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1 Extending the dynamics of the back-calculation model

In Section 3.2 of the main paper, we mention that the dynamics of the back-
calculation model can be extended to handle surveillance data which are not
collected for the full epidemic time period (Section 1.1), on a coarse time scale
(Section 1.2) and on different time and age-scales (Section 1.3)

1.1 Back-calculation over a reduced time period

Formulation of the back-calculation model can be considered on a subset
(tb, tT ] × (a0, aA] of the full epidemic period, where tb > t0 is chosen based
on the availability of surveillance data or on computational constraints. This
requires specification the expected number of individuals undiagnosed in the
model at time tb, stratified by undiagnosed state {1, . . . ,K}, age (interval) at
infection and current age (interval) at tb. In practice, pre tb modelling, where
data may simply not be available, is required to gather information on the
age at infection. We therefore assume that initially undiagnosed individuals
progress according to their calendar age at tb, rather than their age at infec-
tion, and denote initially undiagnosed individual in the jth age group by the
A × 1 vectors πj = (πj,1, . . . , πj,K)T , j = {1, . . . , A}.

The model dynamics, for time (tb+i−1, tb+i] and age (aj−1, aj ] intervals (i =

{1, . . . , T − b}, j = {1, . . . , A}), can be obtained by setting ej0
1,j0

= (h1,j0 +

πj,1, πj,2, . . . , πj,K)T (instead of ej0
1,j0

= (h1,j0 , 0, . . . , 0)T as in Section 3.2 of
the main paper).

Address(es) of author(s) should be given
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Misspecification of π = {π1, . . . ,πA} might lead to biased incidence and di-
agnosis probabilities estimates.

1.2 Back-calculation on a coarser time scale

Epidemic data may only be available on a coarse scale; in this situation al-
lowing at most one transition between the model states in an interval does
not allow infected individuals to be diagnosed rapidly enough. Yet the model
dynamics over a coarse scale can be constructed by considering smaller sub-
intervals, where the above assumption holds.

Coarse time intervals (ti−1, ti], i = {1, . . . , T} and age groups (aj−1, aj ], j =
{1, . . . , A} are split into Ns intervals of equal length, denoted (ti,s−1, ti,s] and
(aj,s−1, aj,s], where s = {1, . . . , Ns} and ti,0 ≡ ti−1, ti,Ns

≡ ti, aj,0 ≡ aj−1,
aj,Ns

≡ aj . At most one move between the model states is allowed in the
sub-intervals, so that up to Ns events can occur in a "coarse" interval.

Let hi,j0,s denote the expected number of new infections in (ti,s−1, ti,s] and
(aj0,s−1, aj0,s]. dk,i,j,s denotes the diagnosis probability in (ti,s−1, ti,s] and

(aj,s−1, aj,s] from undiagnosed state k, whereas qj0
k,s denotes the progression

probability from undiagnosed state k for an individual infected in (aj0,s−1, aj0,s].
As only one movement between the model states is allowed in (ti,s−1, ti,s] and

(aj,s−1, aj,s], the transition (Qj0
i,j,s) and progression (Dj0

i,j,s) matrices can be
defined via Equations (2) and (3) in the main paper. Moreover, all the quan-
tities defined are constant within the Ns sub-intervals:

hi,j0 ≡ hi,j0,1 = · · · = hi,j0,Ns
, i = {1, . . . T}, j0 = {1, . . . A}

dk,i,j ≡ dk,i,j,1 = · · · = dk,i,j,Ns
, i = {1, . . . T}, j = {1, . . . , A}, k = {1, . . . ,K}

qj0
k ≡ qj0

k,1 = · · · = qj0
k,j,Ns

, j0 = {1, . . . , A}, k = {1, . . . ,K − 1}
Q

j0
i,j ≡ Q

j0
i,j,1 = · · · = Q

j0
i,j,Ns

, i = {1, . . . T}, j = {1, . . . , A}, j0 = {1, . . . , A}
D

j0
i,j ≡ D

j0
i,j,1 = · · · = D

j0
i,j,Ns

, i = {1, . . . T}, j = {1, . . . , A}, j0 = {1, . . . , A}

Now the expected number of undiagnosed infections (ej0
i,j ) and new diagnoses

(µj0
i,j ) at the end of each "coarse" ith time interval and jth age group, for

infection occurring in the jth
0 age group, can be expressed using the fol-

lowing recursive equations, for j0 = {1, . . . , A − 1}, i = {2, . . . , T}, j =
{j0 + 1 . . . ,min(j0 + i − 1, A)}:

e
j0
i,j =

(
Q̃

j0
i,j

)T

e
j0
i−1,j−1 +

(
Q̃

j0
i,j

)T

e
j0
i−1,j δj,A (1)

µ
j0
i,j =

(
D̃

j0
i,j

)T

e
j0
i−1,j−1 +

(
D̃

j0
i,j

)T

e
j0
i−1,j δj,A (2)

where:

Q̃
j0
i,j =

(
Q

j0
i,j

)Ns

D̃
j0
i,j =

Ns−1∑

s=0

(
Q

j0
i,j

)s

D
j0
i,j (3)
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The initial values of the recursion are for j0 = {1, . . . , A}, i = {2, . . . , T}:

e
j0
i,j0

=

(
Ns−1∑

s=0

(
Q

j0
i,j0

)s

)T

hi,j0 +
(
Q̃

j0
i,j0

)T

e
j0
i−1,j0

δj,A (4)

µ
j0
i0,j0

=

(
Ns−1∑

s=1

(Ns − s)
(
Q

j0
i0,j0

)s−1

D
j0
i0,j0

)T

hi0,j0 (5)

+
(
D̃

j0
i,j0

)T

e
j0
i−1,j δj0,A

where hi,j0 = (hi,j0 , 0, . . . , 0)T . Finally, for j0 = {1, . . . , A}:

e
j0
1,j0

=

(
Ns−1∑

s=0

(
Q

j0
i,j0

)s

)T

h1,j0 (6)

where h1,j0 = (h1,j0 , 0, . . . , 0)T .

