
Supplementary material: A constructive branch-and-bound algorithm
for the project duration problem with partially renewable resources
and general temporal constraints
Journal of Scheduling

Kai Watermeyer · Jürgen Zimmermann

Clausthal University of Technology
Institute of Management and Economics
Operations Research Group
Julius-Albert-Str. 2, 38678 Clausthal-Zellerfeld, Germany

Corresponding author: Kai Watermeyer
E-mail: kai.watermeyer@tu-clausthal.de
Jürgen Zimmermann
E-mail: juergen.zimmermann@tu-clausthal.de

This supplementary document provides a comparison between the constructive branch-and-bound algorithm (CBB)
from the associated paper with the relaxation-based branch-and-bound algorithm (RBB) by Watermeyer and Zim-
mermann (2020). In contrast to the computational studies in the paper, both branch-and-bound algorithms (BnB)
are conducted with only one setting over all instances of benchmark set UBOπ. Furthermore, this document
contains complementary results for the devised serial schedule-generation scheme (SGS).

Tables 2 and 4, which are taken from the corresponding papers, summarize the settings that have been used for
both BnB depending on the instance size. For the description of the symbols we refer the reader to the associated
papers. In Tables 2 and 4, the different settings are marked by numbers ([1], [2], [3], [4], [5]) that are used in the
evaluation tables to identify the settings.

Table 1 shows the results of the experimental performance analysis that has been conducted with a time limit
of 300 seconds, where setting [6] of CBB corresponds to setting [5] with a so-called warm-up phase (noted by
CBB+W in the paper). Tables 3 and 5 display the results for each test set UBOnπ with n = 10,20,50,100,200
real activities. The measures are described in the associated paper of this document.

First of all, from Tables 3 and 5 it can be seen that the performance of each setting is highly dependent on the
instance size. As a rule, it can be established that settings that show a reasonable performance for small instances
are rather not suited for greater instances and vice versa. Table 1 shows in addition that settings that perform
well on small instances tend to solve more instances, while settings with a better performance for greater instances
are able to determine the solution status for much more instances.

#nTriv #opt #feas #inf #unk ∆lb

(%)
∅cpu

(s)
∅cpu

opt
(s)

∅cpu
inf
(s)

CBB

[1]

2791

1316 1613 205 973 173.12 139.083 5.237 1.405
[2] 1371 2009 205 577 149.74 134.526 7.861 0.899
[3] 1261 1880 203 708 165.91 145.862 6.692 2.767
[4] 1352 2456 200 135 116.19 137.105 7.802 2.060
[5] 1353 2523 200 68 111.52 137.015 7.708 2.905
[6] 1353 2541 200 50 111.04 137.792 9.209 3.578
[1] 1343 1581 203 1007 168.85 137.145 6.623 1.859
[2] 1313 1669 203 919 173.17 140.753 7.611 1.716

RBB [3] 2791 1110 2325 181 285 142.15 163.629 6.024 0.010
[4] 1149 2526 181 84 114.95 160.850 9.252 0.009
[5] 1120 2525 181 85 114.96 163.570 8.501 0.010

Table 1 Performance of CBB and RBB over all instances of benchmark set UBOπ (300 s)

Finally, the comparison between the results of CBB and RBB in Table 1 reveals that CBB dominates RBB
if only one setting is used over all instances of benchmark set UBOπ. In particular, setting [6] for CBB can be
identified as the best setting that is able to determine the solution status for the greatest number of instances,
while the difference to the highest number of solved instances by setting [2] is rather low.



2 Kai Watermeyer, Jürgen Zimmermann

UBO10π [1] UBO20π [2] UBO50π [3] UBO100π [4] UBO200π [5]

Traversing strategy DFS SPS [2 s] SPS [5 s] SPS [5 s] SPS [5 s]

Branching strategy C̄, MRC(max) C̄, MRC(max) ≺D, STdI(min) ≺C, PF(max) ≺C, PF(max)

Generation strategy restr-LT [10] restr-LT [10] restr-PV [5] restr-PV [15] restr-PV [15]

Ordering strategy LB(min) LB(min) LB(min) LB(min) LB(min)

