# Electronic Supplementary Material <br> Semiparametric regression and risk prediction with competing risks data under missing cause of failure 


#### Abstract

This Electronic Supplementary Material contains R code for the implementation of the proposed methodology, proofs of the theorems presented in Section 3.2 of the main text, explicit formulas for the estimated influence functions, and simulation study results in terms of the infinite-dimensional parameters.


PACS 02.50.r
Mathematics Subject Classification (2010) 62N01 • 62N02

## 1 R Code

Our estimation approach can be easily applied using the coxph function of the R package survival. Here we illustrate the use of coxph with missing event type according to our methodology. First, consider a dataset named data with competing risks, which includes failure time x , event type c , a covariate of interest $\mathbf{z}$, and an auxilliary covariate $a$. The first step of the analysis is to fit a logistic model for the probability of the cause of interest. First define a event type, i.e.
cause <- 1.
Next, one needs to fit the logistic model $\pi_{j}\left(\mathbf{W}_{i}, \boldsymbol{\gamma}_{0}\right)$ in the complete cases and then calculate the "weight"

$$
R_{i} \Delta_{i j}+\left(1-R_{i}\right) \pi_{j}\left(\mathbf{W}_{i}, \hat{\gamma}_{n}\right)
$$

This can be done using the following lines of code:
data[data\$r==0,"c"]<- -1
cc <- data[data\$r==1 \& data\$c>0,]
cc\$y <- $1 *$ (cc\$c==cause)

```
mod1 <- glm(y ~ x + z + a, family = "binomial", data = cc)
data$pi <- predict(mod1, data, type = "response")
data$weight <- data$r*(data$c==cause)+(1-data$r)*data$pi
data$d <- (data$weight>0)
data$weight <- data$weight + (data$weight == 0)
```

The next stage of the analysis is to fit the Cox proportional hazards model using data\$weight as weight in the coxph function. However, since case weights in coxph are also incuded in the risk sets, we need a data manipulation step in order to "remove" these weights from the risk sets for the observations with a missing event type. This data manipulation step proceeds as follows:
dt0 <- data[data\$r==0,]
dt0\$weight <- 1 - dt0\$weight
dt0\$d <- 0
data1 <- rbind(data,dt0)
Now estimation of the regression coefficients using the proposed maximum pseudo partial likelihood approach is performed by using coxph in the augmented dataset data1, with the weights data1\$weight:
fit <- coxph (Surv(x, d) $\sim \mathrm{z}$, weight = weight, data = data1)
b1 <- coef(fit)
Note that the standard error estimates provided by coxph are not valid and correct estimation of the standard errors can be performed using the nonparametric bootstrap. We plan to develop an R package that provides standard errors according to our closed-form estimators.

Estimation of the baseline cumulative cause-specific hazard functions can be performed using the basehaz function as:
H1 <- basehaz (fit, centered = FALSE)
Finally, the cumulative incidence function given the covariate pattern $\mathbf{z}_{0}$ can be easily estimated using the regression coefficient b1 and baseline cumulative cause-specific hazard estimates for all cases of failure using the estimator:

$$
\hat{F}_{n, 1}\left(t ; \mathbf{z}_{0}\right)=\int_{0}^{t} \exp \left[-\sum_{l=1}^{k} \hat{\Lambda}_{n, l}\left(s-; \mathbf{z}_{0}\right)\right] d \hat{\Lambda}_{n, 1}\left(s ; \mathbf{z}_{0}\right), \quad t \in[0, \tau] .
$$

For example, with two possible causes of failure, the baseline cumulative incidence function for cause 1 can be estimated based on the baseline cumulative cause-specific hazards H1 and H2 as follows:

```
Haz1 <- H1$hazard
Haz2 <- H2$hazard
S <- exp(-Haz1-Haz2)
S.minus <- c(1,S[1:(length(S)-1)])
Haz1.minus <- c(0,Haz1[1:(length(Haz1)-1)])
CIF1 <- cumsum(S.minus*(Haz1-Haz1.minus))
```

Standard error estimation for the covariate-specific cumulative incidence function can again be performed by using the nonparametric bootstrap method. As noted above, we plan to develop an R package that implements the proposed methods with full functionality.

## 2 Asymptotic Theory Proofs

Our study of the asymptotic properties of the proposed estimators heavily rely on empirical process theory $[4,2]$. We use the standard notation

$$
\mathbb{P}_{n} f=\frac{1}{n} \sum_{i=1}^{n} f\left(\mathbf{D}_{i}\right), \text { and } P f=\int_{\mathcal{D}} f d P=E f
$$

for any measurable function $f: \mathcal{D} \mapsto \mathbb{R}$, where $\mathcal{D}$ denotes the sample space and $P$ the true (induced) probability measure defined on the Borel $\sigma$-algebra on $\mathcal{D}$. Let $K$ be a generic constant that my differ from place to place. In many calculations we only focus on one arbitrarily chosen event type $j$, as the same technical proofs apply to all $j=1, \ldots, k$.

### 2.1 Proof of Theorem 1

To facilitate the presentation of the proofs we define

$$
\mathbf{G}_{j}\left(\boldsymbol{\beta}_{j}\right)=P\left\{\int_{0}^{\tau}\left[\mathbf{Z}-E\left(t, \boldsymbol{\beta}_{j}\right)\right] d \tilde{N}_{j}\left(t ; \boldsymbol{\gamma}_{0}\right)\right\}
$$

for $j=1, \ldots, k$. Note that $\mathbf{G}_{n, j}\left(\boldsymbol{\beta}_{j} ; \hat{\gamma}_{n}\right)$ defined in Section 3.1 can be rewritten as

$$
\mathbf{G}_{n, j}\left(\boldsymbol{\beta}_{j} ; \hat{\boldsymbol{\gamma}}_{n}\right)=\mathbb{P}_{n}\left\{\int_{0}^{\tau}\left[\mathbf{Z}-E_{n}\left(t, \boldsymbol{\beta}_{j}\right)\right] d \tilde{N}_{j}\left(t ; \hat{\boldsymbol{\gamma}}_{n}\right)\right\}
$$

Trivial algebra leads to the decomposition

$$
\mathbf{G}_{n, j}\left(\boldsymbol{\beta}_{j} ; \hat{\boldsymbol{\gamma}}_{n}\right)-\mathbf{G}_{j}\left(\boldsymbol{\beta}_{j}\right)=\mathbf{A}_{n, j}+\mathbf{B}_{n, j}-\mathbf{C}_{n, j}\left(\boldsymbol{\beta}_{j}\right)-\mathbf{D}_{n, j}\left(\boldsymbol{\beta}_{j}\right), \quad j=1, \ldots, k
$$

where

$$
\begin{gathered}
\mathbf{A}_{n, j}=\mathbb{P}_{n}\left\{\int_{0}^{\tau} \mathbf{Z}\left[d \tilde{N}_{j}\left(t ; \hat{\boldsymbol{\gamma}}_{n}\right)-d \tilde{N}_{j}\left(t ; \boldsymbol{\gamma}_{0}\right)\right]\right\} \\
\mathbf{B}_{n, j}=\left(\mathbb{P}_{n}-P\right) \int_{0}^{\tau} \mathbf{Z} d \tilde{N}_{j}\left(t ; \boldsymbol{\gamma}_{0}\right) \\
\mathbf{C}_{n, j}\left(\boldsymbol{\beta}_{j}\right)=\mathbb{P}_{n}\left\{\int_{0}^{\tau}\left[E_{n}\left(t, \boldsymbol{\beta}_{j}\right)-E\left(t ; \boldsymbol{\beta}_{j}\right)\right] d \tilde{N}_{j}\left(t ; \hat{\boldsymbol{\gamma}}_{n}\right)\right\}
\end{gathered}
$$

and

$$
\mathbf{D}_{n, j}\left(\boldsymbol{\beta}_{j}\right)=\left(\mathbb{P}_{n}-P\right)\left\{\int_{0}^{\tau} E\left(t, \boldsymbol{\beta}_{j}\right)\left[d \tilde{N}_{j}\left(t ; \hat{\boldsymbol{\gamma}}_{n}\right)-d \tilde{N}_{j}\left(t ; \boldsymbol{\gamma}_{0}\right)\right]\right\}
$$

The terms $\mathbf{A}_{n, j}$ coverge to $\mathbf{0}$ almost surely by the almost sure consistency of $\hat{\gamma}_{n}$ and conditions C3 and C5. The same is true for the term $\mathbf{B}_{n, j}$ as a consequence of the strong law of large numbers and the boundedness condition C5. Next, it is easy to argue that the classes of functions $\left\{Y(t) \exp \left(\boldsymbol{\beta}^{T} \mathbf{Z}\right): t \in[0, \tau], \boldsymbol{\beta} \in\right.$ $\left.\mathcal{B}_{j}\right\}$ and $\left\{\mathbf{Z} Y(t) \exp \left(\boldsymbol{\beta}^{T} \mathbf{Z}\right): t \in[0, \tau], \boldsymbol{\beta} \in \mathcal{B}_{j}\right\}$ are Donsker and thus also

Glivenko-Cantelli, which combined with condition C 1 and strong consistency of $\hat{\gamma}_{n}$ lead to the fact that $\sup _{\boldsymbol{\beta}_{j} \in \mathcal{B}_{j}}\left\|C_{n, j}\left(\boldsymbol{\beta}_{j}\right)\right\| \xrightarrow{\text { as* }} \mathbf{0}$. Finally, for $\mathbf{D}_{n, j}\left(\boldsymbol{\beta}_{j}\right)$ consider the class of functions

$$
\mathcal{L}_{j}^{(l)}=\left\{\left[R \Delta_{j}+(1-R) \pi_{j}\left(\mathbf{W}, \boldsymbol{\gamma}_{0}\right)\right] \int_{0}^{\tau} E^{(l)}(t, \boldsymbol{\beta}) d N(t): \boldsymbol{\beta} \in \mathcal{B}_{j}\right\}
$$

where

$$
E^{(l)}\left(t, \boldsymbol{\beta}_{j}\right)=\frac{P\left[Z^{(l)} Y(t) \exp \left(\boldsymbol{\beta}_{j}^{T} \mathbf{Z}\right)\right]}{P\left[Y(t) \exp \left(\boldsymbol{\beta}_{j}^{T} \mathbf{Z}\right)\right]}
$$

with $Z^{(l)}$ being the $l$ th component of $\mathbf{Z}$. Based on the Lipschitz continuity property of $E^{(l)}\left(t, \boldsymbol{\beta}_{j}\right)$ we can argue that for any finitely discrete probability measure $Q$ and any $\boldsymbol{\beta}_{1}, \boldsymbol{\beta}_{2} \in \mathcal{B}_{j}$ and $f_{\boldsymbol{\beta}_{1}}^{(l)}, f_{\boldsymbol{\beta}_{2}}^{(l)} \in \mathcal{L}_{j}$,

$$
\begin{aligned}
\left\|f_{\boldsymbol{\beta}_{1}}^{(l)}-f_{\boldsymbol{\beta}_{2}}^{(l)}\right\|_{Q, 2} & \leq\left\|\left[R \Delta_{j}+(1-R) \pi_{j}\left(\mathbf{W}, \boldsymbol{\gamma}_{0}\right)\right] \int_{0}^{\tau}\left|E^{(l)}\left(t, \boldsymbol{\beta}_{1}\right)-E^{(l)}\left(t, \boldsymbol{\beta}_{2}\right)\right| d N(t)\right\|_{Q, 2} \\
& \leq\left\|\int_{0}^{\tau}\left|E^{(l)}\left(t, \boldsymbol{\beta}_{1}\right)-E^{(l)}\left(t, \boldsymbol{\beta}_{2}\right)\right| d N(t)\right\|_{Q, 2} \\
& \leq K\left\|\boldsymbol{\beta}_{1}-\boldsymbol{\beta}_{2}\right\|\|N(\tau)\|_{Q, 2}
\end{aligned}
$$