The above equations can be understood starting considering the infection in-
tervals (ti−1, ti] and (aj0−1, aj0 ]; hi,j0 new infections occur at the beginning of
each of the Ns constituent sub-intervals.

Newly infected individuals can either remain undiagnosed throughout or be
diagnosed in one of the successive sub-intervals (ti−1,s, ti,s] and (aj0−1,s, aj0,s],

s = {2, . . . , Ns}. The probability to remaining undiagnosed is (Qj0
i,j0

)Ns −1.

Diagnosis may occur in the second sub-interval (s = 2) with probability D
j0
i,j0

,

in the third sub-interval (s = 3, probability Q
j0
i,j0

D
j0
i,j0

) and so on, up to the

s = Ns sub-interval, with probability (Qj0
i,j0

)Ns−2D
j0
i,j0

. Similarly infections in
the second sub-interval can remain undiagnosed throughout (ti−1,s, ti,s] and

(aj0−1,s, aj0,s], s = {3, . . . , Ns} with probability (Qj0
i,j0

)Ns−2. Alternatively,

diagnoses can occur in the s = 3 subinterval (probability D
j0
i,j0

) and so on, up

to the s = Ns subinterval (probability (Qj0
i,j0

)Ns−3D
j0
i,j0

). This is generalized
in Equations 4 and 5.

After (ti−1, ti] and (aj0−1, aj0 ] no further infections occur. Equations 1 and 2
describe the expected number of individuals from the infected cohort in the
model states over the successive time and age intervals. For instance, consider
an individual remaining undiagnosed throughout the successive "coarse" in-
tervals (i.e. (ti, ti+1] and (aj0 , aj0+1]). To do so he must remain undiagnosed in
each of the Ns constituent sub-intervals. This equates to raising the transition
matrix Q

j0
i+1,j0+1 to the power of Ns. Instead, to be diagnosed within the

"same" coarse intervals, the diagnosis must have occurred in one of the Ns

sub-intervals: either in in the first sub-interval (probability D
j0
i+1,j0+1), or in

the second sub-interval (probability Q
j0
i+1,j0+1D

j0
i+1,j0+1) etcetera.
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1.3 Back-calculation on different age and time scales

Here we relax the assumption that time and age are measured on the same
scale, which has been central so far, as surveillance data are often available
on a larger age scale than time scale. Data could be aggregated to have equal
scales, but this would entail a loss of information.

Intervals (ti−1, ti], i = {1, . . . T}, and (aj−1, aj ], j = {1, . . . , A}, are now de-
fined so that the length of Na time-intervals is equal to the length of one
age-interval (e.g. Na = 4 for a quarterly time scale and a yearly age scale).
Infected individuals become one age-interval older in the beginning of the
(Na + 1)th, (2Na + 1)th, . . . intervals.

To begin, assume that at most one transition between the model states is al-
lowed per time interval. The dynamical Equations can be re-written as follows,

for i = {2, . . . , T}, j0 = {1, . . . , A − 1} and j = {j0, . . . ,min(A, j0 +
⌊

i−ǫ
Na

⌋
)},

where ǫ is an infinitely small positive value:

e
j0
i,j =





(
Q

j0
i,j

)T

e
j0
i−1,j if i % Na 6= 1

(
Q

j0
i,j

)T

e
j0
i−1,j−1 +

(
Q

j0
i,j

)T

e
j0
i−1,jδj,A if i % Na = 1

(7)

µ
j0
i,j =





(
D

j0
i,j

)T

e
j0
i−1,j if i % Na 6= 1

(
D

j0
i,j

)T

e
j0
i−1,j−1 +

(
D

j0
i,j

)T

e
j0
i−1,j if i % Na = 1

(8)

where i % Na = 1 denotes the case where the remainder of the integer division
of i by Na is equal to one, identifying time intervals i = {Na + 1, 2Na +

1, . . . , ⌊T/Na⌋+1}, at the beginning of which individuals age. e
j0
i0,j0

and µ
j0
i0,j0

,
for j = j0 are defined as in Equations (6) and (7) of the main paper and so
e1,j0 , j0 = {1, . . . A}.

The assumption of at most one move per time interval can be further relaxed
by following Section 1.2, and replacing the matrices Q

j0
i,j and D

j0
i,j with Q̃

j0
i,j

and D̃
j0
i,j (defined in Equation 3). e

j0
i0,j0

and µ
j0
i0,j0

would be as in Equations 4
and 5.

Scenarios with a time scale wider than the age scale could also be considered
by reversing the time and age indices used in this Section.

2 Splines

In Section 4.1 of the main paper we mention a number of splines, without
however giving full mathematical details. These are described in the following
sections.
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2.1 Univariate Splines

A univariate spline is a flexible function g(x) : R → R used for smoothly
modelling the x - y relationship, where y = (y1, . . . , yn)T , is a vector of n
observations from the exponential family, with associated univariate n × 1
vector of covariates x = (x1, . . . , xn)T . Finally let g = (g(x1), . . . , g(xn))T be
the n × 1 vector of the spline’s fitted values.

2.1.1 Optimal natural cubic splines

? first considered the following minimization problem, in the space of two times
continuoulsy differentiable functions:

min

n∑

i=1

( yi − g(xi) )
2

+ λ

∫

R

{g′′(x)}2dx (9)

This objective function is a special case of the penalised likelihood criteria
(Equation (14) in the main paper), where observations are assumed to be
normally distributed. It represent a compromise between goodness of fit, as
measured by the residual sum of squares, and the roughness of the curve, as
measured by the integrated second derivative squared of g(x). Again, λ is the
smoothing parameter.

Theorem 1 Equation 9 is uniquely minimized, in the space of continuously
differentiable function in R, by a natural cubic spline (NCS) with a knot for
every unique xi.

