Supporting Information of:

Analysis of Energetic Bonding in Metal-Halide Perovskites and Brief Evaluation of Meta-GGA Functionals TPSS and revTPSS

José Juan Diaz^{1,*}, Iván Ornelas-Cruz¹, Francisco J. Cano^{1,2}, S. Velumani³, Salvador Gallardo-Hernández⁴, Iouri Koudriavtsev⁵, Svetlana Mansurova⁶

¹Programa de Nanociencias y Nanotecnología, CINVESTAV- IPN, Av. IPN 2508 Col. San Pedro Zacatenco, 07360 Ciudad de México.
²Institute of Molecular and Materials of Le Mans e UMR-CNRS 6283, Le Mans Université, 70285 Le Mans, France.
³J. Mike Walker '66 Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843, USA.
⁴Departamento de Física, CINVESTAV- IPN, Av. IPN 2508 Col. San Pedro Zacatenco, 07360 Ciudad de México.
⁵Departamento de Ingeniería Eléctrica (SEES), CINVESTAV- IPN, Av. IPN 2508 Col. San Pedro Zacatenco, 07360 Ciudad de México,
⁶Instituto Nacional de Astrofísica, Departamento de Óptica y Electrónica, Luis Enrique Erro 1, Tonantzintla, 72840 Heroica Puebla de Zaragoza, Puebla, México.

*Corresponding author: jose.diaz@cinvestav.mx

Basis set convergence: DND vs DNP

Table S	Table S1. Energy convergence of the basis sets DND and DNP as a function of the cutt										
		off radii for	MAPI only a	and with	a 4x4x3 k-g	rid.					
		DND				DNP					
Radii	Energy (Ha)	Energy (eV)	∆Energy (eV)	Radii	Energy (Ha)	Energy (eV)	ΔEnergy (eV)				
3.100000	-3135.119339	-85310.986389		3.100000	-3135.207582	-85313.387600					
3.300000	-3135.426254	-85319.337963	8.351573	3.300000	-3135.505419	-85321.492150	8.104551				
3.500000	-3135.606935	-85324.254543	4.916580	3.500000	-3135.679610	-85326.232150	4.740000				
3.700000	-3135.662703	-85325.772079	1.517536	3.700000	-3135.730510	-85327.617194	1.385044				
3.900000	-3135.668591	-85325.932308	0.160229	3.900000	-3135.734279	-85327.719757	0.102562				
4.100000	-3135.720869	-85327.354866	1.422558	4.100000	-3135.785271	-85329.107326	1.387569				
4.300000	-3135.691882	-85326.566067	-0.788799	4.300000	-3135.755018	-85328.284102	-0.823224				
4.500000	-3135.712733	-85327.133452	0.567385	4.500000	-3135.776282	-85328.862723	0.578620				
4.700000	-3135.707137	-85326.981193	-0.152259	4.700000	-3135.770987	-85328.718627	-0.144095				
4.900000	-3135.703988	-85326.895488	-0.085705	4.900000	-3135.766840	-85328.605793	-0.112835				
5.100000	-3135.698038	-85326.733589	-0.161900	5.100000	-3135.760707	-85328.438889	-0.166904				
5.300000	-3135.722981	-85327.412312	0.678723	5.300000	-3135.786708	-85329.146434	0.707545				
5.500000	-3135.671906	-85326.022492	-1.389820	5.500000	-3135.735827	-85327.761872	-1.384562				
5.700000	-3135.737932	-85327.819152	1.796660	5.700000	-3135.800677	-85329.526542	1.764670				
5.900000	-3135.675298	-85326.114799	-1.704353	5.900000	-3135.737370	-85327.803865	-1.722678				
6.100000	-3135.695583	-85326.666774	0.551975	6.100000	-3135.758521	-85328.379421	0.575556				
6.300000	-3135.743901	-85327.981574	1.314800	6.300000	-3135.808092	-85329.728301	1.348880				
6.500000	-3135.728513	-85327.562867	-0.418707	6.500000	-3135.792846	-85329.313439	-0.414862				
6.700000	-3135.729180	-85327.581003	0.018136	6.700000	-3135.793501	-85329.331276	0.017837				
6.900000	-3135.728586	-85327.564842	-0.016161	6.900000	-3135.792898	-85329.314867	-0.016408				
7.100000	-3135.729625	-85327.593129	0.028286	7.100000	-3135.793932	-85329.342993	0.028126				
7.300000	-3135.728665	-85327.567003	-0.026126	7.300000	-3135.792964	-85329.316647	-0.026346				
7.500000	-3135.729539	-85327.590767	0.023764	7.500000	-3135.793831	-85329.340258	0.023611				
7.700000	-3135.730235	-85327.609719	0.018953	7.700000	-3135.794519	-85329.358972	0.018713				
7.900000	-3135.729561	-85327.591379	-0.018340	7.900000	-3135.793835	-85329.340348	-0.018623				
8.100000	-3135.730122	-85327.606642	0.015263	8.100000	-3135.794387	-85329.355372	0.015023				
8.300000	-3135.731230	-85327.636795	0.030153	8.300000	-3135.795486	-85329.385288	0.029916				
8.500000	-3135.731951	-85327.656414	0.019619	8.500000	-3135.796197	-85329.404632	0.019345				