Hence for any $\boldsymbol{\beta} \in \mathcal{B}_{j}$ there exists a $\boldsymbol{\beta}_{i}, i=1, \ldots, N\left(\epsilon, \mathcal{B}_{j},\|\cdot\|\right)$, such that $\left\|\boldsymbol{\beta}_{i}-\boldsymbol{\beta}\right\|<\epsilon$. Consequently, for any $f_{\boldsymbol{\beta}}^{(l)} \in \mathcal{L}_{1 j}^{(l)}$ there exists an $f_{\boldsymbol{\beta}_{i}}$ such that

$$
\left\|f_{\boldsymbol{\beta}_{i}}^{(l)}-f_{\boldsymbol{\beta}}^{(l)}\right\|_{Q, 2} \leq K \epsilon \equiv \epsilon^{\prime}
$$

and thus we can cover the whole $\mathcal{L}_{j}^{(l)}$ with $N(\epsilon, \mathcal{B} j,\|\cdot\|) L_{2}(Q) \epsilon^{\prime}$-balls centered at $f_{\boldsymbol{\beta}_{i}}$. By the minimality of the covering number we have that

$$
N\left(\epsilon^{\prime}, \mathcal{L}_{j}^{(l)}, L_{2}(Q)\right) \leq N\left(\epsilon, \mathcal{B}_{j},\|\cdot\|\right)
$$

which implies that $\mathcal{L}_{j}^{(l)}$ satisfies the uniform entropy bound given by 2.5.1 in [4]. Additionally, $\mathcal{L}_{j}^{(l)}$ can be shown to be a pointwise measurable class using similar arguments to those presented in page 142 in [2]. Therefore, $\mathcal{L}_{j}^{(l)}$ is Donsker by proposition 8.11 of [2] and Theorem 2.5.2 of [4]. This fact along with the strong consistency of $\hat{\gamma}_{n}$ and the conditions C1, C3 and C5 lead to $\sup _{\boldsymbol{\beta}_{j} \in \mathcal{B}_{j}}\left\|\mathbf{D}_{n}\left(\boldsymbol{\beta}_{j}\right)\right\| \xrightarrow{a s *} 0$, and thus

$$
\sup _{\boldsymbol{\beta}_{j} \in \mathcal{B}_{j}}\left\|\mathbf{G}_{n, j}\left(\boldsymbol{\beta}_{j} ; \hat{\boldsymbol{\gamma}}_{n}\right)-\mathbf{G}_{j}(\boldsymbol{\beta})\right\| \xrightarrow{\text { as* }} 0 .
$$

This fact along with condition C6, which ensures that $\mathbf{G}_{j}(\boldsymbol{\beta})$ is concave and thus it has a unique root, leads to the strong consistency of $\hat{\boldsymbol{\beta}}_{n, j}$ for all $j=$ $1, \ldots, k$, by Theorem 2.10 of [2].

Next, for the proof of consistency of $\hat{\Lambda}_{n, j}(t)$, we have the following expansion

$$
\begin{equation*}
\hat{\Lambda}_{n, j}(t)-\Lambda_{0, j}(t)=A_{n, j}^{\star}(t)+B_{n, j}^{\star}(t) \tag{1}
\end{equation*}
$$

were.
$A_{n, j}^{\star}(t)=\mathbb{P}_{n}\left\{(1-R)\left[\pi_{j}\left(\mathbf{W}, \hat{\gamma}_{n}\right)-\pi_{j}\left(\mathbf{W}, \boldsymbol{\gamma}_{0}\right)\right] \int_{0}^{t} I\left[\mathbb{P}_{n} Y(s)>0\right] \frac{d N(s)}{\mathbb{P}_{n}\left[Y(s) e^{\hat{\mathcal{\beta}}_{n, j}^{T} \mathbf{Z}}\right]}\right\}$
and

$$
B_{n, j}^{\star}(t)=\left\{\int_{0}^{t} \frac{\mathbb{P}_{n}\left[d \tilde{N}_{j}\left(s ; \gamma_{0}\right)\right]}{\mathbb{P}_{n}\left[Y(s) e^{\hat{\boldsymbol{\beta}}_{n, j}^{T} \mathbf{z}}\right]}-\int_{0}^{t} \frac{P\left[d \tilde{N}_{j}\left(s ; \boldsymbol{\gamma}_{0}\right)\right]}{P\left[Y(s) e^{\boldsymbol{\beta}_{0, j}^{T} \mathbf{Z}}\right]}\right\}
$$

for all $j=1, \ldots, k$. Using the almost sure consitency of $\hat{\gamma}_{n}$ and conditions C 3 and C5 it can be easily argued that $\left\|A_{n, j}^{\star}(t)\right\|_{\infty} \xrightarrow{a s} 0$, by the continuous mapping theorem. The uniform outer almost sure convergence of $B_{n, j}^{\star}(t)$ to 0 follows by an expansion and arguments similar to those provided in page 57 of [2]. This completes the proof of the uniform outer almost sure consistency of $\hat{\Lambda}_{n, j}(t)$ for all $j=1, \ldots, k$.

### 2.2 Proof of Theorem 2

Since the estimator $\hat{\boldsymbol{\beta}}_{n, j}$ satisfies $\mathbf{G}_{n, j}\left(\hat{\boldsymbol{\beta}}_{n, j} ; \hat{\boldsymbol{\gamma}}_{n}\right)=\mathbf{0}$, it follows that

$$
\begin{align*}
\mathbf{0}= & \sqrt{n} \mathbf{G}_{n, j}\left(\hat{\boldsymbol{\beta}}_{n, j} ; \hat{\boldsymbol{\gamma}}_{n}\right) \\
= & \sqrt{n}\left[\mathbf{G}_{n, j}\left(\hat{\boldsymbol{\beta}}_{n, j} ; \hat{\gamma}_{n}\right)-\mathbf{G}_{n, j}\left(\hat{\boldsymbol{\beta}}_{n, j} ; \boldsymbol{\gamma}_{0}\right)\right] \\
& +\sqrt{n} \mathbf{G}_{n, j}\left(\hat{\boldsymbol{\beta}}_{n, j} ; \boldsymbol{\gamma}_{0}\right) . \tag{2}
\end{align*}
$$

The first term of (2) can be expressed, after some algebra, as

$$
\sqrt{n}\left[\mathbf{G}_{n, j}\left(\hat{\boldsymbol{\beta}}_{n, j} ; \hat{\boldsymbol{\gamma}}_{n}\right)-\mathbf{G}_{n, j}\left(\hat{\boldsymbol{\beta}}_{n, j} ; \boldsymbol{\gamma}_{0}\right)\right]=\mathbf{A}_{n, j}^{\prime}+\mathbf{B}_{n, j}^{\prime}+\mathbf{C}_{n, j}^{\prime}+\mathbf{D}_{n, j}^{\prime}
$$

where

$$
\begin{gathered}
\mathbf{A}_{n, j}^{\prime}=\sqrt{n}\left(\mathbb{P}_{n}-P\right)\left\{\mathbf{Z} N(\tau)(1-R)\left[\pi_{j}\left(\mathbf{W}, \hat{\gamma}_{n}\right)-\pi_{j}\left(\mathbf{W}, \boldsymbol{\gamma}_{0}\right)\right]\right\} \\
\mathbf{B}_{n, j}^{\prime}=\sqrt{n}\left(\mathbb{P}_{n}-P\right)\left\{\left[\pi_{j}\left(\mathbf{W}, \hat{\boldsymbol{\gamma}}_{n}\right)-\pi_{j}\left(\mathbf{W} ; \boldsymbol{\gamma}_{0}\right)\right] \int_{0}^{\tau} E\left(t, \boldsymbol{\beta}_{0, j}\right) d N(t)\right\}, \\
\mathbf{C}_{n, j}^{\prime}=\sqrt{n} \mathbb{P}_{n}\left\{\int_{0}^{\tau}\left[E_{n}\left(t, \hat{\boldsymbol{\beta}}_{n, j}\right)-E\left(t, \boldsymbol{\beta}_{0, j}\right)\right] d\left[\tilde{N}_{j}\left(t ; \hat{\boldsymbol{\gamma}}_{n}\right)-\tilde{N}_{j}\left(t ; \boldsymbol{\gamma}_{0}\right)\right]\right\}
\end{gathered}
$$

and
$\mathbf{D}_{n, j}^{\prime}=\left(P\left\{(1-R) \int_{0}^{\tau}\left[\mathbf{Z}-E\left(t, \boldsymbol{\beta}_{0, j}\right)\right] d N(t) \dot{\pi}_{j}\left(\mathbf{W}, \boldsymbol{\gamma}_{0}\right)^{T}\right\}\right) \times \sqrt{n}\left(\hat{\gamma}_{n}-\boldsymbol{\gamma}_{0}\right)$.

It is straighforward to argue that the class $\left\{\pi_{j}(\mathbf{W}, \gamma): \gamma \in \Gamma\right\}$ is Donsker due to the Lipschitz continuity in $\gamma$, as a result of condition C3, which implies that the class

$$
\left\{\mathbf{Z} N(\tau)\left[\pi_{j}(\mathbf{W}, \boldsymbol{\gamma})-\pi_{j}\left(\mathbf{W}, \boldsymbol{\gamma}_{0}\right)\right]: \boldsymbol{\gamma} \in \Gamma\right\}
$$

is also Donsker. Since $P\left\{\mathbf{Z} N(\tau)\left[\pi_{j}(\mathbf{W}, \boldsymbol{\gamma})-\pi_{j}\left(\mathbf{W}, \boldsymbol{\gamma}_{0}\right)\right]\right\}^{2} \rightarrow \mathbf{0}$ as $\boldsymbol{\gamma} \rightarrow \boldsymbol{\gamma}_{0}$, and by the consistency of $\hat{\gamma}_{n}$, it follows by Corollary 2.3.12 of [4] that $\mathbf{A}_{n, j}^{\prime} \xrightarrow{p}$ 0. Similar arguments along with the Donsker property for the class

$$
\left\{\left[\pi_{j}(\mathbf{W}, \boldsymbol{\gamma})-\pi_{j}\left(\mathbf{W}, \boldsymbol{\gamma}_{0}\right)\right] \int_{0}^{\tau} E\left(t, \boldsymbol{\beta}_{0, j}\right) d N(t): \boldsymbol{\gamma} \in \Gamma\right\}
$$

can be used to show that $\mathbf{B}_{n, j}^{\prime} \xrightarrow{p} \mathbf{0}$. Next, using similar arguments to that used in the proof of consistency of $\hat{\boldsymbol{\beta}}_{n, j}$, it can be shown that $\| E_{n}\left(t, \hat{\boldsymbol{\beta}}_{n, j}\right)-$ $E\left(t, \boldsymbol{\beta}_{0, j}\right) \|_{\infty} \xrightarrow{\text { as* }} \mathbf{0}$. The boundedness conditions imply the uniform boundedness of the variation of the process (of time) $E_{n}\left(t, \hat{\boldsymbol{\beta}}_{n, j}\right)-E\left(t, \boldsymbol{\beta}_{0, j}\right)$. Additionally, it can be easily argued that $\sqrt{n} \mathbb{P}_{n}\left[\tilde{N}_{j}\left(t ; \hat{\gamma}_{n}\right)-\tilde{N}_{j}\left(t ; \gamma_{0}\right)\right]$ converges weakly to a tight zero-mean Gaussian process, and thus it follows that $\mathbf{C}_{n, j}^{\prime} \xrightarrow{p} \mathbf{0}$ by Lemma 4.2 of [2]. Therefore, the first term in (2) is equal to $\mathbf{D}_{n, j}^{\prime}+o_{p}(1)$. Next, a Taylor expansion of the second term of (2) around $\boldsymbol{\beta}_{0, j}$ and some algebra lead to

$$
\begin{align*}
\sqrt{n} \mathbf{G}_{n, j}\left(\hat{\boldsymbol{\beta}}_{n, j} ; \boldsymbol{\gamma}_{0}\right)= & \sqrt{n} \mathbf{G}_{n, j}\left(\boldsymbol{\beta}_{0, j} ; \boldsymbol{\gamma}_{0}\right)-\mathbf{H}_{j}\left(\boldsymbol{\beta}_{0, j}\right) \sqrt{n}\left(\hat{\boldsymbol{\beta}}_{n, j}-\boldsymbol{\beta}_{0, j}\right) \\
& +o_{p}\left(1+\sqrt{n}\left\|\hat{\boldsymbol{\beta}}_{n, j}-\boldsymbol{\beta}_{0, j}\right\|\right) . \tag{3}
\end{align*}
$$