? show that a NCS can be expressed as follows:

Definition 1 Consider a function g(x) : [a, b] → R, defined by a set of ordered
knots κ = {a = κ1 < κ2 < · · · < κk = b} and parameters α1, α2, δ1, . . . δk:

g(x) = α0 + α1x +
1

12

k∑

j=1

δj |x − κj |3

This is a NCS if the following constraints are satisfied:

k∑

j=1

δj =

k∑

j=1

δjκj = 0

Note that the basis for a NCS is:
{
1, x, 1

12 |x − κ1|3, . . . , 1
12 |x − κk|3

}
.

The optimal NCS can be formulated within the penalised regression framework
discussed in Section 4.1 of the main paper, by defining parameter vectors
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α = (α0, α1)
T and δ = (δ1, . . . , δn)T , and matrices T and E respectively of

dimension n × 2 and n × n:

T =




1 x1

...
...

1 xn


 E =




1
12 |x1 − x1|3 · · · 1

12 |x1 − xn|3
... · · ·

...
1
12 |xn − x1|3 · · · 1

12 |xn − xn|3


 (10)

so that the optimal NCS, with one knot per observation, can be written as
follows:

g = Tα + Eδ s.t T T δ = 0 (11)

? (page 141), demonstrate that the roughness integral can be expressed in
quadratic form:

∫ b

a

{g′′(x)}2dx = δT Eδ

Note that T T δ = 0 imposes two constraints on δ, thus it would be simpler
working with the vector δ′ having n−2 free parameters. δ and δ′ can be linked
via an orthogonal dimension (or rank) reduction matrix Z, of size n × n − 2,
so that δ = Zδ′ and the constraint term becomes T T Zδ′ = T T δ = 0. By
constraining T T Z to be 0, the constraint is satisfied for any value δ′, which
then becomes an unconstrained vector. The matrix Z is obtained via a QR
decomposition (of T ), for further details see Section 4 of ? and also ?.

Then optimal NCS can be described in the penalised likelihood framework
described in the paper (Equation (14)), where a spline is characterised by
parameters β and matrices X and S:

β[n×1] =
[
α0 α1 δ′

1 · · · δ′

n−2

]T
(12)

X[n×n] =
[
T[n×2]| E[n×n ]Z[n×n−2]

]
(13)

S[n×n] =

[
0[2×2] 0[2×n−2]

0[n−2×2] ZT EZ[n−2×n−2]

]
(14)

Optimal NCS require a knot, and therefore a parameter, per observation.
These may be computationally challenging (in terms of both running time and
numerical stability) to fit, especially when many observations are available.
Thus "low-rank" splines, with fewer parameters than observations, are consid-
ered. Despite not having the optimality property of optimal NCS, these work
well in practice and are described in the following Section 2.1.2 to 2.1.4.
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2.1.2 Thin plate regression splines

? introduces thin plate regression splines which are an "optimal" low-rank
approximation of optimal (or full-rank) NCS. The main idea is to introduce a
dimension (or rank) reduction matrix Γp of size n×p, relating the p parameters
of a low-rank NCS to the n parameters of a full-rank NCS:

δ = Γpδp (15)

Using the same data, the full and low rank splines yield different fitted val-
ues and penalise roughness differently. Such differences can be quantified and
minimized by finding an "optimal" (in the sense defined by ?) Γp , which is
shown to be equal to Up , obtained from the eigen-decomposition of matrix E

(defined in Equation 10). Explicitly E (of size n × n) can be expressed as the
matrix product UDUT . D is a diagonal matrix, of dimension n×n, with the
absolute values of the eigenvalues of E sorted in ascending order along the
main diagonal. U is the n × n matrix of eigenvectors. Let Up be the n × p
matrix consisting of the first p columns of U and Dp be the top left p × p
submatrix of D. Up is a matrix of rank p, the columns of which form a p-
dimensional orthonormal basis. Thus UT

p Up = Ik , but UpUT
p 6= In, where Il

denotes an identity matrix of size l. Now:

g = EUpδp − Tα s.t T T Γpδp = 0 (16)

S = UT
p EUp (17)

where T was defined in Equation 10. As discussed in the previous Section, the
constrained minimisation problem can be turned into an unrestricted one by
finding (via the QR decomposition of T ) an orthogonal matrix Z (size p×p−2)
so that T T UpZ = 0 and δp = Zδ′. Now thin plate regression splines can be
expressed within the usual penalised regression framework (Equation (14) of
the main paper), defining:

β[p×1] =
[
α1 α2 δ′

1 · · · δ′

p−2

]T
(18)

X[n×p] =
[
T[n×2]| E[n×n ]Up[n×p]Z[p×p−2]

]
(19)

S[p×p] =

[
0[2×2] 0[2×p−2]

0[p−2×2] ZT DkZ[p−2×p−2]

]
(20)

Thin plate regression splines are defined in terms of the k largest eigenvectors,
rather than a set of knots, avoiding having to explicitly choose the knots
location. The number of parameters k shall be chosen to be adequately large
to ensure sufficient flexibility, but not excessively large, to avoid computational
waste.
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2.1.3 Thin plate regression splines with linear shrinkage

All splines considered so far (optimal NCS, and thin plate regression splines)
are made of a linear term Tα (i.e. α0 + α1x) and a non-parametric term (i.e.
Eδ, often subject to reparameterisation).

As λ increases, the penalty matrix S shrinks the parameters δ towards zero
while the parameters α are not subject to any penalty term (see Equations 14
and 20. Thus greater λ values shrink the spline towards a straight line (i.e. the
unpenalised term) but not towards zero. ?, within a context of variable selec-
tion, propose a strategy to penalise the null-space (i.e. the space of unpenalised
coefficients α) allowing shrinkage to zero.

The eigendecomposition S = UDUT is considered, where U and D are as
defined in Section 2.1.2. As there are two unpenalised coefficients (i.e. α1,
α2), the last two eigenvalues are equal to zero. These are replaced by a small
portion ǫ of the minimum strictly positive eigenvalue of D, creating matrix
D′. The original penalty matrix S can be then replaced by S′ = UD′UT .
This gives S′ ≈ S, so that the null-space is penalised.

