparent, even when τI
is large. Moreover, the width of the MFEs is ≤ 10ms, and the larger MFEs are clearly distinguishable.
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Figure 3:
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Caption for Fig 3: On the left we show a panel illustrating a typical trajectory in background for a network
with a long-range transmission delay of 9ms between hypercolumns. Other than the addition of these delays,
the network architecture is identical to the model discussed in the main text. The coupling strengths have
been altered by ±10% to preserve the dynamical regime. On the right we plot the MFE distribution for this
regime.

16



Figure 4:
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Caption for Fig 4: Illustration of orientation sharpening. Here we construct a model which resolves
orientation space more finely (i.e., with J = 4). We retune this model so that the dynamic regime is
qualitatively similar to the J = 3 model discussed in the main text. [A]. MFE distribution. [B]. Illustration
of orientation tuning for this model. On the left we present the broadly tuned feedforward input we use to
stimulate the model (rates shown for excitatory neurons). We measure this strength in terms of the time-
averaged Poisson input rate associated with a typical neuron of a given orientation within the stimulated
hypercolumns. The background rate is indicated with a dashed line. On the right we plot the time-averaged
output excitatory firing-rates for the stimulated hypercolumns. The background firing-rate is indicated with
a dashed line. Note that the output firing-rates are much more sharply tuned than the input firing-rates.
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Figure 5:
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Caption for Fig 5: Power spectral density (averaged over nonoverlapping 512ms windows) of the popula-
tion averaged voltage for a single cluster in our model both under background (black) and under low-contrast
(green) and high-contrast drive (red). Note that the frequency axis is plotted on a logarithmic scale.
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Figure 6:
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Caption for Fig 6: Illustration of parameter exclusion for background activity. Panels [A] and [B] show
admissible parameters in the corresponding 2D-slices shown in Fig 1. In each of these panels, the grey
region shown is a (large) subset of the grey region in Fig 1, with some additional parameters excluded
due to inadequate performance with respect to orientation selectivity and/or receptive fields (see Sect. 3).
Parameters in the region bounded by the black curves are admissible for purposes of background activity.
In panel [A], parameters near ‘a’ are excluded due to too much synchronous firing (SEE too large relative
to SIE , SEI). Parameters near ‘b’ are excluded because heightened activity in one orientation domain tends
to spill over into other orientation domains (local couplings too strong). Parameters near ‘c’ are excluded
because these regimes show no discernible patterns in background (strong inhibition prevents successful
recruitment and dominance by any one θ). Parameters near ‘d’ are excluded because the patterns switch
too slowly (insufficient inhibition to suppress E-activity once it is aroused). In panel [B], patterns switch too
slowly for parameters next to ‘e’, too fast for parameters near ‘f’. In the region above ‘g’ (i.e. larger LI still),
the regime becomes increasingly inhibition driven, showing characteristics of the regimes proposed in [111].
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Figure 7:
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Caption for Fig 7: Parameter constraints imposed to satisfy surround suppression. The 2D-slices of
parameter space shown here are identical to those in Figs 1 and 6, with identical labeling of axes. In each
panel, the grey region is obtained by intersecting the corresponding grey region in Fig 6 with the region
bounded by the black curves there, that is to say, parameters within the grey regions shown here meet all
previous conditions. Fig 7 pertains to the effects of strong stimulation. Requiring that excitatory firing rate
is lowered in the center as one stimulates the surround imposes no further constraint on parameters. In each
of the panels here, the region bounded by the solid black curve consist of parameters with the property that
when strongly stimulated, inhibitory firing is lower by ≥ 45% in Scenario 2 compared to Scenario 1, and the
dashed black curve bounds the region where inhibitory firing in Scenario 2 is lower than or equal to that in
Scenario 1. Note that the parameter region which satisfies all of our constraints is not small – the highlighted
square region indicates a two-fold variation in parameters.
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Figure 8:
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Caption for Fig 8: In panels A and B we show the firing-events produced by our reference parameter set
under the ‘natural’ drive described in section 5.2.3. Panel-A illustrates the sequence of E- and I-population
spike counts (collected over 1ms bins) produced by one of the clusters Cjk in our network when hypercolumn
k alone is stimulated. Panel-B illustrates these spike-counts when 2 other hypercolumns are also stimulated.
In Panel-C we show time-averaged firing-rates for the E- (red) and I- (blue) populations as a function of the
number of clusters stimulated. We did not divide the I-populations into MFE-spikes and nonMFE-spikes
(as done in Fig 5 of the main text), since the firing-rates were quite low and the ‘95%’ rule was not a
good qualitative assessment of the degree of collaborative activity in this regime. In Panel-D we show the
histograms of MFE magnitudes for E- (top) and I-cells (bottom) for the regimes shown in panels A (black)
and B (colored) respectively.
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Figure 9:
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Caption for Fig 9: Panel [A]: Here we show 2.4s of dynamics from a typical background regime near
region ‘g’ in Fig 6, with a ratio of LI/LE = 200. This regime produces rasters and traces similar to those in
[111]. The format follows that of panel [A] in Fig 2 of the main text, with two scale bars for the excitatory
and inhibitory populations. Note that the dynamics in this regime are strongly stereotyped: sharp excitatory
MFEs (called recruitments in [111]) initiate inhibitory-dominated epochs of firing which preclude further
excitatory firing — in contrast to the sustained competition between E and I in our model following the
initiation of each pattern. Also, as the inhibitory epochs in [111] are driven by gslow, the inhibitory firing-rate
during these epochs follows a predictable decay. Panel [B]: (i) cross-covariances, as defined in the methods
section of the main text, for Q = E (red) and Q = I (blue) over 1800ms (left) and ∼800ms (right); note the
strong time-asymmetry at time 0. Finally, note the sharp contrast between the cross-covariances exhibited
by this inhibitory dominated regime and the cross-covariances exhibited by the regime presented in Fig 6.
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Figure 10:
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Caption for Fig 10:
In each panel we present a dynamical regime exhibiting background activity. The format of these panels

is similar to that of Fig 2 in the main text. Each panel shows a raster-plot of cluster activity on the left,
and a log-log plot of the distribution of MFE sizes on the right. In panels A,B,C the size of each cluster is
NE , NI = 512; the parameters for panel-A are described in Supp. Mat. B. Note that the switching time
in panel-A is on the same order as that shown in Fig 2 of the main text (part of which is reproduced in
panel-D of this figure). In panel-B we show background activity for a system equivalent to that shown in
panel-A, except that the local coupling strengths SIE + SEI have been decreased by ∼ 20% and SEE has
been increased by ∼ 20%. For this regime the typical MFEs are slightly larger than in panel-A (as can
be seen by inspecting the tail end of the MFE distribution) and the switching time is longer. In panel-C
we show background activity for another system equivalent to that shown in panel-A, except that the local
coupling strengths have been modified in the opposite direction – SEE has been decreased and SIE + SEI

have been increased. For this regime the typical MFEs are slightly smaller than in panel-A, and the switching
time is shorter. In panel-D we reproduce part of the dynamic trace shown in Fig 2 of the main text, which
corresponds to a system with cluster size NE = NI = 128.
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