By condition C6, $\mathbf{H}_{j}\left(\boldsymbol{\beta}_{j}\right)$ is invertible and thus there exists a constant $K>0$ such that for any $\boldsymbol{\beta}_{j} \in \mathcal{B}$ we have

$$
\left\|\mathbf{H}_{j}\left(\boldsymbol{\beta}_{0, j}\right)\left(\boldsymbol{\beta}_{j}-\boldsymbol{\beta}_{0, j}\right)\right\| \geq K\left\|\boldsymbol{\beta}_{j}-\boldsymbol{\beta}_{0, j}\right\|, \quad j=1, \ldots, k .
$$

Now, applying a Taylor expansion of $\mathbf{G}_{j}\left(\boldsymbol{\beta}_{j} ; \boldsymbol{\gamma}_{0}\right)$ around $\boldsymbol{\beta}_{0, j}$ leads to

$$
\begin{equation*}
\left\|\mathbf{G}_{n, j}\left(\boldsymbol{\beta}_{j} ; \boldsymbol{\gamma}_{0}\right)-\mathbf{G}_{j}\left(\boldsymbol{\beta}_{0, j} ; \boldsymbol{\gamma}_{0}\right)\right\| \geq K\left\|\boldsymbol{\beta}_{j}-\boldsymbol{\beta}_{0, j}\right\|+o\left(\left\|\boldsymbol{\beta}_{j}-\boldsymbol{\beta}_{0, j}\right\|\right) \tag{4}
\end{equation*}
$$

for $j=1, \ldots, k$. Next, it can be easily shown that

$$
\begin{aligned}
\sqrt{n}\left[\mathbf{G}_{n, j}\left(\hat{\boldsymbol{\beta}}_{n, j} ; \boldsymbol{\gamma}_{0}\right)-\mathbf{G}_{n, j}\left(\boldsymbol{\beta}_{0, j} ; \boldsymbol{\gamma}_{0}\right)\right]= & -\sqrt{n}\left(\mathbb{P}_{n}-P\right) \int_{0}^{\tau}\left[\mathbf{Z}-E\left(t, \boldsymbol{\beta}_{0, j}\right)\right] d \tilde{N}_{j}\left(t ; \boldsymbol{\gamma}_{0}\right) \\
& +o_{p}\left(1+\sqrt{n}\left\|\hat{\boldsymbol{\beta}}_{n, j}-\boldsymbol{\beta}_{0, j}\right\|\right)+o_{p}(1) \\
= & O_{p}(1)+o_{p}\left(1+\sqrt{n}\left\|\hat{\boldsymbol{\beta}}_{n, j}-\boldsymbol{\beta}_{0, j}\right\|\right)+o_{p}(1) .
\end{aligned}
$$

Combining the above equation with (4) leads to

$$
\sqrt{n}\left\|\hat{\boldsymbol{\beta}}_{n, j}-\boldsymbol{\beta}_{0, j}\right\|\left[K+o_{p}(1)\right] \leq O_{p}(1)+o_{p}\left(1+\sqrt{n}\left\|\hat{\boldsymbol{\beta}}_{n, j}-\boldsymbol{\beta}_{0, j}\right\|\right)
$$

and thus $\sqrt{n}\left\|\hat{\boldsymbol{\beta}}_{n, j}-\boldsymbol{\beta}_{0, j}\right\|=O_{p}(1)$. Therefore, the remainder term in (3) is $o_{p}(1)$. Next, for the second term, it is straightforward to show that $P \tilde{M}_{j}\left(t ; \boldsymbol{\beta}_{0, j}, \boldsymbol{\gamma}_{0}\right)=$ 0 where

$$
\tilde{M}_{i j}\left(t ; \boldsymbol{\beta}_{0, j}, \boldsymbol{\gamma}_{0}\right)=\tilde{N}_{i j}\left(t ; \boldsymbol{\gamma}_{0}\right)-\int_{0}^{t} Y_{i}(s) \exp \left(\boldsymbol{\beta}_{0, j}^{T} \mathbf{Z}_{i}\right) d \Lambda_{0, j}(s),
$$

for all $t \in[0, \tau]$ and $j=1, \ldots, k$. Also, the class $\left\{\tilde{M}_{j}\left(t ; \boldsymbol{\beta}_{0, j}, \boldsymbol{\gamma}_{0}\right): t \in[0, \tau]\right\}$, for all $j=1, \ldots, k$, is Donsker since both $\tilde{N}_{j}\left(t ; \boldsymbol{\gamma}_{0}\right)$ and $\int_{0}^{t} Y(s) \exp \left(\boldsymbol{\beta}_{0, j}^{T} \mathbf{Z}\right) d \Lambda_{0, j}(s)$ form Donsker classes indexed by $t \in[0, \tau]$. The Donsker property for the latter class follows from the fact that it is formed by bounded, by conditions C1, C2 and C5, monotone cadlag processes and Lemma 4.1 in [2]. Therefore,

$$
\sqrt{n} G_{n, j}\left(\beta_{0, j} ; \gamma_{0}\right)=\sqrt{n} \mathbb{P}_{n} \int_{0}^{\tau}\left\{Z-E\left(t, \beta_{0, j}\right)\right\} d \tilde{M}_{j}\left(t ; \beta_{0, j}, \gamma_{0}\right)+o_{p}(1)
$$

by Lemma 4.2 of [2]. Taking all the pieces together along with conditions C4 and C6 we obtain

$$
\sqrt{n}\left(\hat{\boldsymbol{\beta}}_{n, j}-\boldsymbol{\beta}_{0, j}\right)=\sqrt{n} \mathbb{P}_{n}\left(\boldsymbol{\psi}_{j}+\mathbf{R}_{j} \boldsymbol{\omega}\right)+o_{p}(1), \quad j=1, \ldots, k,
$$

where the influence functions were defined in the main text before stating Theorem 2. Now, to show the consistency in probability of the covariance esimator $\hat{\boldsymbol{\Sigma}}_{j}=\mathbb{P}_{n}\left(\hat{\boldsymbol{\psi}}_{j}+\hat{\mathbf{R}}_{j} \hat{\boldsymbol{\omega}}\right)^{\otimes 2}$ note that

$$
\hat{\boldsymbol{\Sigma}}_{j}=\mathbf{H}_{n, j}^{-1}\left(\hat{\boldsymbol{\beta}}_{n, j}\right)\left[\mathbb{P}_{n}\left(\hat{\boldsymbol{\psi}}_{j}^{\prime}+\hat{\mathbf{R}}_{j}^{\prime} \hat{\omega}\right)^{\otimes 2}\right] \mathbf{H}_{n, j}^{-1}\left(\hat{\boldsymbol{\beta}}_{n, j}\right)
$$

where $\hat{\boldsymbol{\psi}}_{j}^{\prime}=\mathbf{H}_{n, j}\left(\hat{\boldsymbol{\beta}}_{n, j}\right) \hat{\boldsymbol{\psi}}_{j}$ and $\hat{\mathbf{R}}_{j}^{\prime}=\mathbf{H}_{n, j}\left(\hat{\boldsymbol{\beta}}_{n, j}\right) \hat{\mathbf{R}}_{j}$. Similarly,

$$
\boldsymbol{\Sigma}_{j}=\mathbf{H}_{j}^{-1}\left(\boldsymbol{\beta}_{0, j}\right)\left[P\left(\boldsymbol{\psi}_{j}^{\prime}+\mathbf{R}_{j}^{\prime} \omega\right)^{\otimes 2}\right] \mathbf{H}_{n, j}^{-1}\left(\boldsymbol{\beta}_{0, j}\right),
$$

where $\boldsymbol{\psi}_{j}^{\prime}=\mathbf{H}_{j}\left(\boldsymbol{\beta}_{0, j}\right) \boldsymbol{\psi}_{j}$ and $\mathbf{R}_{j}^{\prime}=\mathbf{H}_{j}\left(\boldsymbol{\beta}_{0, j}\right) \mathbf{R}_{j}$. By Theorem 1, conditions C1-C6, and standard arguments for the Cox model can be used to show that $\mathbf{H}_{n, j}^{-1}\left(\hat{\boldsymbol{\beta}}_{n, j}\right) \xrightarrow{p} \mathbf{H}_{j}^{-1}\left(\boldsymbol{\beta}_{0, j}\right)$. Now, the fact that $\sup _{t \in[0, \tau]} \| E_{n}\left(t, \hat{\boldsymbol{\beta}}_{n, j}\right)-$ $E\left(t, \boldsymbol{\beta}_{0, j}\right) \| \xrightarrow{\text { as* }} 0$ as it was argued earlier, conditions C3 and C4, and the weak law of large numbers lead to the conclusion that $\hat{\mathbf{R}}_{j}^{\prime} \xrightarrow{p} \mathbf{R}_{j}^{\prime}$. Finally, conditions C3-C5, Theorem 1, Lemma 4.2 in [3], and some algebra can be used to show that $\mathbb{P}_{n}\left(\hat{\boldsymbol{\psi}}_{j}^{\prime}+\hat{\mathbf{R}}_{j}^{\prime} \hat{\omega}\right)^{\otimes 2} \xrightarrow{p} P\left(\boldsymbol{\psi}_{j}^{\prime}+\mathbf{R}_{j}^{\prime} \omega\right)^{\otimes 2}$, and therefore $\hat{\boldsymbol{\Sigma}}_{j} \xrightarrow{p} \boldsymbol{\Sigma}_{j}$.

### 2.3 Proof of Theorem 3

By Taylor expansion and the consistency of $\hat{\boldsymbol{\beta}}_{n, j}$ and $\hat{\boldsymbol{\gamma}}_{n}$, the first term in the right side of expansion (1) can be shown to be
$A_{n, j}^{\star}(t)=\left(P\left\{(1-R) \dot{\pi}_{j}\left(\mathbf{W}, \boldsymbol{\gamma}_{0}\right) \int_{0}^{t} \frac{d N(s)}{P\left[Y(s) e^{\boldsymbol{\beta}_{0, j}^{T}} \mathbf{Z}\right.}\right\}\right)^{T}\left(\hat{\boldsymbol{\gamma}}_{n}-\boldsymbol{\gamma}_{0}\right)+o_{p}\left(n^{-1 / 2}\right)$.