? show that ǫ = 1/10 works well in practice, thus the penalty imposed on the
null space is smaller than the one imposed on the originally penalised space.
Hence as λ increases the spline is first penalised towards a straight line, and
then, if needed, the straight line is further shrunk to zero.

Thin plate regression splines with shrinkage can be expressed in the usual
penalised likelihood framework. β and X are as defined in Equation 18 and 19,
but S (Equation 20) is replaced by S′, as defined above.

These splines are used as marginal splines for the ptenstprs spline discussed
in the paper.

2.1.4 B and P-splines

?, building on the work by ?, suggest a pragmatic alternative to construct
a low-rank spline that is not based on approximations of optimal NCS (as
in Section 2.1.2 and 2.1.3). They consider P-splines, which are B-splines (?)
estimated within a penalised likelihood framework.

B-splines are low-rank polynomial splines characterised by a local basis, de-
fined by degree d and κ = {a = κ1 < · · · < κk = b} (a,b ∈ R) equally spaced
internal knots dividing the domain [a, b] into k−1 disjoint intervals. The basis
function Bd

i (x) is recursively defined:

Bd
i (x) =

x − κi−d

κi − κi−d

Bd−1
i−1 (x) +

κi+1 − x

κi+1 − κi+1−d

Bd−1
i (x) (21)
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B0
i (x) =

{
1 for κi ≤ x ≤ κi+1

0 otherwise

This recursion requires 2d extra knots outside of [a, b] to be valid, yield-
ing a total number of knots of k + 2d and k − 1 + d (≡ p) B-spline bases{
Bd

1 (x), . . . , Bd
k−1+d(x)

}
. A B-spline is a linear combination of these bases, so

that:

– It is made of d + 1 polynomials of degree d.

– The polynomials join at the k inner knots.

– The derivative up to order d − 1 are continuous.

– k − 1 + d polynomial bases are defined by the recursion.

– For every x ∈ (a, b) only d + 1 bases are non-zero.

– For all x ∈ [a, b]:
∑k−1+d

i=1 Bd
i (x) = 1.

? define P-splines by estimating the coefficients of a B-spline subject to a
penalty. If successive coefficients take similar values, the fitted spline is smooth.
Consequently a difference matrix Dr of degree r is used as penalty matrix,
where r = 1 and r = 2 are most commonly used:

D1 =




−1 1 0 · · · 0
0 −1 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 0 −1 1


 D2 =




−1 2 −1 0 · · · 0
0 −1 2 −1 · · · 0
...

. . .
. . .

. . .
. . .

...
0 · · · 0 −1 2 −1




The penalty matrix S is obtained by multiplying: DT
r Dr . For first and second

order difference matrices the penalty term is equivalent to: βT DT
1 D1β =∑k−2+d

i=1 (βi+1 − βi)
2 and βT DT

2 D2β =
∑k−3+d

i=1 (βi+2 − 2βi+1 + βi)
2.

A first order penalty shrinks the coefficients (and thus the spline) towards
a common constant, as only two equal successive coefficients are not pe-
nalised. In contrast, a second order penalty shrinks coefficients towards a linear
trend, as only three neighbouring coefficients forming a linear trend are unpe-
nalised.

As before, P-splines of degree d, with a penalty matrix of order r, can be
expressed within the usual penalised likelihood framework, where:

β[p×1] =
[
β1 · · · βp

]T
(22)

Xd[n×p] =




Bd
1 (x1) · · · Bd

p(x1)
...

...
...

Bd
1 (xn) · · · Bd

p(xn)


 (23)

Sr [p×p] =

[
0[r×r ] 0[r×(p−r)]

0[(p−r)×r ] (DT
r Dr)[(p−r)×(p−r)]

]
(24)
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d and r are suppressed for notational simplicity, so that X ≡ Xd and S ≡ Sr .
In the paper we consider d = 3 and r = 1, for the marginal splines of the
ptensbs spline. ? also considers the case for d = 3 and r = 2.

2.2 Bivariate splines

A bivariate spline is a flexible function g(x) : R
2 → R used for smoothly mod-

elling the x - y relationship, where y = (y1, . . . , yn)T , is a vector of n observa-
tions from the exponential family, with associated covariates x = {x1, . . . ,xn},
where xi = (x1i, x2i)

T . g = (g(x1), . . . , g(xn))T denotes the n × 1 vector of
the spline’s fitted values.

2.2.1 Optimal thin plate splines

? extends the univariate smoothing problem, posed in Section 2.1.1 to bivari-
ate settings, by measuring roughness in R

2 (i.e. in two dimensions) using the
Laplacian quadratic integral. Hence the problem of finding a function g(x), in
the space of twice continuously differentiable functions, minimising the follow-
ing criterion is considered:

min
n∑

i=1

( yi − g(xi) )
2
+

λ

∫ ∫

R2

(
∂2g(x)

∂x2
1

)2

+ 2

(
∂2g(x)

∂x1∂x2

)2

+

(
∂2g(x)

∂x2
2

)2

dx1dx2 (25)

Similarly to the univariate objective function (Equation 9), the above criterion
is a special case of penalised regression (see Equation (14) in the main paper).
The following theorem provides the solution to the minimization problem:

Theorem 2 In the space of continuously differentiable functions in R
2, Equa-

tion 25 is uniquely minimized by a thin plate spline with a knot at every unique
xi.

Definition 2 A thin plate spline (TPS) is a function g(x) : [a, b] × [c, d] → R

defined on a set of knots κ = {κ1, · · · ,κk}, where κi = (κi1, κi2), so that:

g(x) = α0 + α1x1 + α2x2 +
k∑

i=1

δiν(||xi − κi||)

subject to the following constraints:

k∑

i=1

δi =
k∑

i=1

δiκi1 =
k∑

i=1

δiκi2 = 0
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where || · || denotes the Euclidean distance and ν(r) is a R → R distance
function:

ν(r) =

{
1

16π
r2log(r2) if r > 0

0 otherwise

A TPS basis is thus: {1, x1, x2, ν(||x − κ1||), . . . , ν(||x − κk||)}.