k-mesh convergence: MAPI and FAPI

Table S2. Energy convergence as a function of the k-grid for MAPI, having used the DND basis set with a cut off radii of 6.5 Å.

k-mesh	Energy (Ha)	Energy (eV)	∆Energy (eV)
1x1x1	-3135.598493	-85324.024827	
2x2x1	-3135.692123	-85326.572641	2.547814
3x3x2	-3135.730366	-85327.613292	1.040651
4x4x3	-3135.728513	-85327.562867	-0.050425
5x5x4	-3135.728783	-85327.570198	0.007331
6x6x4	-3135.728791	-85327.570432	0.000234
7x7x5	-3135.728753	-85327.569378	-0.001053
8x8x5	-3135.728753	-85327.569387	0.000008
8x8x6	-3135.728760	-85327.569566	0.000180
9x9x6	-3135.728760	-85327.569566	0.000000

Table S3. Energy convergence as a function of										
the k-grid for MAPI, having used the DNP basis										
set	set with a cut off radii of 6.5 Å.									
k-mesh	Energy (Ha)	Energy (eV)	ΔEnergy (eV)							
1x1x1	-3135.663084	-85325.782455								
2x2x1	-3135.756490	-85328.324155	2.541700							
3x3x2	-3135.794696	-85329.363780	1.039625							
4x4x3	-3135.792846	-85329.313439	-0.050341							
5x5x4	-3135.793114	-85329.320753	0.007314							
6x6x4	-3135.793123	-85329.320987	0.000234							
7x7x5	-3135.793084	-85329.319937	-0.001050							
8x8x5	-3135.793085	-85329.319948	0.000011							
8x8x6	-3135.793091	-85329.320125	0.000177							
9x9x6	-3135.793091	-85329.320125	0.000000							

Table S4. Energy convergence as a function of								
the k-grid for FAPI, having used the DND basis								
set with a cut off radii of 6.5 Å.								
k-mesh	Energy (Ha)	Energy (eV)	ΔEnergy (eV)					
1x1x1	-3351.788255	-91206.850930						
2x2x1	-3351.898413	-91209.848478	2.997548					
3x3x2	-3351.940740	-91211.000239	1.151761					
4x4x3	-3351.938616	-91210.942453	-0.057786					
5x5x4	-3351.938978	-91210.952298	0.009845					
6x6x4	-3351.938992	-91210.952681	0.000384					
7x7x5	-3351.938939	-91210.951239	-0.001442					
8x8x5	-3351.938940	-91210.951264	0.000024					
8x8x6	-3351.938949	-91210.951525	0.000261					
9x9x6	-3351.938949	-91210.951525	0.000000					

Cubo-octahedral centers

Table S5. Centers of the four cubo-octahedral cages within the unit-cell of CsPI, due toperiodicity it was used the positions of eight Pb atoms.