Using similar analysis to that presented in page 57 of [2] and the regularity condition C4 regarding $\hat{\gamma}_{n}$ leads to the conclusion that the second term in (1) is
$B_{n, j}^{\star}(t)=\mathbb{P}_{n} \int_{0}^{t} \frac{d \tilde{M}_{j}\left(s ; \boldsymbol{\beta}_{0, j}, \gamma_{0}\right)}{P\left[Y(s) e^{\boldsymbol{\beta}_{0, j}^{T} \mathbf{Z}^{2}}\right]}-\left(\hat{\boldsymbol{\beta}}_{n, j}-\boldsymbol{\beta}_{0, j}\right)^{T} \int_{0}^{t} E\left(s, \boldsymbol{\beta}_{0, j}\right) d \Lambda_{0, j}(s)+o_{p}\left(n^{-1 / 2}\right)$.
Therefore

$$
\sqrt{n}\left[\hat{\Lambda}_{n, j}(t)-\Lambda_{0, j}(t)\right]=\sqrt{n} \mathbb{P}_{n}\left[\phi_{j}(t)+\mathbf{R}_{j}^{\star}(t) \boldsymbol{\omega}\right]+o_{p}(1)
$$

Condition C4, the fact that $\mathbf{R}_{j}^{\star}(t)$ is non-random and standard arguments related to $\phi_{j}(t)[2]$ imply that the class of influence functions is Donsker, and thus the right-hand side of the above equality converges weakly to a tight meanzero Gaussian process with covariance function $P\left\{\left[\phi_{j}(t)+\mathbf{R}_{j}^{\star}(t) \boldsymbol{\omega}\right]\left[\phi_{j}(s)+\right.\right.$ $\left.\left.\mathbf{R}_{j}^{\star}(s) \boldsymbol{\omega}\right]\right\}$. It can be shown using standard results for the Cox model [2], the facts that $\hat{\boldsymbol{\Sigma}}_{j} \xrightarrow{p} \boldsymbol{\Sigma}_{j}$ and $\sup _{t \in[0, \tau]}\left\|\hat{\mathbf{R}}_{j}^{\star}(t)-\mathbf{R}_{j}^{\star}(t)\right\|=o_{p}(1)$ (the latter will be proved in the next paragraph), and condition C 4 that

$$
\sup _{t \in[0, \tau]} \mathbb{P}_{n}\left\{\left[\hat{\phi}_{i j}(t)-\hat{\mathbf{R}}_{j}^{\star}(t) \hat{\boldsymbol{\omega}}\right]-\left[\phi_{j}(t)+\mathbf{R}_{j}^{\star}(t) \boldsymbol{\omega}\right]\right\}^{2}=o_{p}(1) .
$$

The Donsker property of the class of influence functions $\left\{\phi_{j}(t)+\mathbf{R}_{j}^{\star}(t) \boldsymbol{\omega}: t \in\right.$ $[0, \tau]\}$ and the square integrability of the influence functions as a result of the boundedness conditions lead to the conclusion that $\mathbb{P}_{n}\left\{\left[\hat{\phi}_{j}(t)+\hat{\mathbf{R}}_{j}^{\star}(t) \hat{\boldsymbol{\omega}}\right]\left[\hat{\phi}_{j}(s)+\right.\right.$ $\left.\left.\hat{\mathbf{R}}_{j}^{\star}(s) \hat{\boldsymbol{\omega}}\right]\right\}, t, s \in[0, \tau]$, is a uniformly consistent (in probability) estimator of the covariance function $P\left\{\left[\phi_{j}(t)+\mathbf{R}_{j}^{\star}(t) \boldsymbol{\omega}\right]\left[\phi_{j}(s)+\mathbf{R}_{j}^{\star}(s) \boldsymbol{\omega}\right]\right\}$ by Lemma 9.28 in [2].

Now, in order to show the final statement of Theorem 3 let $\hat{W}_{n, j}(t)=$ $\sqrt{n} \mathbb{P}_{n}\left[\hat{\phi}_{j}(t)+\hat{\mathbf{R}}_{j}^{\star}(t) \hat{\boldsymbol{\omega}}\right] \xi$ and $\tilde{W}_{n, j}(t)=\sqrt{n} \mathbb{P}_{n}\left[\phi_{j}(t)+\mathbf{R}_{j}^{\star}(t) \boldsymbol{\omega}\right] \xi$. It follows from the Donsker property of the class of influence functions $\left\{\phi_{j}(t)+\mathbf{R}_{j}^{\star}(t) \boldsymbol{\omega}: t \in\right.$ $[0, \tau]\}$ and the conditional multiplier central limit theorem [4] that $\tilde{W}_{n, j}(t)$ converges weakly conditional on the data to the same limiting process as that of $\sqrt{n}\left[\hat{\Lambda}_{n, j}(t)-\Lambda_{0, j}(t)\right]$ (unconditionally). In order to complete the proof of the final statement we need to show that

$$
\left\|\hat{W}_{n, j}(t)-\tilde{W}_{n, j}(t)\right\|_{\infty}=o_{p}(1) \quad j=1, \ldots, k
$$

since this implies that $\hat{W}_{n, j}(t)$ and $\tilde{W}_{n, j}(t)$ converge weakly (unconditionally) to the same limiting process. It can be easily seen that

$$
\left\|\hat{W}_{n, j}(t)-\tilde{W}_{n, j}(t)\right\|_{\infty} \leq A_{n, j}^{\prime \prime}+B_{n, j}^{\prime \prime}+C_{n, j}^{\prime \prime}
$$

where

$$
\begin{gathered}
A_{n, j}^{\prime \prime}=\left\|\sqrt{n} \mathbb{P}_{n}\left[\hat{\phi}_{j}(t)-\phi_{j}(t)\right] \xi\right\|_{\infty} \\
B_{n, j}^{\prime \prime}=\sup _{t \in[0, \tau]}\left\|\hat{\mathbf{R}}_{j}^{\star}(t)-\mathbf{R}_{j}^{\star}(t)\right\| \times\left(\left\|\sqrt{n} \mathbb{P}_{n}[\hat{\boldsymbol{\omega}}-\boldsymbol{\omega}] \xi\right\|+\left\|\sqrt{n} \mathbb{P}_{n} \boldsymbol{\omega} \xi\right\|\right)
\end{gathered}
$$

$$
C_{n, j}^{\prime \prime}=\sup _{t \in[0, \tau]}\left\|\mathbf{R}_{j}^{\star}(t)\right\| \times\left\|\sqrt{n} \mathbb{P}_{n}[\hat{\boldsymbol{\omega}}-\boldsymbol{\omega}] \xi\right\|
$$

Using the same arguments as those used in the proof of Theorem 4 in [3] along with conditions C3 and C 4 leads to the conclusion that $A_{n, j}^{\prime \prime}=o_{p}(1)$. Next, considering the term $B_{n, j}^{\prime \prime}$, we have that $\left\|\sqrt{n} \mathbb{P}_{n}[\hat{\boldsymbol{\omega}}-\boldsymbol{\omega}] \xi\right\|=o_{p}(1)$ by arguments similar to those used in the proof of Lemma A. 3 in [3]. Additionally, $\left\|\sqrt{n} \mathbb{P}_{n} \boldsymbol{\omega} \xi\right\|=O_{p}(1)$ by C 4 and the central limit theorem. The first factor of $B_{n, j}^{\prime \prime}$ is

$$
\begin{align*}
& \sup _{t \in[0, \tau]}\left\|\hat{\mathbf{R}}_{j}^{\star}(t)-\mathbf{R}_{j}^{\star}(t)\right\| \leq \sup _{t \in[0, \tau]}\left\|\mathbb{P}_{n}\left[\dot{\pi}_{j}\left(\mathbf{W}, \hat{\gamma}_{n}\right)-\dot{\pi}_{j}\left(\mathbf{W}, \gamma_{0}\right)\right] \int_{0}^{t} \frac{d N(s)}{\mathbb{P}_{n} Y(s) e^{\hat{\boldsymbol{\beta}}_{n, j}^{T} \mathbf{z}}}\right\| \\
& +\sup _{t \in[0, \tau]}\left\|\mathbb{P}_{n} \dot{\pi}_{j}\left(\mathbf{W}, \boldsymbol{\gamma}_{0}\right) \int_{0}^{t}\left[\frac{1}{\mathbb{P}_{n} Y(s) e^{\hat{\boldsymbol{\beta}}_{n, j}^{T} \mathbf{Z}}}-\frac{1}{P Y(s) e^{\boldsymbol{\beta}_{0, j}^{T} \mathbf{Z}}}\right] d N(s)\right\| \\
& +\sup _{t \in[0, \tau]}\left\|\left(\mathbb{P}_{n}-P\right) \dot{\pi}_{j}\left(\mathbf{W}, \boldsymbol{\gamma}_{0}\right) \int_{0}^{t} \frac{1}{P Y(s) e^{\boldsymbol{\beta}_{0, j}^{T}} \mathbf{Z}} d N(s)\right\| \text {. } \tag{5}
\end{align*}
$$

By conditions C3, C4, C5 and the continuous mapping theorem

$$
\max _{i}\left\|\dot{\pi}_{j}\left(\mathbf{W}_{i}, \hat{\gamma}_{n}\right)-\dot{\pi}_{j}\left(\mathbf{W}_{i}, \gamma_{0}\right)\right\|=o_{a s}(1)
$$

Also, by Theorem 1 and conditions C1, C2, C5

$$
\left\|\frac{1}{\mathbb{P}_{n} Y(t) e^{\hat{\boldsymbol{\beta}}_{n, j}^{T} \mathbf{Z}}}\right\|_{\infty}=\left\|\frac{1}{P Y(t) e^{\boldsymbol{\beta}_{0, j}^{T} \mathbf{Z}}+o_{a s *}(1)}\right\|_{\infty}=O_{a s *}(1)
$$

and therefore the first term in the right side of (5) is $o_{a s *}(1)$. By conditions C 3 and C5, which lead to the conclusion that

$$
\max _{i}\left\|\dot{\pi}_{j}\left(\mathbf{W}_{i}, \boldsymbol{\gamma}_{0}\right)\right\|=O_{p}(1)
$$

and the fact that

$$
\left\|\frac{1}{\mathbb{P}_{n} Y(t) e^{\hat{\boldsymbol{\beta}}_{n, j}^{T} \mathbf{Z}}}-\frac{1}{P Y(t) e^{\boldsymbol{\beta}_{0, j}^{T} \mathbf{Z}}}\right\|_{\infty}=o_{a s^{\star}}(1)
$$

as a result of Theorem 1, the Donsker property of the class $\{Y(t): t \in[0, \tau]\}$, conditions C 2 and C 5 , and some algebra, it follows that the second term in the right side of (5) is also $o_{p}(1)$. Finally, consider the classes of functions $\mathcal{F}=\{N(t): t \in[0, \tau]\}$ and

$$
\mathcal{L}_{j, 1}=\left\{f_{t, j}=\dot{\pi}_{j}\left(\mathbf{W}, \boldsymbol{\gamma}_{0}\right) \int_{0}^{t} \frac{d N(s)}{P\left[Y(s) \exp \left(\boldsymbol{\beta}_{0, j}^{T} \mathbf{Z}\right)\right]}: t \in[0, \tau]\right\}
$$