Thin plate splines with a knot per observation (referred to as “optimal TP”
from now on) are optimal as if roughness is measured by the Laplacian integral,
there is no smoother spline with equal (or better) goodness of fit. Note that
optimal TPS are simply optimal NCS (Section 2.1.1) extended to bivariate
settings.

Optimal TPS can be formulated within the penalised likelihood framework
(Equation (14) of the main paper), by defining the parameter vectors α =
[α0, α1, α2]

T and δ = [δ1, . . . , δn]T , and matrices T and E (of dimension n× 3
and n × n respectively):

T =




1 x11 x12

...
...

...
1 xn1 xn2


 E =




ν(||x1 − x1||) · · · ν(||x1 − xn||)
... · · ·

...
ν(||xn − x1||) · · · ν(||xn − xn||)


 (26)

It can be shown that the roughness integral can be written in a quadratic form
(?):

∫ ∫

R2

(
∂2g(x)

∂x2
1

)2

+ 2

(
∂2g(x)

∂x1∂x2

)2

+

(
∂2g(x)

∂x2
2

)2

dx1dx2 = δT Eδ (27)

Then parameters β and matrices X and S can be defined as in Equations 12
to 14 (Section 2.1.1), using the matrices T and E defined above.

As for NCS, TPS are computationally inefficient, and similar results can be
obtained with low-rank splines having fewer parameters than knots.

2.2.2 Knots based thin plate splines

Optimal TPS are a special case of TPS, where a knot is placed at each observa-
tion; low-rank TPS can be defined based on a set of knots that is smaller than
the set of observations. The number of knots chosen must be large enough, to
ensure sufficient flexibility, but not excessively large, to avoid computational
waste. Sensitivity analysis to the number of knots and their location is essen-
tial. Let κ = {κ1 < · · · < κp} be a set of knots (p < n), so that κi = (κi1, κi2).
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Let α = [α0, α1, α2]
T and δ = [δ1, . . . , δk]T be parameter vectors and T , E

and C matrices of dimension n × 3, n × p and 3 × p respectively:

T =




1 x11 x12

...
...

...
1 xn1 xn2


 (28)

E =




ν(||x1 − κ1||) · · · ν(||x1 − κp||)
... · · ·

...
ν(||xn − κ1||) · · · ν(||xn − κp||)


 (29)

C =




1 1 · · · 1
κ11 κ12 · · · κ1k

κ21 κ22 · · · κ2k


 (30)

Now:
g = Tα + Eδ s.t Cδ = 0

Now consider the p × p − 3 matrix Z obtained via a QR decomposition of C,
so that δ = Zδ′ and CZ = 0. Z links the vector δ of k coefficients (sub-
ject to three constraints) to the vector δ′ of k − 3 unconstrained coefficients.
Now the spline can be rewritten in the usual penalised likelihood framework,
where:

β[p×1] =
[
α0 α1 α2 δ′

1 · · · δ′

p−3

]T
(31)

X[n×p] =
[
T[n×3]| E[n×k]Z[p×p−3]

]
(32)

S[p×p] =

[
0[3×3] 0[3×p−3]

0[p−3×3] ZT EZ[p−3×p−3]

]
(33)

These splines are denoted tps in the paper.

2.2.3 Thin plate regression splines

Thin plate regression splines (Section 2.1.2) can be further extended to bivari-
ate settings, by defining the coefficients β (Equation 18), and the design X

(Equation 19) and penalty S matrices (Equation 20). The only difference with
respect to Section 2.1.2 is that we the matrices E and T given in Equation 26
to construct the aforementioned matrices.

2.2.4 Thin plate regression splines with shrinkage

Shrinkage of thin plate regression splines towards zero can be further achieved
by imposing a penalty on the null-space (i.e. the α coefficients). Instructions
are given in Section 2.1.3, with the only difference that the E and T matrices
employed, are defined in Equation 26. These splines are denoted tprs in the
paper.
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2.2.5 Tensor Product splines

Tensor product splines are here constructed following ?, generalising the ap-
proach of ?.

Tensor product splines are obtained by multiplying two univariate spline bases,
each separately defined on the marginal dimensions (i.e. x1 and x2). This is
a pragmatic approach for constructing bivariate splines; unlike bivariate TPS
splines (Section 2.2.1 to 2.2.4), these are not motivated by the smoothing
criterion in Equation 25 depending on the Laplacian quadratic integral, which
assumes isotropy, i.e. roughness is equally penalised in the dimensions x1 and
x2. Tensor product splines relax this assumption.

We start by considering two univariate splines g1(x1) : [a, b] → R and g2(x2) :
[c, d] → R , with bases {B11(x1), · · · , B1p1

(x1)} and {B21(x2), · · · , B2p2
(x2)},

coefficients β1 = [β11, . . . , β1p1
]T and β2 = [β21, . . . , β2p2

]T , design matrices
X(1) and X(2) (of dimension n × p1 and n × p2 respectively), and penalty
matrices S(1) and S(2) (of dimension p1 × p1 and p2 × p2 respectively). For
i = {1, . . . , p1} and j = {1, . . . , p2} the tensor product basis is equal to:

Bi,j(x1, x2) = B1i(x1)B2j(x2)

Hence the tensor product design matrix X, of dimension n× (p1p2), is:

X =




B1,1(x11, x12) · · · Bp1,1(x11, x12) · · · B1,p2
(x11, x12) · · · Bp1,p2

(x11, x12)
...

...
...

...
...

...
...