	Cubo-oct	tahedral cage	1	Cubo-octahedral cage 2				
Pb	x y		z	Pb	х	У	Z	
1	4.14082852	-4.51342862	12.79322925	1	-0.00779255	-0.00470997	12.60290321	
2	-0.00779255	-0.00470997	12.60290321	2	-4.14911847	4.51845501	12.40772433	
3	4.14082852	4.58997672	12.32187535	3	-0.00779255	9.09869538	12.13154931	
4	8.28215444	0.06681175	12.51705422	4	4.14082852	4.58997672	12.32187535	
5	4.13767834	-4.51645992	6.49218937	5	-0.00746095	-0.00124781	6.30224871	
6	-0.00746095	-0.00124781	6.30224871	6	-4.15226865	4.51542370	6.10668445	
7	4.13767834	4.58694542	6.02083547	7	-0.00746095	9.10215753	5.83089481	
8	8.28248604	0.07027390	6.21639973	8	4.13767834	4.58694542	6.02083547	
Center	4.13830009	0.03477018	9.40834191	Center	-0.00667341	4.55071200	9.21558946	

	Cubo-oct	tahedral cage	3		Cubo-octahedral cage 4			
Pb	x y		z	Pb	х	У	z	
1	4.13767834	-4.51645992	6.49218937	1	-0.00746095	-0.00124781	6.30224871	
2	-0.00746095	-0.00124781	6.30224871	2	-4.15226865	4.51542370	6.10668445	
3	4.13767834	4.58694542	6.02083547	3	-0.00746095	9.10215753	5.83089481	
4	8.28248604	0.07027390	6.21639973	4	4.13767834	4.58694542	6.02083547	
5	4.14082852	-4.51342862	0.19152925	5	-0.00779255	-0.00470997	0.00120321	
6	-0.00779255	-0.00470997	0.00120321	6	-4.14911847	4.51845501	-0.19397567	
7	4.14082852	4.58997672	-0.27982465	7	-0.00779255	9.09869538	-0.47015069	
8	8.28215444	0.06681175	-0.08464578	8	4.14082852	4.58997672	-0.27982465	
Center	4.13830009	0.03477018	3.10749191	Center	-0.00667341	4.55071200	2.91473946	

	Cubo-oc	tahedral cage	1		Cubo-octahedral cage 2			
Pb	х	У	Z	Pb	х	У	Z	
1	4.45390672	-4.33926380	12.98840640	1	0.03691355	0.13448970	12.98942166	
2	0.03691355	0.13448970	12.98942166	2	-4.50569321	4.62024398	12.98349611	
3	4.45390672	4.62063537	12.98455946	3	0.03691355	9.09438887	12.98557472	
4	8.99651348	0.13488109	12.99048501	4	4.45390672	4.62063537	12.98455946	
5	4.44835177	-4.60044511	6.58157134	5	0.02365334	-0.12794633	6.58181725	
6	0.02365334	-0.12794633	6.58181725	6	-4.51124816	4.35906267	6.57666105	
7	4.44835177	4.35945407	6.57772440	7	0.02365334	8.83195285	6.57797031	
8	8.98325327	-0.12755493	6.58288060	8	4.44835177	4.35945407	6.57772440	
Center	4.48060633	0.00678126	9.78460827	Center	0.00080636	4.48653515	9.78215312	

Table S6. Centers of the four cubo-octahedral cages within the unit-cell of MAPI, due toperiodicity it was used the positions of eight Pb atoms.

	Cubo-oc	tahedral cage	3		Cubo-octahedral cage 4			
Pb	x y		z	Pb	x	У	Z	
1	4.44835177	-4.60044511	6.58157134	1	0.02365334	-0.12794633	6.58181725	
2	0.02365334	-0.12794633	6.58181725	2	-4.51124816	4.35906267	6.57666105	
3	4.44835177	4.35945407	6.57772440	3	0.02365334	8.83195285	6.57797031	
4	8.98325327	-0.12755493	6.58288060	4	4.44835177	4.35945407	6.57772440	
5	4.45390672	-4.33926380	0.17220640	5	0.03691355	0.13448970	0.17322166	
6	0.03691355	0.13448970	0.17322166	6	-4.50569321	4.62024398	0.16729611	
7	4.45390672	4.62063537	0.16835946	7	0.03691355	9.09438887	0.16937472	
8	8.99651348	0.13488109	0.17428501	8	4.45390672	4.62063537	0.16835946	
Center	4.48060633	0.00678126	3.37650827	Center	0.00080636	4.48653515	3.37405312	

Table S7. Centers of the four cubo-octahedral cages within the unit-cell of FAPI, due t
periodicity it was used the positions of eight Pb atoms.