For any finitely discrete probability measure $Q$ and any $t_{1}, t_{2} \in[0, \tau]$ we have

$$
\begin{aligned}
\left\|f_{t_{1}, j}-f_{t_{2}, j}\right\|_{Q, 2} & \leq\left\|\dot{\pi}_{j}\left(\mathbf{W}, \gamma_{0}\right) \int_{t_{1}}^{t_{2}} \frac{d N(s)}{P\left[Y(s) \exp \left(\boldsymbol{\beta}_{0, j}^{T} \mathbf{Z}\right)\right]}\right\|_{Q, 2} \\
& \leq K\left\|N\left(t_{2}\right)-N\left(t_{1}\right)\right\|_{Q, 2},
\end{aligned}
$$

by the boundedness of $\dot{\pi}_{j}\left(\mathbf{W}, \boldsymbol{\gamma}_{0}\right)$. Consequently, for any $\epsilon>0$ and $f_{t, j} \in \mathcal{L}_{j, 1}$ with $t \in[0, \tau]$ there exists a $f_{t_{i}, j}, i=1, \ldots, N\left(\epsilon, \mathcal{F}, L_{2}(Q)\right)$, such that $\| f_{t, j}-$ $f_{t_{i}, j} \|_{Q, 2} \leq K \epsilon \equiv \epsilon^{\prime}$ and thus the class $\mathcal{L}_{j, 1}$ can be covered by $N\left(\epsilon, \mathcal{F}, L_{2}(Q)\right)$ $L_{2}(Q) \epsilon^{\prime}$-balls centered at $f_{t_{i}, j}$. Since $\mathcal{F}$ is Donsker, $\mathcal{L}_{j, 1}$ satisfies the uniform entropy bound given by 2.5 .1 in [4]. It can be easily argued that the class $\mathcal{L}_{j, 1}$ is pointwise measurable [4, 2]. Now, by proposition 8.11 of [2] and Theorem 2.5.2 of [4], it follows that $\mathcal{L}_{j, 1}$ is Donsker. This implies the Glivenko-Cantelli property of that class and thus it follows that the last term in the right side of (5) is $o_{p}(1)$. Therefore, $\sup _{t \in[0, \tau]}\left\|\hat{\mathbf{R}}_{j}^{\star}(t)-\mathbf{R}_{j}^{\star}(t)\right\|=o_{p}(1)$ and thus $B_{n, j}^{\prime \prime}=o_{p}(1)$. Finally, $C_{n, j}^{\prime \prime}=o_{p}(1)$ by similar arguments to those used for the term $B_{n, j}^{\prime \prime}$, and thus $\left\|\hat{W}_{n, j}(t)-\tilde{W}_{n, j}(t)\right\|_{\infty}=o_{p}(1)$ for all $j=1, \ldots, k$, which completes the proof of the final statement of Theorem 3.

### 2.4 Proof of Theorem 4

The asymptotic expression in Theorem 4 follows from a decomposition of $\sqrt{n}\left[\hat{F}_{n, j}\left(t ; \mathbf{z}_{0}\right)-F_{0, j}\left(t ; \mathbf{z}_{0}\right)\right]$ similar to that used in [1], our Theorems 1, 2 and 3 , Lemma 4.2 in [2] and integration by parts. To show the Donsker property of the class $\Phi_{j}\left(\mathbf{z}_{0}\right)=\left\{\phi_{j}^{F}\left(t ; \mathbf{z}_{0}\right): t \in[0, \tau]\right\}$, for all $j=1, \ldots, k$ and $\mathbf{z}_{0}$ in the bounded finite-dimensional space, we will use the following Lemma.

Lemma 1 Let $g(t)$ be a fixed uniformly bounded function and $f(t)=f_{1}(t)-$ $f_{2}(t)$ on $[0, \tau]$, with $\mathcal{F}_{l}=\left\{f_{l}(t): t \in[0, \tau]\right\}, l=1,2$, being Donsker classes of measurable, non-decreasing and right-continuous functions. Then, the class

$$
\mathcal{F}_{3}=\left\{\int_{0}^{t} g(s) d f(s): t \in[0, \tau]\right\}
$$

is Donsker.
Proof For any $t_{1}, t_{2} \in[0, \tau]$ and any finitely discrete probability measure $Q$ it follows that

$$
\left\|\int_{0}^{t_{1}} g(s) d f_{l}(s)-\int_{0}^{t_{2}} g(s) d f_{l}(s)\right\|_{Q, 2} \leq K\left\|f_{l}\left(t_{1}\right)-f_{l}\left(t_{2}\right)\right\|_{Q, 2}, \quad l=1,2
$$

where $K=\sup _{t \in[0, \tau]}|g(t)|$. Now, for any $t \in[0, \tau]$ there exists a $t_{i} \in[0, \tau]$, with $i=1, \ldots, N\left(\epsilon, \mathcal{F}_{l}, L_{2}(Q)\right)$ and $l=1,2$, such that $\left\|f_{l}\left(t_{i}\right)-f_{l}(t)\right\|_{Q, 2}<\epsilon$. Therefore, for any $t \in[0, \tau]$ there exists a $t_{i} \in[0, \tau]$ such that $\| \phi_{l}\left(t_{i}\right)-$
$\phi_{l}(t) \|_{Q, 2}<K \epsilon$, with $\phi_{l} \in \mathcal{F}_{3, l}=\left\{\int_{0}^{t} g(s) d f_{l}(s): f_{l} \in \mathcal{F}_{l}\right\}, l=1,2$, and thus $\mathcal{F}_{3, l}$ can be covered by $N\left(\epsilon, \mathcal{F}_{l}, L_{2}(Q)\right) L_{2}(Q) K \epsilon$-balls. Therefore, by the Donsker property of the classes $\mathcal{F}_{l}, l=1,2$, the classes $\mathcal{F}_{3, l}, l=1,2$, satisfy the uniform entropy bound. Additionally, it can be argued that $\mathcal{F}_{3,1}$ and $\mathcal{F}_{3,2}$ are both pointwise measurable. Consequently, by proposition 8.11 of [2] and Theorem 2.5.2 of [4], it follows that $\mathcal{F}_{3,1}$ and $\mathcal{F}_{3,2}$ are Donsker. Finally, the Donsker property of $\mathcal{F}_{3}$ is a consequence of Corollary 9.31 of [2], since $\mathcal{F}_{3}$ is formed by differences of functions that belong to Donsker classes.

The fact that $\phi_{i j}^{\Lambda}\left(t ; \mathbf{z}_{0}\right)$ can be written as the difference of two non-decreasing right-continuous functions which both belong to a Donsker class, along with Lemma 1 above and integration by parts can be used to show the Donsker property of $\Phi_{j}\left(\mathbf{z}_{0}\right)$, for all $j=1, \ldots, k$ and $\mathbf{z}_{0}$ in the bounded covariate space. It can be shown using Theorems 1-3, the fact that $\sup _{t \in[0, \tau]} \mathbb{P}_{n}\left\{\left[\hat{\phi}_{i j}(t)-\hat{\mathbf{R}}_{j}^{\star}(t) \hat{\boldsymbol{\omega}}\right]-\right.$ $\left.\left[\phi_{j}(t)+\mathbf{R}_{j}^{\star}(t) \boldsymbol{\omega}\right]\right\}^{2}=o_{p}(1)$ as argued in the proof of Theorem 3, conditions C1C 5 , and integration by parts, that $\sup _{t \in[0, \tau]} \mathbb{P}_{n}\left[\hat{\phi}_{j}^{F}\left(t ; \mathbf{z}_{0}\right)-\phi_{j}^{F}\left(t ; \mathbf{z}_{0}\right)\right]^{2}=o_{p}(1)$. Futhermore, the Donsker property of $\Phi_{j}\left(\mathbf{z}_{0}\right)$, the square integrability of the influence functions $\phi_{j}^{F}\left(t ; \mathbf{z}_{0}\right)$, and Lemma 9.28 in [2] lead to the conclusion that $\mathbb{P}_{n} \hat{\phi}_{i j}^{F}\left(t ; \mathbf{z}_{0}\right) \hat{\phi}_{i j}^{F}\left(s ; \mathbf{z}_{0}\right), t, s \in[0, \tau]$, is a uniformly consistent (in probability) estimator of the covariance function $P \phi_{j}^{F}\left(t ; \mathbf{z}_{0}\right) \phi_{j}^{F}\left(s ; \mathbf{z}_{0}\right)$.

Now, in order to show the final statement of Theorem 4 let $\hat{W}_{j}\left(t ; \mathbf{z}_{0}\right)=$ $\sqrt{n} \mathbb{P}_{n} \hat{\phi}_{j}^{F}\left(t ; \mathbf{z}_{0}\right) \xi$ and $\tilde{W}_{j}\left(t ; \mathbf{z}_{0}\right)=\sqrt{n} \mathbb{P}_{n} \phi_{j}^{F}\left(t ; \mathbf{z}_{0}\right) \xi$. It follows from the Donsker property of the class of influence functions $\Phi_{j}\left(\mathbf{z}_{0}\right)$ and the conditional multiplier central limit theorem [4] that $\tilde{W}_{n, j}^{F}\left(t ; \mathbf{z}_{0}\right)$ converges weakly, conditionally on the data, to the same limiting process as that of $\sqrt{n}\left[\hat{F}_{n, j}\left(t ; \mathbf{z}_{0}\right)-F_{0, j}\left(t ; \mathbf{z}_{0}\right)\right]$ (unconditionally). Finally, we need to show that

$$
\left\|\hat{W}_{n, j}^{F}\left(t ; \mathbf{z}_{0}\right)-\tilde{W}_{n, j}^{F}\left(t ; \mathbf{z}_{0}\right)\right\|_{\infty}=o_{p}(1) \quad j=1, \ldots, k
$$

Straightforward algebra and the fact that

$$
\max _{i}\left\|\phi_{i j}^{\Lambda}\left(t ; \mathbf{z}_{0}\right)\right\|_{\infty}=O_{p}(1), \quad j=1, \ldots, k
$$

by the boundedness conditions, lead to the inequality

$$
\left\|\hat{W}_{n, j}^{F}\left(t ; \mathbf{z}_{0}\right)-\tilde{W}_{n, j}^{F}\left(t ; \mathbf{z}_{0}\right)\right\|_{\infty} \leq A_{n, j}^{\prime \prime \prime}+B_{n, j}^{\prime \prime \prime}+C_{n, j}^{\prime \prime \prime}+D_{n, j}^{\prime \prime \prime}+E_{n, j}^{\prime \prime \prime}+F_{n, j}^{\prime \prime \prime}
$$

where

$$
\begin{gathered}
A_{n, j}^{\prime \prime \prime}=\left\|\int_{0}^{t} \exp \left[-\sum_{l=1}^{k} \hat{\Lambda}_{n, l}\left(s-; \mathbf{z}_{0}\right)\right] d\left\{\sqrt{n} \mathbb{P}_{n}\left[\hat{\phi}_{j}^{\Lambda}\left(s ; \mathbf{z}_{0}\right)-\phi_{j}^{\Lambda}\left(s ; \mathbf{z}_{0}\right)\right] \xi\right\}\right\|_{\infty} \\
B_{n, j}^{\prime \prime \prime}=\left\|\int_{0}^{t}\left\{\exp \left[-\sum_{l=1}^{k} \hat{\Lambda}_{n, l}\left(s-; \mathbf{z}_{0}\right)\right]-\exp \left[-\sum_{l=1}^{k} \Lambda_{0, l}\left(s-; \mathbf{z}_{0}\right)\right]\right\} d\left[\sqrt{n} \mathbb{P}_{n} \phi_{j}^{\Lambda}\left(s ; \mathbf{z}_{0}\right) \xi\right]\right\|_{\infty},
\end{gathered}
$$