Consistency tests γ∞B γ∞B , γ1
D[Ri,2] γ∞B , γ1

W [Ri] γ∞B , γ1
W [Ri,2] γ∞B

Lower bound LBDπ LBDπ LBDπ LB0π LB0π

Pruning techniques UPT UPT UPT+ULT UPT+ULT UPT+ULT

Table 2 Settings of CBB for the performance analysis on benchmark set UBOπ dependent on the instance size

#nTriv #opt #feas #inf #unk ∆lb

(%)
∅cpu

(s)
∅cpu

opt
(s)

∅cpu
inf
(s)

UBO10π

[1]

693

534 534 159 0 53.43 0.065 0.067 0.056
[2] 534 534 159 0 53.43 0.076 0.079 0.063
[3] 534 534 159 0 53.43 0.140 0.163 0.063
[4] 534 534 159 0 53.43 0.328 0.423 0.008
[5] 534 534 159 0 53.43 0.410 0.512 0.066
[6] 534 534 159 0 53.43 0.774 0.902 0.343

UBO20π

[1]

621

532 575 40 6 65.77 29.458 6.708 0.618
[2] 537 581 40 0 64.67 28.086 7.846 0.702
[3] 482 580 39 2 65.16 54.821 7.523 10.707
[4] 476 580 36 5 65.98 59.072 7.835 7.062
[5] 473 580 36 5 66.11 61.108 8.596 7.835
[6] 474 580 36 5 66.09 62.242 10.558 9.655

UBO50π

[1]

527

161 326 6 195 119.24 209.408 13.065 42.412
[2] 183 432 6 89 103.78 197.638 14.256 24.356
[3] 183 491 5 31 88.16 198.016 13.774 26.827
[4] 172 489 5 33 90.03 204.891 16.402 31.301
[5] 167 489 5 33 90.20 207.570 15.576 57.677
[6] 166 489 5 33 90.20 207.787 14.399 62.711

UBO100π

[1]

484

58 128 0 356 290.71 266.203 17.972 –
[2] 78 302 0 182 237.99 257.415 35.754 –
[3] 62 275 0 209 242.46 266.125 35.559 –
[4] 85 472 0 12 168.68 249.827 14.307 –
[5] 84 471 0 13 168.92 250.723 16.073 –
[6] 84 472 0 12 168.87 251.274 19.244 –

UBO200π

[1]

466

31 50 0 416 432.97 280.345 4.540 –
[2] 39 160 0 306 366.66 277.304 28.812 –
[3] 0 0 0 466 475.85 300.000 – –
[4] 85 381 0 85 251.50 250.763 30.066 –
[5] 95 449 0 17 222.93 243.429 22.502 –
[6] 95 466 0 0 220.09 245.209 31.234 –

Table 3 Performance of CBB on benchmark set UBOπ (300 s)



Supplementary material: A constructive branch-and-bound algorithm for RCPSP/max-π 3

UBO10π [1] UBO20π [2] UBO50π [3] UBO100π [4] UBO200π [5]

Traversing strategy DFS SPS+ [2 s] SPS+ [5 s] SPS+ [15 s] SPS+ [15 s]

Branching strategy NCA(min) NCA(min) DST(max) DSTI(max) DSTI(max)

Generation strategy all all all restrCL [10] restrCL [10]

Ordering strategy LB(min) LB(min) LB-DST(min) LB-DSTI(min) LB-DSTI(min)

Consistency tests γ∞B , γ1
W [Ri,10] γ∞B , γ1

W [Ri,10] γ∞B , γ1
D[Ri] γ∞B , γ1

D[Ri,5] γ∞B

Lower bound LBDπ LBDπ LBDπ LB0π LB0π

Partitioning x x – – –

Table 4 Settings of RBB for the performance analysis on benchmark set UBOπ dependent on the instance size
Note. From “A branch-and-bound procedure for the resource-constrained project scheduling problem with partially renew-
able resources and general temporal constraints” by K. Watermeyer and J. Zimmermann, 2020, OR Spectrum, 42(2), p. 456
(https://doi.org/10.1007/s00291-020-00583-z). CC BY 4.0 (https://creativecommons.org/licenses/by/4.0/).