	Cubo-oc	tahedral cage	1	Cubo-octahedral cage 2				
Pb	х	У	z	Pb	х	У	z	
1	4.49286298	-4.54066856	12.81707061	1	-0.02424142	-0.03175931	12.82631652	
2	-0.02424142	-0.03175931	12.82631652	2	-4.51881662	4.47769709	12.83432972	
3	4.49286298	4.48005844	12.85336105	3	-0.02424142	8.98896769	12.86260696	
4	8.98743818	-0.02939796	12.84534785	4	4.49286298	4.48005844	12.85336105	
5	4.48502282	-4.52497455	6.40463895	5	-0.00648841	-0.01687046	6.41278142	
6	-0.00648841	-0.01687046	6.41278142	6	-4.52665678	4.49339110	6.42189806	
7	4.48502282	4.49575245	6.44092939	7	-0.00648841	9.00385654	6.44907186	
8	9.00519119	-0.01450910	6.43181275	8	4.48502282	4.49575245	6.44092939	
Center	4.48970889	-0.02279613	9.62903232	Center	-0.01613091	4.48638669	9.63766187	

	Cubo-oc	tahedral cage	3		Cubo-octahedral cage 4			
Pb	х	У	z	Pb	х	У	z	
1	4.48502282	-4.52497455	6.40463895	1	-0.00648841	-0.01687046	6.41278142	
2	-0.00648841	-0.01687046	6.41278142	2	-4.52665678	4.49339110	6.42189806	
3	4.48502282	4.49575245	6.44092939	3	-0.00648841	9.00385654	6.44907186	
4	9.00519119	-0.01450910	6.43181275	4	4.48502282	4.49575245	6.44092939	
5	4.49286298	-4.54066856	-0.00762939	5	-0.02424142	-0.03175931	0.00161652	
6	-0.02424142	-0.03175931	0.00161652	6	-4.51881662	4.47769709	0.00962972	
7	4.49286298	4.48005844	0.02866105	7	-0.02424142	8.98896769	0.03790696	
8	8.98743818	-0.02939796	0.02064785	8	4.49286298	4.48005844	0.02866105	
Center	4.48970889	-0.02279613	3.21668232	Center	-0.01613091	4.48638669	3.22531187	

Structural parameters

Table S8	Table S8. Comparison between the experimental structural parameters (Exp.) and the theoretical ones obtained in this work (identified simple through "Theo."). Extructural information for CsPI, MAPI, and FAPI was extracted from Ref. [1], [2], and [3].												
Perovskite a	a (Å) - Exp.	a (Å) - Theo.	b (Å) - Exp.	b (Å) - Theo	. c (Å) - Exp.	c (Å) - Theo.	α (°) - Theo	β (°) - Theo	γ (°) - Theo	Volume (Å ³) - Exp.	Volume (Å ³) - Theo.	Pb-I (Å) - Exp.	Pb-I (Å) - Theo.
	8 7/	8.29 8.74	8 7/	9.12	.12 12.35 . 4%	12.60	92.96	90.59	89.48	942.70	951.01	3.09	3.17
Cart	0.74	-5.1%	0.74	4.4%		2.0%	3.3%	0.7%	-0.6%		0.9%		2.5%
MADI	0 01	8.96	0 01	8.96	12 71	12.82	90.02	89.99	90.00	005 07	1028.84	2 17	3.22
IVIAPI	0.01	1.7%	0.01	1.7%	12.71	0.8%	0.0%	0.0%	0.0%	905.07	4.4%	3.17	1.4%
FAPI 9.00	0.00	9.01	9.02	9.02	10 70	12.82	89.77	89.88	89.98	1020.01	1042.54	3.18	3.23
	9.00	0.2%	9.00	0.3%	12.72	0.8%	-0.3%	-0.1%	0.0%	1030.01	1.2%		1.5%