$$
\begin{aligned}
C_{n, j}^{\prime \prime \prime}= & \| \sum_{l=1}^{k} \int_{0}^{t}\left\{\mathbb{P}_{n}\left[\hat{\phi}_{l}^{\Lambda}\left(s-; \mathbf{z}_{0}\right)-\phi_{l}^{\Lambda}\left(s-; \mathbf{z}_{0}\right)\right] \xi\right\} \exp \left[-\sum_{l=1}^{k} \hat{\Lambda}_{n, l}\left(s-; \mathbf{z}_{0}\right)\right] \\
& \times d\left\{\sqrt{n}\left[\hat{\Lambda}_{n, j}\left(s ; \mathbf{z}_{0}\right)-\Lambda_{0, j}\left(s ; \mathbf{z}_{0}\right)\right]\right\} \|_{\infty}, \\
D_{n, j}^{\prime \prime \prime}=\| & \sum_{l=1}^{k} \int_{0}^{t}\left[\mathbb{P}_{n} \phi_{l}^{\Lambda}\left(s-; \mathbf{z}_{0}\right) \xi\right]\left\{\exp \left[-\sum_{l=1}^{k} \hat{\Lambda}_{n, l}\left(s-; \mathbf{z}_{0}\right)\right]-\exp \left[-\sum_{l=1}^{k} \Lambda_{n, l}\left(s-; \mathbf{z}_{0}\right)\right]\right\} \\
& \times d\left\{\sqrt{n}\left[\hat{\Lambda}_{n, j}\left(s ; \mathbf{z}_{0}\right)-\Lambda_{0, j}\left(s ; \mathbf{z}_{0}\right)\right]\right\} \|_{\infty}, \\
E_{n, j}^{\prime \prime \prime}= & \left\|\sum_{l=1}^{k} \int_{0}^{t}\left\{\sqrt{n} \mathbb{P}_{n}\left[\hat{\phi}_{l}^{\Lambda}\left(s-; \mathbf{z}_{0}\right)-\phi_{l}^{\Lambda}\left(s-; \mathbf{z}_{0}\right)\right] \xi\right\} d \Lambda_{0, j}\left(s ; \mathbf{z}_{0}\right)\right\|_{\infty}, \\
F_{n, j}^{\prime \prime \prime}= & O_{p}(1)\left|\sqrt{n} \mathbb{P}_{n} \xi\right|\left\|\int_{0}^{t}\left\{\exp \left[-\sum_{l=1}^{k} \hat{\Lambda}_{n, l}\left(s-; \mathbf{z}_{0}\right)\right]-\exp \left[-\sum_{l=1}^{k} \Lambda_{0, l}\left(s-; \mathbf{z}_{0}\right)\right]\right\} d \Lambda_{0, j}\left(s ; \mathbf{z}_{0}\right)\right\|_{\infty} .
\end{aligned}
$$

Integration by parts, the fact that $\left\|\hat{W}_{n, j}(t)-\tilde{W}_{n, j}(t)\right\|_{\infty}=o_{p}(1)$ as it was shown in the proof of Theorem 3, Lemma A. 3 in [3] and the boundedness conditions can be used to show that $A_{n, j}^{\prime \prime \prime}=o_{p}(1)$. Next, $B_{n, j}^{\prime \prime \prime}=o_{p}(1)$ by Theorem 1 , the fact that $\sqrt{n} \mathbb{P}_{n} \phi_{j}^{\Lambda}\left(t ; \mathbf{z}_{0}\right) \xi$ converges weakly to a tight mean zero Gaussian process due to the Donsker property of the class $\left\{\phi_{j}^{\Lambda}\left(t ; \mathbf{z}_{0}\right): t \in[0, \tau]\right\}$, and Lemma 4.2 in [2]. Using the fact that the integrand in $C_{n, j}^{\prime \prime \prime}$ converges uniformly to 0 in probability, Theorem 3, and Lemma 4.2 in [2] we can argue that $C_{n, j}^{\prime \prime \prime}=o_{p}(1)$. The same arguments can be used to show that $D_{n, j}^{\prime \prime \prime}=o_{p}(1)$. Additionally, $E_{n, j}^{\prime \prime \prime}=o_{p}(1)$ by the fact that the term inside the curly brackets is uniformly $o_{p}(1)$, as it was argued earlier, and condition C1. Finally, the fact that $\left\|\exp \left[-\sum_{l=1}^{k} \hat{\Lambda}_{n, l}\left(s-; \mathbf{z}_{0}\right)\right]-\exp \left[-\sum_{l=1}^{k} \Lambda_{0, l}\left(s-; \mathbf{z}_{0}\right)\right]\right\|_{\infty}=o_{a s *}(t)$ as a consequence of Theorem 1, condition C1 and the fact that $\sqrt{n} \mathbb{P}_{n} \xi=O_{p}(1)$ by the central limit theorem, lead to the conclusion that $F_{n, j}^{\prime \prime \prime}=o_{p}(1)$. Therefore, $\left\|\hat{W}_{n, j}^{F}\left(t ; \mathbf{z}_{0}\right)-\tilde{W}_{n, j}^{F}\left(t ; \mathbf{z}_{0}\right)\right\|_{\infty}=o_{p}(1)$ for all $j=1, \ldots, k$ and the proof of the last statement of Theorem 4 is complete.

## 3 Estimated Influence Functions

In Theorem 2 we provided the consistent estimator of the covariance matrix of the finite-dimensional parameters as

$$
\hat{\boldsymbol{\Sigma}}_{j}=\frac{1}{n} \sum_{i=1}^{n}\left(\hat{\boldsymbol{\psi}}_{i j}+\hat{\mathbf{R}}_{j} \hat{\boldsymbol{\omega}}_{i}\right)^{\otimes 2}
$$

The first component of the estimated influence functions in $\hat{\boldsymbol{\Sigma}}_{j}$ is

$$
\hat{\boldsymbol{\psi}}_{i j}=\mathbf{H}_{n, j}^{-1}\left(\hat{\boldsymbol{\beta}}_{n, j}\right) \int_{0}^{\tau}\left[\mathbf{Z}_{i}-E_{n}\left(t, \hat{\boldsymbol{\beta}}_{n, j}\right)\right] d \hat{M}_{i j}\left(t ; \hat{\boldsymbol{\beta}}_{n, j}, \hat{\gamma}_{n}\right)
$$

for $i=1, \ldots, n$ and $j=1, \ldots, k$, where

$$
\begin{gathered}
\mathbf{H}_{n, j}\left(\hat{\boldsymbol{\beta}}_{n, j}\right)=\frac{1}{n} \int_{0}^{\tau}\left\{\frac{\sum_{l=1}^{n} \mathbf{Z}_{l}^{\otimes 2} Y_{l}(t) e^{\hat{\boldsymbol{\beta}}_{n, j}^{T}} \mathbf{Z}_{l}}{\left.\sum_{l=1}^{n} Y_{l}(t) e^{\hat{\boldsymbol{\beta}}_{n, j}^{T} \mathbf{Z}_{l}}-\left[\frac{\sum_{l=1}^{n} Z_{l} Y_{l}(t) e^{\hat{\boldsymbol{\beta}}_{n, j}^{T} \mathbf{Z}_{l}}}{\sum_{l=1}^{n} Y_{l}(t) e^{\hat{\boldsymbol{\beta}}_{n, j}^{T} \mathbf{Z}_{l}}}\right]^{\otimes 2}\right\} \sum_{i=1}^{n} d \tilde{N}_{i j}\left(t ; \hat{\boldsymbol{\gamma}}_{n}\right),}\right. \\
E_{n}\left(t, \hat{\boldsymbol{\beta}}_{n, j}\right)=\frac{\sum_{i=1}^{n} \mathbf{Z}_{i} Y_{i}(t) e^{\hat{\boldsymbol{\beta}}_{n, j}^{T} \mathbf{Z}_{i}}}{\sum_{i=1}^{n} Y_{i}(t) e^{\hat{\boldsymbol{\beta}}_{n, j}^{T} \mathbf{Z}_{i}}}
\end{gathered}
$$

and

$$
\hat{M}_{i j}\left(t ; \hat{\boldsymbol{\beta}}_{n, j}, \hat{\boldsymbol{\gamma}}_{n}\right)=\tilde{N}_{i j}\left(t ; \hat{\boldsymbol{\gamma}}_{n}\right)-\int_{0}^{t} Y_{i}(s) \exp \left(\hat{\boldsymbol{\beta}}_{n, j}^{T} \mathbf{Z}_{i}\right) d \hat{\Lambda}_{n, j}(s)
$$

The second component is

$$
\hat{\mathbf{R}}_{j}=\mathbf{H}_{n, j}^{-1}\left(\hat{\boldsymbol{\beta}}_{n, j}\right)\left\{\frac{1}{n} \sum_{i=1}^{n}\left(1-R_{i}\right) \int_{0}^{\tau}\left[\mathbf{Z}_{i}-E_{n}\left(t, \hat{\boldsymbol{\beta}}_{n, j}\right)\right] d N_{i}(t) \dot{\pi}_{j}\left(\mathbf{W}_{i}, \hat{\gamma}_{n}\right)^{T}\right\}
$$

and $\hat{\boldsymbol{\omega}}_{i}$ is the usual influence function for the parametric multinomial logit model, where $\gamma_{0}$ has been replaced by $\hat{\gamma}_{n}$ and the expectations by sample averages.

The estimated influence function components that are involved in the covariance function estimator for the baseline cumulative cause-specific hazard estimator are

$$
\hat{\phi}_{i j}(t)=\int_{0}^{t} \frac{d \hat{M}_{i j}\left(s ; \hat{\boldsymbol{\beta}}_{n, j}, \hat{\gamma}_{n}\right)}{n^{-1} \sum_{l=1}^{n} Y_{l}(s) e^{\hat{\boldsymbol{\beta}}_{n, j}^{T} \mathbf{z}_{l}}}-\left(\hat{\boldsymbol{\psi}}_{i j}+\hat{R}_{j} \hat{\boldsymbol{\omega}}_{i}\right)^{T} \int_{0}^{t} E_{n}\left(s, \hat{\boldsymbol{\beta}}_{n, j}\right) d \hat{\Lambda}_{n, j}(s)
$$

and

$$
\hat{\mathbf{R}}_{j}^{\star}(t)=\left\{\frac{1}{n} \sum_{i=1}^{n}\left[\left(1-R_{i}\right) \dot{\pi}_{j}\left(\mathbf{W}_{i}, \hat{\gamma}_{n}\right) \int_{0}^{t} \frac{d N_{i}(s)}{n^{-1} \sum_{l=1}^{n} Y_{l}(s) e^{\hat{\boldsymbol{\beta}}_{n, j}^{T} \mathbf{Z}_{l}}}\right]\right\}^{T}
$$

Finally, the estimated influence functions for the covariance function estimator of the covariate-specific cumulative incidence function estimator are

$$
\begin{aligned}
\hat{\phi}_{i j}^{F}\left(t ; \mathbf{z}_{0}\right)= & \int_{0}^{t} \exp \left[-\sum_{l=1}^{k} \hat{\Lambda}_{n, l}\left(s-; \mathbf{z}_{0}\right)\right] d \hat{\phi}_{i j}^{\Lambda}\left(s ; \mathbf{z}_{0}\right) \\
& -\int_{0}^{t}\left[\sum_{l=1}^{k} \hat{\phi}_{i l}^{\Lambda}\left(s-; \mathbf{z}_{0}\right)\right] \exp \left[-\sum_{l=1}^{k} \hat{\Lambda}_{n, l}\left(s-; \mathbf{z}_{0}\right)\right] d \hat{\Lambda}_{n, j}\left(s ; \mathbf{z}_{0}\right)
\end{aligned}
$$

where

$$
\hat{\phi}_{i j}^{\Lambda}\left(t ; \mathbf{z}_{0}\right)=\left[\mathbf{z}_{0}^{T}\left(\hat{\boldsymbol{\psi}}_{i j}+\hat{\mathbf{R}}_{j} \hat{\boldsymbol{\omega}}_{i}\right) \hat{\Lambda}_{n, j}(t)+\hat{\phi}_{i j}(t)+\hat{\mathbf{R}}_{j}^{\star}(t) \hat{\boldsymbol{\omega}}_{i}\right] \exp \left(\hat{\boldsymbol{\beta}}_{n, j}^{T} \mathbf{z}_{0}\right) .
$$