B1,1(xn1, xn2) · · · Bp1,1(xn1, xn2) · · · B1,p2
(xn1, xn2) · · · Bp1,p2

(xn1, xn2)




The ith row of X, denoted Xi·, can be alternatively obtained from the Kroe-
necker product of the ith rows of the marginal P-splines design matrices, X(1)i·

and X(2)i· respectively, yielding a (p1p2) × 1 vector:

Xi· = X(1)i· ⊗ X(2)i· (34)

The (p1p2)× 1 parameter vector of the tensor product spline is β = [β1,1, · · · ,
βp1,1, · · · , β1,p2

, · · · , βp1,p2
]T .

The overall roughness of the tensor product spline can be quantified based on
the idea that we know how to measure roughness marginally (via the speci-
fication of S(1) and S(2)). For a fixed x2, J1(g(x1|x2)) = βT

1 S(1)β1 quanti-
fies roughness with respect to the x1 dimension. Evaluating J1(g(x1|x2)) for
infinitely many fixed x2 and taking its average over the x2 points yields the
overall roughness with respect to x1. Roughness in the x2 direction is similarly
measured, fixing x1 instead. The overall roughness of g(x1, x2) is mathemati-
cally expressed as:

J(g(x)) = λ(1)

∫ d

c

J1 (g1(x1|x2)) dx2 + λ(2)

∫ b

a

Jx2
(g2(x2|x1)) dx1 (35)
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This integral can not be analytically evaluated; a discrete approximation can
be derived by reparameterising the spline in terms of the values of the functions
on a regular grid (see ? page 99 for a picture). A set of equidistant values,
denoted as x⋆

1 = {x⋆
11, . . . , x

⋆
1p1

} and x⋆
2 = {x⋆

21, . . . , x
⋆
2p2

} respectively, is
constructed in the x1 and x2 dimensions. It can be shown that (?):

∫ d

c

J1 (g1(x1|x2)) dx2 ≈

h1

p2∑

j=1

J1

(
g1(x1|x⋆

2j)
)

= h1 (βT
(
A

−T
1 S(1)A1

)
⊗ Ip2

β) (36)

where A1 is a p1 × p1 matrix with entries (A1)ij = B1i(x
⋆
1j), and h1 is a

constant of proportionality to account for the spacing of x⋆
1. The integral for

J2 (g2(x2|x1)) can be similarly approximated, by defining instead h2 and a
p2 × p2 matrix A2, with entries (A2)ij = B2i(x

⋆
2j).

Tensor product splines can be expressed within the usual penalised regression
framework where λ1 = h1λ(1), λ2 = h2λ(2) and:

β = [β1,1, · · · , βp1,1, · · · , β1,p2
, · · · , βp1,p2

]T (37)

S1 =
(
A

−T
1 S(1)A1

)
⊗ Ip2

(38)

S2 = Ip1
⊗
(
A

−T
2 S(2)A2

)
(39)

In the paper we specifically consider univariate thin plate regression splines
(see Section 2.2.4) and cubic B-splines with a first order difference penalty (see
Section 2.1.4)

2.3 Reparameterisations for increased computational efficiency

Consider a spline characterised by parameters β (size p) and design X and
penalty S matrices, respectively of size n × p and p × p. Two reparameter-
isations can be employed to increase the computational efficiency of HMC
sampling.

2.3.1 Centering reparameterisation

Any spline, as defined above, can be made subject to a sum to zero constraint,
i.e.

∑n

i=1 g(xi) = 0). In matrix notation this is equivalent to

1T Xβ = 0 (40)
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Where 1 is a n × 1 vector. The above constraint can be integrated using
the usual QR decomposition (of 1T X) approach. An orthogonal matrix Z,
of dimension p × (p − 1), is found so that β = Zβ′ and 1T XZ = 0. After
reparameterisation, the quadratic penalty matrix for β′, of size (p−1)×(p−1),
is ZT SZ.

Notice that in integrating such constraint results in loosing a degree of freedom.
This is compensated by the introduction of a global intercept α. Thus the
resulting reparametrized spline has p parameters β̃ =

[
α β′

]
, design matrix

X̃ =
[
1| XZ

]
of size p × p and finally S̃ =

[
0T

ZT SZ

]
, where 0 is a vector of

zeroes of size p.

Further details about this re-parameterisation are available in ?, Section 4.2.

2.3.2 Identity precision reparameterisation

Splines with a single penalty matrix S, i.e. all univariate splines and bivariate
thin plate (regression) splines (with shrinkage), can be reparametrized to have
an identity penalty matrix.

Recall that S is reinterpreted, within a Bayesian framework, as the precision
matrix of a multivariate normal prior on coefficients β. Hence having S = I

leads to i.i.d Normal priors for the β components. This reparameterisation
leads to faster HMC updating in our experience.

Consider any spline where ρ ≤ p is the rank of S. If some of the β coefficients
are unpenalised, then ρ < p. Denote βU and βP , of size p−ρ and ρ, unpenalised
and penalised coefficients.

Apply the eigendecomposition S = UDUT . D is a diagonal matrix, with
entries being the eigenvalues of S sorted in ascending order and U is the
matrix of corresponding eigenvectors. Due to positive semi-definiteness of S

all eigenvalues are positive, with the exception of p−ρ zero eigenvalues. Further
let Λ be a diagonal matrix, with entries Λii =

√
Dii so that D = ΛT Λ. The

penalty becomes:

λβT Sβ = λβT UDUT β = λβT UΛT ΛUT β (41)

Where:

UΛT ΛUT =

[
I[ρ×ρ] 0[ρ×p−ρ]

0[p−ρ×p−ρ] 0[p−ρ×p−ρ]

]

Now let β′ = ΛUT β and notice that the penalty term is equivalent to:

βT UΛT ΛUT β = βT
P IβP

By orthogonality of U it holds that:

β = (ΛUT )−1β′ = (UT )−1(Λ)−1β′ = (U−1)−1Λ−1β′ = UΛ−1β′



16 Brizzi et al.

Hence the original design and penalty matrices of the spline are now reparametrized
as:

Xβ = XUΛ−1β′ λβT Sβ = λβT
P IβP

Further details about this reparameterisation are available in ?. An improper
flat prior is assigned to unpenalised coefficients βU . For computational effi-
ciency reasons, it has been suggested to replace the flat prior by a vague proper
prior, usually Normal for β′

Uj ∼ N(0, 1/λ0). Hence the original penalty is now
replaced by the following approximation:

λβT Sβ ≈ λβT
P IβP + λ0β

T
U IβU (42)

3 Further information on the simulation study

3.1 A note on the scale used

To avoid excessively long running times, we have run the simulation study
using a yearly time and age-scale. However, a yearly scale is too coarse to make
the assumption (as in Section 3.2 of the paper) that at most one event (i.e.
diagnosis or progression) occur per time interval. Section 1.2 demonstrates how
a yearly time scale can be construct from a "small" quarterly time scale. Hence
we used Equations (1) to (5) in the supplementary material for simulating
the model dynamics. For the same reasons of computational feasibility we
considered the epidemic from an intermediate (and not the starting point).
The dynamics equation can be derived as discussed in Section 1.1

3.2 Values for the expected number of initially undiagnosed infections
π

Age at t1 Stage1 Stage2 Stage3 Stage4
(CD4 ≥
500)

(500 <
CD4 ≤
350)

(350 <
CD4 ≤
200)

(CD4 >
200)

1 8.36 1.75 1.75 0.31
2 13.14 3.90 3.90 1.16
3 15.86 5.91 5.91 2.32
4 17.41 7.56 7.56 3.54
5 19.84 11.06 11.06 6.64
6 21.24 13.74 13.74 9.34
7 22.04 15.74 15.74 11.56
8 22.44 17.08 17.08 13.17
9 22.62 17.97 17.97 14.30
10 22.74 18.81 18.81 15.43
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11 46.25 24.55 24.55 17.30
12 59.51 31.31 31.31 20.54
13 66.91 37.09 37.09 23.91
14 71.01 41.83 41.83 27.44
15 71.96 43.54 43.54 28.93
16 72.42 44.86 44.86 30.23
17 72.61 45.83 45.83 31.28
18 72.60 46.48 46.48 32.04
19 72.51 46.91 46.91 32.56
20 72.33 47.06 47.06 32.74
21 72.13 47.19 47.19 32.89
22 71.93 47.28 47.28 33.01
23 71.72 47.33 47.33 33.07
24 71.50 47.37 47.37 33.11
25 71.28 47.37 47.37 33.09
26 71.05 47.36 47.36 33.07
27 70.82 47.34 47.34 33.03
28 70.59 47.32 47.32 33.00
29 70.35 47.29 47.29 32.96
30 70.11 47.26 47.26 32.91
31 39.80 40.21 40.21 31.53
32 23.02 31.72 31.72 28.02
33 13.74 24.04 24.04 23.40
34 8.59 17.83 17.83 18.68
35 5.78 13.19 13.19 14.53
36 4.18 9.72 9.72 11.02
37 3.27 7.18 7.18 8.21
38 2.78 5.51 5.51 6.23
39 2.53 4.42 4.42 4.87
40 2.37 3.62 3.62 3.82
41 2.26 2.99 2.99 2.97
42 2.19 2.50 2.50 2.28
43 2.17 2.42 2.42 2.16
44 2.15 2.35 2.35 2.06
45 2.14 2.33 2.33 2.03
46 2.12 2.31 2.31 2.01
47 2.11 2.30 2.30 2.00
48 2.10 2.28 2.28 1.98
49 2.08 2.27 2.27 1.97
50 2.07 2.26 2.26 1.95
51 2.06 2.24 2.24 1.94
52 5.88 11.43 11.43 11.48

Table 1: Values chosen for the expected number of initially undiagnosed indi-
viduals π, for each CD4 undiagnosed state and age at time 1.
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3.3 Values the progression probabilities Q

Age at inf Stage1 Stage2 Stage3 Stage4
a0 (CD4 ≥

500)
(500 <
CD4 ≤
350)

(350 <
CD4 ≤
200)

(CD4 >
200)

1 0.09 0.12 0.11 0.14
2 0.09 0.12 0.11 0.14
3 0.09 0.12 0.11 0.14
4 0.09 0.12 0.11 0.14
5 0.09 0.12 0.11 0.14
6 0.09 0.12 0.11 0.14
7 0.09 0.12 0.11 0.14
8 0.09 0.12 0.11 0.14
9 0.09 0.12 0.11 0.14
10 0.09 0.12 0.11 0.14
11 0.09 0.12 0.11 0.14
12 0.09 0.12 0.11 0.14
13 0.09 0.12 0.11 0.15
14 0.09 0.12 0.11 0.15
15 0.09 0.12 0.12 0.15
16 0.09 0.12 0.12 0.15
17 0.09 0.12 0.12 0.15
18 0.09 0.12 0.12 0.15
19 0.09 0.12 0.12 0.15
20 0.10 0.12 0.12 0.15
21 0.10 0.12 0.12 0.15
22 0.10 0.12 0.12 0.15
23 0.10 0.12 0.12 0.15
24 0.10 0.12 0.12 0.15
25 0.10 0.12 0.12 0.15
26 0.10 0.12 0.12 0.15
27 0.10 0.12 0.12 0.15
28 0.10 0.12 0.12 0.15
29 0.10 0.12 0.12 0.16
30 0.10 0.12 0.12 0.16
31 0.10 0.12 0.12 0.16
32 0.10 0.12 0.12 0.16
33 0.10 0.12 0.12 0.16
34 0.10 0.12 0.13 0.16
35 0.10 0.12 0.13 0.16
36 0.10 0.12 0.13 0.16
37 0.10 0.12 0.13 0.16
38 0.10 0.12 0.13 0.16
39 0.10 0.12 0.13 0.17
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40 0.10 0.12 0.13 0.17
41 0.10 0.12 0.13 0.17
42 0.10 0.13 0.13 0.17
43 0.10 0.13 0.14 0.17
44 0.10 0.13 0.14 0.17
45 0.10 0.13 0.14 0.18
46 0.11 0.13 0.14 0.18
47 0.11 0.13 0.14 0.18
48 0.11 0.13 0.14 0.18
49 0.11 0.13 0.14 0.18
50 0.11 0.13 0.15 0.19
51 0.11 0.13 0.15 0.19
52 0.11 0.13 0.15 0.19