Table S9. Structural characterization of the lead-halide bonds.				
Pb-I bond length (Å)				
Type of I atom	No. of I atom	CsPI	MAPI	FAPI
	1	3.251	3.199	3.259
	T	3.217	3.203	3.257
	2	3.210	3.248	3.247
Equatorial	Z	3.241	3.253	3.251
	3	3.240	3.255	3.247
		3.218	3.238	3.252
	4	3.213	3.195	3.260
	4	3.238	3.202	3.256
Equatorial	_	3.110	3.194	3.244
	5	3.103	3.202	3.253
	<i>.</i>	3.084	3.251	3.250
	6	3.078	3.242	3.262
	_	3.107	3.242	3.263
	7	3.105	3.247	3.249
		3.080	3.196	3.252
	8	3.081	3.191	3.242
Aver	age	3.16	3.22	3.25
Standard devia	tion (sample)	0.07	0.03	0.01
		3.149	3.210	3.176
	1	3.175	3.218	3.236
		3 159	3 209	3 176
	2	3 204	3 217	3 235
Apical		3 170	3 212	3 176
	3	3 155	3 217	3 236
		3 203	3 216	3 178
	4	3 159	3 217	3 236
		3 17	3 21	3 21
Standard devia	tion (sample)	0.02	0.00	0.03
Standard devia	Dh	-I-Ph angle (°	0.00	0.05
	15		/ MARHI3	EA Dhi3
	1	1/6 691	150 102	156 962
	1	140.081	159.103	156.902
	2	144.004	158.252	156.909
	3	140.325	158.208	156.374
Equatorial	4	145.076	156.777	150.774
	5	170.065	160.315	157.040
	0	108.980	158.559	157.415
	/	169.897	158.005	157.410
	8	168.999	160.131	156.954
Average		157.34	158.92	157.06
Standard deviation (sample)		13.03	0.88	0.23
	1	1/0.12/	172.650	179.240
Apical	2	164.050	172.836	179.398
	3	169.968	1/1.838	1/9./88
•	4	164.065	170.891	1/9.661
Aver	age	167.05	172.05	1/9.52
Standard deviation (sample)		3.46	0.89	0.25

Table S10. Pb-I bond lengths within each octahedron.				
Octahedron number Pb-I bond label		CsPI	MAPI	FAPI
	l 1	3.103	3.202	3.253
	<i>l</i> 2	3.078	3.242	3.262
1	13	3.105	3.247	3.249
1	<i>l</i> 4	3.081	3.191	3.242
	15	3.155	3.217	3.236
	<i>l</i> 6	3.149	3.210	3.176
Average	2	3.11	3.22	3.24
Standard deviatio	n (sample)	0.03	0.02	0.03
	l 1	3.217	3.203	3.257
	<i>l</i> 2	3.241	3.253	3.251
2	13	3.218	3.238	3.252
2	<i>l</i> 4	3.238	3.202	3.256
	<i>l</i> 5	3.175	3.218	3.236
	<i>l</i> 6	3.170	3.212	3.176
Average	2	3.21	3.22	3.24
Standard deviatio	n (sample)	0.03	0.02	0.03
	l 1	3.107	3.242	3.263
	<i>l</i> 2	3.080	3.196	3.252
2	13	3.110	3.194	3.244
5	<i>l</i> 4	3.084	3.251	3.250
	15	3.159	3.217	3.236
	<i>l</i> 6	3.159	3.209	3.176
Average	2	3.12	3.22	3.24
Standard deviatio	n (sample)	0.04	0.02	0.03
	l 1	3.240	3.255	3.247
	<i>l</i> 2	3.213	3.195	3.260
Λ	13	3.251	3.199	3.259
4	<i>l</i> 4	3.210	3.248	3.247
	<i>l</i> 5	3.204	3.217	3.235
	<i>l</i> 6	3.203	3.216	3.178
Average	2	3.22	3.22	3.24
Standard deviatio	n (sample)	0.02	0.02	0.03
Total avera	age	3.16	3.22	3.24
Total standard deviation (sample)		0.06	0.02	0.03