Table 1 Simulation results for $\beta_{1}$ under scenario 3 where the model $\pi_{1}(\mathbf{W}, \gamma)$ was misspecified with $\eta=2$.

| $n$ | $p_{m}$ | Method | Bias | MCSD | ASE | CP | MSE | RE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 200 | $23 \%$ | Proposed MPPLE | 0.008 | 0.352 | 0.348 | 0.953 | 0.124 | 1.000 |
|  |  | AIPW | 0.010 | 0.351 | 0.359 | 0.954 | 0.123 | 0.994 |
|  |  | MI(5) | 0.001 | 0.371 | 0.360 | 0.942 | 0.138 | 1.108 |
|  | $40 \%$ | Proposed MPPLE | 0.010 | 0.361 | 0.361 | 0.951 | 0.131 | 1.000 |
|  |  | AIPW | 0.013 | 0.362 | 0.377 | 0.962 | 0.131 | 1.001 |
|  |  | MI(5) | -0.006 | 0.391 | 0.379 | 0.947 | 0.153 | 1.170 |
|  | $54 \%$ | Proposed MPPLE | 0.004 | 0.387 | 0.378 | 0.949 | 0.150 | 1.000 |
|  |  | AIPW | 0.007 | 0.398 | 0.411 | 0.948 | 0.158 | 1.054 |
|  |  | MI(5) | -0.011 | 0.408 | 0.402 | 0.951 | 0.167 | 1.109 |
| 400 | $23 \%$ | Proposed MPPLE | -0.000 | 0.246 | 0.247 | 0.957 | 0.060 | 1.000 |
|  |  | AIPW | 0.001 | 0.246 | 0.248 | 0.954 | 0.061 | 1.006 |
|  |  | MI(5) | -0.010 | 0.252 | 0.251 | 0.950 | 0.064 | 1.056 |
|  | $40 \%$ | Proposed MPPLE | -0.002 | 0.256 | 0.257 | 0.957 | 0.066 | 1.000 |
|  |  | AIPW | -0.001 | 0.260 | 0.260 | 0.951 | 0.067 | 1.025 |
|  | $54 \%$ | MI(5) | -0.012 | 0.265 | 0.262 | 0.950 | 0.071 | 1.071 |
|  |  | AIPW |  |  |  |  |  |  |
|  |  | MI(5) | 0.001 | 0.272 | 0.269 | 0.955 | 0.074 | 1.000 |
| 2000 | $23 \%$ | Proposed MPPLE | -0.001 | 0.110 | 0.111 | 0.945 | 0.012 | 1.000 |
|  |  | AIPW | 0.001 | 0.110 | 0.110 | 0.943 | 0.012 | 1.001 |
|  |  | MI(5) | 0.002 | 0.111 | 0.110 | 0.943 | 0.012 | 1.019 |
|  | $40 \%$ | Proposed MPPLE | -0.001 | 0.115 | 0.115 | 0.949 | 0.013 | 1.000 |
|  |  | AIPW | 0.002 | 0.115 | 0.115 | 0.943 | 0.013 | 1.007 |
|  |  | MI(5) | 0.003 | 0.117 | 0.115 | 0.938 | 0.014 | 1.041 |
|  |  | Proposed MPPLE | -0.002 | 0.119 | 0.120 | 0.950 | 0.014 | 1.000 |
|  | AIPW | 0.000 | 0.120 | 0.121 | 0.958 | 0.015 | 1.026 |  |
|  |  | 0.004 | 0.124 | 0.121 | 0.939 | 0.015 | 1.085 |  |

$\overline{p_{m}}$ : percent of missingness; MCSD: Monte Carlo standard deviation; ASE: average estimated standard error; CP: coverage probability; MSE: mean squared error; RE: variance of the estimator to variance of the proposed MPPLE (relative efficiency); MPPLE: maximum partial pseudolikelihood estimator; AIPW: augmented inverse probability weighting estimator; MI(5): Lu \& Tsiatis type B multiple imputation based on 5 imputations

## 4 Additional Simulation Results

Simulation results for $\beta_{1}$ under more pronounced misspecification of the model $\pi_{1}(\mathbf{W}, \gamma)$ are presented in Tables 1-2. Simulation results for the infinite-dimentional parameters are presented in Tables 3-8.

Table 2 Simulation results for $\beta_{1}$ under scenario 4 where the model $\pi_{1}(\mathbf{W}, \gamma)$ was misspecified with $\eta=0.1$.

| $n$ | $p_{m}$ | Method | Bias | MCSD | ASE | CP | MSE | RE |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 200 | $30 \%$ | Proposed MPPLE | 0.009 | 0.492 | 0.478 | 0.948 | 0.242 | 1.000 |
|  |  | AIPW | 0.005 | 0.492 | 0.508 | 0.954 | 0.242 | 1.001 |
|  |  | MI(5) | -0.007 | 0.507 | 0.514 | 0.953 | 0.257 | 1.062 |
|  | $49 \%$ | Proposed MPPLE | 0.011 | 0.522 | 0.518 | 0.949 | 0.273 | 1.000 |
|  |  | AIPW | 0.006 | 0.527 | 0.563 | 0.962 | 0.277 | 1.017 |
|  |  | MI(5) | -0.017 | 0.560 | 0.571 | 0.949 | 0.314 | 1.150 |
|  | $62 \%$ | Proposed MPPLE | 0.011 | 0.593 | 0.563 | 0.933 | 0.351 | 1.000 |
|  |  | AIPW | -0.002 | 0.605 | 0.645 | 0.962 | 0.366 | 1.043 |
|  |  | MI(5) | -0.031 | 0.631 | 0.639 | 0.954 | 0.399 | 1.133 |
| 400 | $30 \%$ | Proposed MPPLE | -0.012 | 0.354 | 0.342 | 0.935 | 0.126 | 1.000 |
|  |  | AIPW | -0.015 | 0.354 | 0.348 | 0.938 | 0.126 | 0.999 |
|  |  | MI(5) | -0.004 | 0.358 | 0.351 | 0.940 | 0.128 | 1.020 |
|  | $49 \%$ | Proposed MPPLE | -0.014 | 0.390 | 0.371 | 0.944 | 0.153 | 1.000 |
|  |  | AIPW | -0.022 | 0.396 | 0.382 | 0.937 | 0.158 | 1.030 |
|  | MI(5) | -0.005 | 0.394 | 0.384 | 0.939 | 0.155 | 1.018 |  |
|  |  | Proposed MPPLE | -0.009 | 0.429 | 0.407 | 0.949 | 0.184 | 1.000 |
|  |  | AIPW | -0.018 | 0.445 | 0.430 | 0.941 | 0.199 | 1.076 |
|  |  | MI(5) | -0.003 | 0.433 | 0.424 | 0.941 | 0.188 | 1.019 |
| 2000 | $30 \%$ | Proposed MPPLE | 0.008 | 0.149 | 0.152 | 0.949 | 0.022 | 1.000 |
|  |  | AIPW | 0.008 | 0.150 | 0.151 | 0.945 | 0.023 | 1.010 |
|  |  | MI(5) | 0.001 | 0.149 | 0.153 | 0.953 | 0.022 | 1.004 |
|  | $49 \%$ | Proposed MPPLE | 0.006 | 0.161 | 0.164 | 0.949 | 0.026 | 1.000 |
|  |  | AIPW | 0.005 | 0.164 | 0.165 | 0.953 | 0.027 | 1.040 |
|  | MI(5) | -0.002 | 0.164 | 0.166 | 0.947 | 0.027 | 1.035 |  |
|  | Proposed MPPLE | 0.004 | 0.175 | 0.180 | 0.952 | 0.031 | 1.000 |  |
|  | AIPW | 0.003 | 0.179 | 0.183 | 0.943 | 0.032 | 1.054 |  |
|  |  | -0.004 | 0.179 | 0.183 | 0.955 | 0.032 | 1.050 |  |

$\overline{p_{m}}$ : percent of missingness; MCSD: Monte Carlo standard deviation; ASE: average estimated standard error; CP: coverage probability; MSE: mean squared error; RE: variance of the estimator to variance of the proposed MPPLE (relative efficiency); MPPLE: maximum partial pseudolikelihood estimator; AIPW: augmented inverse probability weighting estimator; $\mathrm{MI}(5): \mathrm{Lu} \&$ Tsiatis type B multiple imputation based on 5 imputations

Table 3 Pointwise simulation results for the proposed MPPLE method in terms of the baseline cumulative cause-specific hazard function $\Lambda_{0,1}(t)$ and the baseline cumulative incidence function $F_{0,1}(t)$, under a correctly specified model $\pi_{1}(\mathbf{W}, \boldsymbol{\gamma})$ (scenario 1).

|  |  |  | $\Lambda_{0,1}(t)$ |  |  |  | $F_{0,1}(t)$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $n$ | $p_{m}$ | $t$ | Bias | MCSD | ASE | CP | Bias | MCSD | ASE | CP |
| 200 | $25 \%$ | $\tau_{0.1}$ | 0.001 | 0.053 | 0.053 | 0.971 | 0.002 | 0.041 | 0.041 | 0.935 |
|  |  | $\tau_{0.2}$ | 0.003 | 0.097 | 0.096 | 0.956 | 0.003 | 0.057 | 0.058 | 0.942 |
|  |  | $\tau_{0.4}$ | 0.007 | 0.192 | 0.184 | 0.943 | 0.003 | 0.071 | 0.071 | 0.939 |
|  |  | $\tau_{0.8}$ | 0.033 | 0.428 | 0.397 | 0.938 | 0.005 | 0.074 | 0.073 | 0.941 |
|  | $56 \%$ | $\tau_{0.1}$ | 0.002 | 0.061 | 0.059 | 0.953 | 0.002 | 0.047 | 0.046 | 0.935 |
|  |  | $\tau_{0.2}$ | 0.003 | 0.113 | 0.108 | 0.951 | 0.002 | 0.067 | 0.067 | 0.937 |
|  |  | $\tau_{0.4}$ | 0.009 | 0.219 | 0.206 | 0.945 | 0.002 | 0.085 | 0.084 | 0.928 |
|  |  | $\tau_{0.8}$ | 0.035 | 0.483 | 0.440 | 0.942 | 0.003 | 0.090 | 0.089 | 0.929 |
| 400 | $25 \%$ | $\tau_{0.1}$ | 0.001 | 0.038 | 0.038 | 0.951 | 0.001 | 0.029 | 0.029 | 0.946 |
|  |  | $\tau_{0.2}$ | 0.003 | 0.070 | 0.069 | 0.947 | 0.001 | 0.041 | 0.042 | 0.950 |
|  |  | $\tau_{0.4}$ | 0.007 | 0.135 | 0.131 | 0.942 | 0.000 | 0.050 | 0.051 | 0.941 |
|  |  | $\tau_{0.8}$ | 0.012 | 0.293 | 0.280 | 0.949 | 0.002 | 0.052 | 0.052 | 0.943 |
|  | $56 \%$ | $\tau_{0.1}$ | 0.001 | 0.042 | 0.042 | 0.949 | 0.000 | 0.033 | 0.033 | 0.951 |
|  |  | $\tau_{0.2}$ | 0.003 | 0.078 | 0.077 | 0.941 | -0.000 | 0.047 | 0.048 | 0.952 |
|  |  | $\tau_{0.4}$ | 0.007 | 0.150 | 0.147 | 0.950 | -0.000 | 0.059 | 0.060 | 0.948 |
|  |  | $\tau_{0.8}$ | 0.014 | 0.330 | 0.310 | 0.943 | 0.001 | 0.062 | 0.064 | 0.951 |
| 2000 | $25 \%$ | $\tau_{0.1}$ | -0.000 | 0.017 | 0.017 | 0.964 | -0.000 | 0.013 | 0.013 | 0.956 |
|  |  | $\tau_{0.2}$ | -0.001 | 0.029 | 0.031 | 0.950 | -0.000 | 0.018 | 0.019 | 0.955 |
|  |  | $\tau_{0.4}$ | -0.000 | 0.056 | 0.058 | 0.953 | -0.000 | 0.022 | 0.023 | 0.954 |
|  | $\tau_{0.8}$ | 0.000 | 0.121 | 0.124 | 0.959 | 0.000 | 0.022 | 0.023 | 0.952 |  |
|  | $56 \%$ | $\tau_{0.1}$ | 0.000 | 0.018 | 0.019 | 0.956 | 0.000 | 0.014 | 0.015 | 0.955 |
|  |  | $\tau_{0.2}$ | -0.000 | 0.033 | 0.034 | 0.958 | -0.000 | 0.021 | 0.021 | 0.954 |
|  | $\tau_{0.4}$ | -0.001 | 0.063 | 0.065 | 0.955 | -0.000 | 0.026 | 0.027 | 0.951 |  |
|  | $\tau_{0.8}$ | -0.000 | 0.134 | 0.137 | 0.956 | 0.000 | 0.028 | 0.029 | 0.948 |  |