Table 2: Values chosen for the progression probabilities Q, for each CD4 un-
diagnosed state and age at time 1

3.4 Values of the diagnosis probabilities D

Time Stage1 Stage2 Stage3 Stage4
a0 (CD4 ≥

500)
(500 <
CD4 ≤
350)

(350 <
CD4 ≤
200)

(CD4 >
200)

1 0.04 0.04 0.05 0.07
2 0.04 0.04 0.06 0.09
3 0.04 0.05 0.06 0.10
4 0.03 0.04 0.07 0.11
5 0.03 0.04 0.06 0.13
6 0.04 0.04 0.07 0.15
7 0.04 0.04 0.07 0.15
8 0.04 0.04 0.08 0.17
9 0.04 0.05 0.08 0.17
10 0.04 0.05 0.08 0.18
11 0.04 0.06 0.09 0.19
12 0.05 0.05 0.09 0.19
13 0.06 0.06 0.09 0.20
14 0.06 0.06 0.10 0.22
15 0.05 0.06 0.10 0.23
16 0.06 0.07 0.11 0.22
17 0.06 0.08 0.10 0.24
18 0.07 0.09 0.11 0.25
19 0.08 0.09 0.11 0.26
20 0.08 0.08 0.12 0.28
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Table 3: Values chosen for the diagnosis probabilities D, for each CD4 undi-
agnosed state and age at time 1

3.5 Priors employed

Recall that the log-infection process γ is modelled using a bivariate spline
(among those discussed in Table 1 of the paper). γ = Xθ, with X represent-
ing the design matrix corresponding to the chosen type of spline. After the
centering reparameterisations discussed in Section 2.3.1, we use the following
prior to characterise the tensor product spline:

θ1 ∼ N(0, 30)

θp−1 ∼ Np−1

(
0, (λ1S1 + λ2S2)

−1
)

σ1, σ2 ∼ t+(2, 200)

(43)

where Nn denotes a nth dimensional multivariate Normal distribution, and
t+(d, s) denotes a half-t distribution with d degrees of freedom and scale pa-
rameter s. Recall that θ1 is a global intercept term and σ1 = 1

λ2

1

, σ2 = 1
λ2

2

are

smoothing parameters

Thin plate splines have a single penalty matrix S and are subject to both the
centering and i.i.d Normal priors reparameterisations (Sections 2.3.1, 2.3.2) .
They can hence be formulated as follows:

θ1 ∼ N(0, 30)

θi ∼ N(0, σ2), i = {2, . . . , p}
σ ∼ t+(2, 200)

(44)

For both thin plate and tensor product splines: θ1 is the global intercept, de-
scribing the mean number of log-expected infections per age and time interval.
A very weakly informative prior is assigned to it, so that θ1 lies with approx-
imately 95% prior probability in the [−60, 60] range. The choice of priors on
the parameters θ are dictated by the penalty term re-interpretation as a pre-
cision matrix. A diffuse half-t distribution with 2 degrees of freedom and scale
parameter 200 is chosen as prior for the smoothing parameters, so that 95%
of the prior density lies in the [0,400] region, reflecting a lack of knowledge for
the θ parameters (?). This, however, is a choice of prior to which outputs are
particularly insensitive.

Prior distributions need to be further assigned to the diagnosis process D(δ):

δ1,1 ∼ N(−3.2, 0.2), δ1,2 ∼ N(−3.2, 0.2),

δ1,3 ∼ N(−3, 0.2), δ1,4 ∼ N(−2.5, 0.3)
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σ2
k ∼ Γ (1, 32), k = {1, 2, 3, 4}

The priors assigned to δk,1 are weakly informative. The prior for σ2
k implies

that the standard deviation lies with 95% prior probability in (0.03,0.335) and
allows the logit-random walk to approximately vary by at most two standard
deviations (i.e. 70%) between successive intervals.

4 The QR decomposition

This Appendix provides the details of the QR decomposition. For further de-
tails refer to ?, page 46 and 334.

Let X be a n × m matrix, where n ≥ m. X can always be decomposed as
follows:

X = Q

[
R

0

]
=
[
Q1 Q2

] [R
0

]
= Q1R1 (45)

Where R is an upper triangular m×m matrix, 0 is a (n−m)×m matrix and
Q is a n × n orthogonal matrix. Q can be further split into Q1 (dimension
n × m) and Q2 (dimension n × n − m), both with orthogonal columns.

Now consider the specific case where a linear (or spline) model Xβ is sub-
ject to the constraint Cβ = 0. C is a c × m matrix, imposing c distinct
constraints.

The aim is to to reparametrise the linear (or spline) model in terms of β′

containing m − c free parameters, rather than m parameters subject to c
constraints. To do so it is necessary finding a matrix Z, of dimension m ×
(m − c), so that:

β = Zβ′ (46)

CZ = 0 (47)

After re-parameterisation in Equation 46, the constraint term becomes CZβ′ =
0. Then the condition in Equation 47 allows β′ to take any value, while satis-
fying the constraint.

Finally, Z is constructed using the QR decomposition of CT .

CT =
[
Q1 Q2

] [R
0

]
(48)

Now set Z = Q2 and consider:

CZ =
[
RT 0

] [QT
1

ZT

]
Z =

[
RT 0

] [0
I

]
= 0 (49)

Q1 and Q2 span different columns of the same orthogonal matrix, thus the dot
product characterising each entry of QT

1 Q2 = QT
1 Z is made by orthogonal

vectors and is equal to zero.
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