Table S11. I	-Pb-I bond angles w	ithin each	octahedron (Part I).
Octahedron number	Internal I-Pb-I angle	CsPI	MAPI	FAPI
	Φ_1	90.641	92.981	89.064
	Φ_2	88.824	91.636	88.835
	Φ_3	89.205	85.690	88.813
	Φ_4	91.152	87.547	89.075
	Φ_5	89.507	95.953	90.569
1	Φ_6	91.082	87.992	90.612
1	Φ_7	90.647	85.362	91.551
	Φ_8	88.941	92.874	91.477
	Φ_9	84.305	88.843	89.709
	Φ_10	95.488	89.013	89.909
	Φ_11	84.139	91.308	90.169
	Φ_12	96.068	90.815	90.135
Average		90.00	90.00	89.99
Standard deviation (sample)		3.57	3.16	0.95
	Φ_1	87.000	87.403	89.200
	Φ_2	86.858	85.778	88.865
	Φ_3	93.035	90.977	88.748
	Φ_4	92.856	92.791	88.955
	Φ_5	93.017	92.995	90.752
2	Φ_6	93.033	85.574	91.114
2	Φ_7	86.948	88.590	91.300
	Φ_8	87.253	95.848	91.065
	Φ_9	84.071	90.502	89.902
	Φ_10	95.751	89.262	90.214
	Φ_11	84.099	89.575	89.821
	Φ_12	96.079	90.619	89.985
Ave	rage	90.00	89.99	89.99
Standard devi	ation (sample)	4.38	3.01	0.92

Table S11. I-Pb-I bond angles within each octahedron (Part II).					
Octahedron numbe	er Internal I-Pb-I angle	CsPI	MAPI	FAPI	
	Φ_1	87.174	91.161	89.039	
	Φ_2	89.569	93.519	89.003	
	Φ_3	92.805	87.640	88.822	
	Φ_4	90.465	85.733	88.889	
	Φ_5	93.024	88.383	90.344	
2	Φ_6	90.224	95.497	90.837	
5	Φ_7	86.996	92.909	91.795	
	Φ_8	89.741	85.237	91.267	
	Φ_9	84.150	89.604	89.690	
	Φ_10	95.645	88.891	90.244	
	Φ_11	83.956	90.499	90.095	
	Φ_12	96.249	90.989	89.892	
Promedio		90.00	90.01	89.99	
DESVEST		4.00	3.08	0.97	
	Φ_1	82.368	85.484	89.209	
	Φ_2	88.920	87.410	88.978	
	Φ_3	97.718	93.047	88.761	
	Φ_4	90.912	91.242	88.865	
	Φ_5	97.878	85.148	90.961	
4	Φ_6	90.876	93.348	90.875	
	Φ_7	82.036	96.300	91.069	
	Φ_8	89.290	87.953	91.282	
	Φ_9	85.279	90.501	89.996	
	Φ_10	94.547	90.890	89.811	
	Φ_11	85.038	89.361	89.959	
	Φ_12	95.136	89.212	90.157	
Average		90.00	89.99	89.99	
Standard de	viation (sample)	5.56	3.28	0.91	
Total average		90.00	90.00	89.99	
Total standard deviation (sample)		4.30	3.03	0.91	