#nTriv #opt #feas #inf #unk ∆lb

(%)
∅cpu

(s)
∅cpu

opt
(s)

∅cpu
inf
(s)

[1] 534 534 159 0 53.43 0.032 0.040 0.004
[2] 534 534 159 0 53.43 0.035 0.044 0.004

UBO10π [3] 693 508 534 157 2 53.62 14.084 2.676 0.005
[4] 501 534 157 2 53.75 17.804 3.668 0.004
[5] 493 534 157 2 53.71 21.113 3.510 0.004
[1] 497 560 40 21 67.35 48.082 8.671 8.733
[2] 500 578 40 3 65.09 46.149 8.076 8.006

UBO20π [3] 621 361 578 21 22 69.51 117.381 3.306 0.011
[4] 351 576 21 24 70.45 124.690 7.783 0.010
[5] 338 575 21 25 70.46 130.852 7.866 0.012
[1] 174 255 4 268 128.33 201.974 9.843 6.869
[2] 188 348 4 175 112.44 195.959 14.591 6.852

UBO50π [3] 527 145 486 3 38 95.49 217.958 8.022 0.279
[4] 136 486 3 38 96.32 223.597 10.550 0.286
[5] 133 484 3 40 96.57 225.069 9.852 0.292
[1] 78 127 0 357 286.91 253.566 11.869 –
[2] 73 164 0 320 285.48 258.908 27.555 –

UBO100π [3] 484 72 386 0 98 226.00 260.174 32.279 –
[4] 79 465 0 19 174.30 254.409 20.681 –
[5] 77 466 0 18 174.74 255.554 20.623 –
[1] 60 105 0 361 398.94 265.503 32.076 –
[2] 18 45 0 421 447.29 290.938 65.395 –

UBO200π [3] 466 24 341 0 125 336.24 285.936 26.915 –
[4] 82 465 0 1 224.73 253.631 36.489 –
[5] 79 466 0 0 224.03 253.934 28.271 –

Table 5 Performance of RBB on benchmark set UBOπ (300 s)



4 Kai Watermeyer, Jürgen Zimmermann

Table 6 provides the results of the devised SGS in the associated paper for the Böttcher and SAV benchmark
set. The results in Table 6 were obtained by using the priority rules LST and ST with ext = min over all test sets
of the Böttcher and SAV benchmark set, respectively. The calculation of Ti as well as the application of both im-
proving techniques result in a better performance on both benchmark sets. A closer look on the results even show
that this is also the case for each single test set. The best variant of SGS (+UPT) shows a reasonable performance.
Only for the Böttcher benchmark set, SGS is not able to determine a feasible solution for each instance that was
feasibly solved by CBB. It is worth mentioning that SGS with all improving techniques clearly outperforms the
results of the SGS by Schirmer (1999) and Böttcher et al. (1999) on the Schirmer instances (J10π, J20π, J30π,
J40π) in terms of the number of feasibly solved instances as reported in Table 17.2 in Schirmer (1999, Sect. 17).
For this comparison we have conducted computational experiments on the Schirmer instances by including all
trivial instances in accordance with the investigations in Schirmer (1999). Thereby, SGS was able to determine a
feasible solution for each trivial instance.

Z = 100 Z = 1000

#inst #nfeas ∆lb

(%)
∆CBB

(%)
∅cpu

(s)
#nfeas ∆lb

(%)
∆CBB

(%)
∅cpu

(s)
SGS(Θi) 86 46.76 2.04 0.074 54 44.72 0.66 0.113
SGS(Ti) 71 45.08 0.68 0.075 49 44.25 0.26 0.117

Böttcher +RB 1399 53 44.12 0.06 0.072 45 43.90 0.03 0.104
+UPT 43 43.91 0.05 0.072 37 43.76 0.09 0.104
CBB 22 43.28 0.00 6.525
SGS(Θi) 40 19.23 9.95 0.178 11 10.06 2.17 0.476
SGS(Ti) 29 16.60 7.72 0.166 10 9.82 1.97 0.482

SAV +RB 2553 11 14.83 6.28 0.164 4 9.11 1.42 0.467
+UPT 0 10.86 3.05 0.117 0 7.76 0.35 0.331
CBB 0 7.34 0.00 18.834

Table 6 Performance of SGS on the Böttcher and SAV benchmark set