Hydrogen bonds

Table S12. Hydrogen bond lengths within FAPI and MAPI.						
No. of cubo- octahedral cage	X—HI type	FAPI		M	MAPI	
1	N—HI	3.164 3.123	132.440 133.469	2.593	166.430	
		3.002 3.021	135.283 134.288	2.618	161.068	
	C—H…I	3.144 3.165	126.529 125.654			
Averag	je	3.10	131.28	2.61	163.75	
Standard deviation	on (sample)	0.07	4.13	0.02	3.79	
		3.155	132.800	2 6 4 4	162 764	
	N. 11 1	3.135	133.179	2.011	163.764	
2	N—HI	3.008	134.829	2 (02	162.660	
Z		3.012	134.697	2.602	103.000	
		3.153	126.098			
	С—НІ	3.155	125.966			
Averag	je	3.10	131.26	2.61	163.71	
Standard deviation	on (sample)	0.07	4.13	0.01	0.07	
		3.132	132.682	2 607	164 079	
	N—HI	3.122	133.280	2.007	104.978	
C		3.015	134.827	2.587	164.000	
3		3.028	134.359		104.988	
		3.152	126.573			
	C—⊓I	3.159	126.092			
Averag	je	3.10	131.30	2.60	164.98	
Standard deviation (sample)		0.06	3.93	0.01	0.01	
		3.151	132.599	2 5 0 1	160 252	
	N—HI	3.109	133.550	2.364	109.555	
4		3.013	134.872	2 500	162 002	
		3.030	134.299	2.599	102.902	
	с—НI	3.151	126.646			
		3.157	126.147			
Average		3.10	131.35	2.59	166.13	
Standard deviation	on (sample)	0.06	3.92	0.01	4.56	
Total ave	rage	3.10	131.30	2.60	164.64	
Total standard deviation (sample)		0.06	3.76	0.01	2.48	

COHP analysis for CsPI, MAPI, and FAPI

Figure S1. COHP curve of the Pb-I bonds within CsPI perovskite. The density of states from s and p orbitals of both I and Pb species are also shown for comparison. The ICOHP energy value was -16.21 eV.

Figure S2. COHP curve of the Pb-I bonds within MAPI perovskite. The density of states from s and p orbitals of both I and Pb species are also shown for comparison. The ICOHP energy value was -15.37 eV.

Energy (eV) **Figure S3.** COHP curve of the Pb-I bonds within FAPI perovskite. The density of states from s and p orbitals of both I and Pb species are also shown for comparison. The ICOHP energy value was -15.27 eV.

Figure S4. COHP curve of the Cs-I bonds within CsPI perovskite. The density of states from s and p orbitals of both Cs and I species are also shown for comparison. The ICOHP energy value was -2.25 eV.

Figure S5. COHP curve of the H-I bonds within MAPI perovskite. The density of states from s and p orbitals of both H and I species are also shown for comparison. The ICOHP energy value was -7.02 eV.

Figure S6. COHP curve of the H-I bonds within FAPI perovskite. The density of states from s and p orbitals of both H and I species are also shown for comparison. The ICOHP energy value was -5.43 eV.

Figure S7. COHP curve of the H-C and H-N bonds (or simply H-C,N) within MAPI perovskite. The density of states from s and p orbitals of H, C, and N species are also shown for comparison. The ICOHP energy value was -65.70 eV.

Figure S8. COHP curve of the H-C and H-N bonds (or simply H-C,N) within FAPI perovskite. The density of states from s and p orbitals of H, C, and N species are also shown for comparison. The ICOHP energy value was -55.58 eV.

Figure S9. COHP curve of the C-N bonds within MAPI perovskite. The density of states from s and p orbitals of both C and N species are also shown for comparison. The ICOHP energy value was -11.99 eV.

Figure S10. COHP curve of the C-N bonds within FAPI perovskite. The density of states from s and p orbitals of both C and N species are also shown for comparison. The ICOHP energy value was -46.40 eV.

Band structures for the different functionals

Figure S11. Comparison of the band structures for all three perovskites studied and calculated by means of the TPSS, revTPSS, HCTH/407 and PBE functionals.

References

[1] G. E. Eperon, G. M. Paterno, R. J. Sutton, A. Zampetti, A. A. Haghighirad, F. Cacialli, and H. J. Snaith. "Inorganic caesium lead iodide perovskite solar cells". Journal of Materials Chemistry A, 3(39), 19688-19695 (2015).

[2] M. T. Weller, O. J. Weber, P. F. Henry, A. M. Di Pumpo, and T. C. Hansen. "Complete structure and cation orientation in the perovskite photovoltaic methylammonium lead iodide between 100 and 352 K". Chemical Communications, 51(20), 4180-4183 (2015).

[3] M. T. Weller, O. J. Weber, J. M. Frost, and A. Walsh. "Cubic perovskite structure of black formamidinium lead iodide, α -[HC(NH₂)₂]PbI₃, at 298 K". The Journal of Physical Chemistry Letters, 6(16), 3209-3212 (2015).