$\overline{p_{m}}$ : percent of missingness; $\tau_{p}: p \%$ of the total follow-up time $\tau$; MCSD: Monte Carlo standard deviation of the estimates; ASE: average of standard error estimates; CP: coverage probability

Table 4 Pointwise simulation results for the proposed MPPLE method in terms of the baseline cumulative cause-specific hazard function $\Lambda_{0,1}(t)$ and the baseline cumulative incidence function $F_{0,1}(t)$, under a misspecified model $\pi_{1}(\mathbf{W}, \gamma)$ with $\eta=0.5$ (scenario 2 ).

|  |  |  | $\Lambda_{0,1}(t)$ |  |  |  | $F_{0,1}(t)$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $n$ | $p_{m}$ | $t$ | Bias | MCSD | ASE | CP | Bias | MCSD | ASE | CP |
| 200 | $27 \%$ | $\tau_{0.1}$ | 0.007 | 0.056 | 0.058 | 0.965 | 0.009 | 0.039 | 0.040 | 0.946 |
|  |  | $\tau_{0.2}$ | -0.001 | 0.101 | 0.102 | 0.958 | 0.006 | 0.053 | 0.055 | 0.939 |
|  |  | $\tau_{0.4}$ | -0.005 | 0.196 | 0.193 | 0.959 | 0.003 | 0.066 | 0.068 | 0.944 |
|  |  | $\tau_{0.8}$ | 0.027 | 0.428 | 0.412 | 0.947 | 0.006 | 0.071 | 0.071 | 0.936 |
|  | $59 \%$ | $\tau_{0.1}$ | 0.018 | 0.070 | 0.069 | 0.942 | 0.020 | 0.051 | 0.050 | 0.943 |
|  |  | $\tau_{0.2}$ | 0.002 | 0.119 | 0.117 | 0.955 | 0.011 | 0.067 | 0.067 | 0.936 |
|  |  | $\tau_{0.4}$ | -0.012 | 0.225 | 0.216 | 0.955 | 0.004 | 0.083 | 0.083 | 0.929 |
|  |  | $\tau_{0.8}$ | 0.027 | 0.489 | 0.463 | 0.948 | 0.006 | 0.089 | 0.088 | 0.936 |
| 400 | $27 \%$ | $\tau_{0.1}$ | 0.010 | 0.042 | 0.042 | 0.950 | 0.009 | 0.028 | 0.029 | 0.953 |
|  |  | $\tau_{0.2}$ | 0.003 | 0.074 | 0.073 | 0.939 | 0.004 | 0.038 | 0.039 | 0.946 |
|  |  | $\tau_{0.4}$ | -0.004 | 0.141 | 0.138 | 0.945 | 0.001 | 0.047 | 0.048 | 0.952 |
|  |  | $\tau_{0.8}$ | 0.007 | 0.297 | 0.289 | 0.954 | 0.002 | 0.050 | 0.050 | 0.951 |
|  | $59 \%$ | $\tau_{0.1}$ | 0.019 | 0.050 | 0.049 | 0.930 | 0.018 | 0.034 | 0.035 | 0.952 |
|  |  | $\tau_{0.2}$ | 0.003 | 0.085 | 0.084 | 0.946 | 0.008 | 0.046 | 0.048 | 0.954 |
|  |  | $\tau_{0.4}$ | -0.015 | 0.157 | 0.154 | 0.955 | -0.000 | 0.057 | 0.059 | 0.953 |
|  |  | $\tau_{0.8}$ | 0.006 | 0.342 | 0.326 | 0.951 | 0.001 | 0.061 | 0.063 | 0.961 |
| 2000 | $27 \%$ | $\tau_{0.1}$ | 0.007 | 0.018 | 0.018 | 0.928 | 0.008 | 0.013 | 0.013 | 0.914 |
|  |  | $\tau_{0.2}$ | -0.002 | 0.031 | 0.032 | 0.961 | 0.003 | 0.017 | 0.018 | 0.961 |
|  |  | $\tau_{0.4}$ | -0.012 | 0.060 | 0.061 | 0.953 | 0.000 | 0.021 | 0.022 | 0.950 |
|  | $\tau_{0.8}$ | -0.009 | 0.124 | 0.128 | 0.959 | 0.001 | 0.022 | 0.023 | 0.960 |  |
|  | $59 \%$ | $\tau_{0.1}$ | 0.018 | 0.022 | 0.022 | 0.851 | 0.019 | 0.016 | 0.016 | 0.795 |
|  |  | $\tau_{0.2}$ | -0.000 | 0.036 | 0.037 | 0.962 | 0.010 | 0.021 | 0.021 | 0.947 |
|  | $\tau_{0.4}$ | -0.024 | 0.067 | 0.068 | 0.948 | 0.002 | 0.026 | 0.026 | 0.943 |  |
|  | $\tau_{0.8}$ | -0.018 | 0.140 | 0.143 | 0.954 | 0.002 | 0.028 | 0.028 | 0.945 |  |

$\overline{p_{m}}$ : percent of missingness; $\tau_{p}: p \%$ of the total follow-up time $\tau$; MCSD: Monte Carlo standard deviation of the estimates; ASE: average of standard error estimates; CP: coverage probability

Table 5 Pointwise simulation results for the proposed MPPLE method in terms of the baseline cumulative cause-specific hazard function $\Lambda_{0,1}(t)$ and the baseline cumulative incidence function $F_{0,1}(t)$, under a misspecified model $\pi_{1}(\mathbf{W}, \gamma)$ with $\eta=2$ (scenario 3).

|  |  |  | $\Lambda_{0,1}(t)$ |  |  |  | $F_{0,1}(t)$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $n$ | $p_{m}$ | $t$ | Bias | MCSD | ASE | CP | Bias | MCSD | ASE | CP |
| 200 | $23 \%$ | $\tau_{0.1}$ | -0.004 | 0.048 | 0.049 | 0.958 | -0.002 | 0.039 | 0.040 | 0.928 |
|  |  | $\tau_{0.2}$ | -0.004 | 0.088 | 0.087 | 0.954 | -0.002 | 0.056 | 0.057 | 0.947 |
|  |  | $\tau_{0.4}$ | 0.004 | 0.171 | 0.165 | 0.953 | -0.000 | 0.068 | 0.071 | 0.945 |
|  |  | $\tau_{0.8}$ | 0.027 | 0.357 | 0.346 | 0.950 | 0.003 | 0.069 | 0.069 | 0.937 |
|  | $54 \%$ | $\tau_{0.1}$ | -0.009 | 0.049 | 0.050 | 0.960 | -0.006 | 0.041 | 0.041 | 0.911 |
|  |  | $\tau_{0.2}$ | -0.008 | 0.092 | 0.090 | 0.949 | -0.007 | 0.059 | 0.060 | 0.928 |
|  |  | $\tau_{0.4}$ | 0.008 | 0.181 | 0.175 | 0.953 | -0.002 | 0.074 | 0.077 | 0.949 |
|  |  | $\tau_{0.8}$ | 0.036 | 0.379 | 0.365 | 0.950 | 0.003 | 0.078 | 0.078 | 0.936 |
| 400 | $23 \%$ | $\tau_{0.1}$ | -0.003 | 0.035 | 0.035 | 0.951 | -0.003 | 0.028 | 0.029 | 0.938 |
|  |  | $\tau_{0.2}$ | -0.003 | 0.063 | 0.062 | 0.950 | -0.004 | 0.040 | 0.041 | 0.947 |
|  |  | $\tau_{0.4}$ | 0.006 | 0.118 | 0.118 | 0.940 | -0.002 | 0.050 | 0.051 | 0.958 |
|  |  | $\tau_{0.8}$ | 0.017 | 0.244 | 0.244 | 0.962 | 0.000 | 0.049 | 0.050 | 0.949 |
|  | $54 \%$ | $\tau_{0.1}$ | -0.009 | 0.035 | 0.035 | 0.939 | -0.007 | 0.029 | 0.029 | 0.927 |
|  |  | $\tau_{0.2}$ | -0.010 | 0.066 | 0.064 | 0.941 | -0.009 | 0.042 | 0.043 | 0.944 |
|  |  | $\tau_{0.4}$ | 0.004 | 0.127 | 0.124 | 0.939 | -0.003 | 0.053 | 0.055 | 0.959 |
|  |  | $\tau_{0.8}$ | 0.024 | 0.265 | 0.258 | 0.954 | 0.001 | 0.054 | 0.055 | 0.947 |
|  | $23 \%$ | $\tau_{0.1}$ | -0.004 | 0.016 | 0.016 | 0.944 | -0.004 | 0.013 | 0.013 | 0.936 |
|  |  | $\tau_{0.2}$ | -0.004 | 0.026 | 0.028 | 0.960 | -0.004 | 0.017 | 0.018 | 0.953 |
|  | $\tau_{0.4}$ | 0.001 | 0.051 | 0.052 | 0.949 | -0.001 | 0.022 | 0.023 | 0.950 |  |
|  | $\tau_{0.8}$ | 0.004 | 0.107 | 0.108 | 0.956 | -0.000 | 0.022 | 0.022 | 0.949 |  |
|  | $54 \%$ | $\tau_{0.1}$ | -0.009 | 0.016 | 0.016 | 0.918 | -0.008 | 0.013 | 0.013 | 0.897 |
|  | $\tau_{0.2}$ | -0.009 | 0.028 | 0.029 | 0.946 | -0.008 | 0.018 | 0.019 | 0.933 |  |
|  | $\tau_{0.4}$ | 0.002 | 0.055 | 0.055 | 0.949 | -0.003 | 0.024 | 0.025 | 0.955 |  |
|  | $\tau_{0.8}$ | 0.012 | 0.113 | 0.114 | 0.952 | -0.000 | 0.025 | 0.025 | 0.947 |  |

$\overline{p_{m}}$ : percent of missingness; $\tau_{p}: p \%$ of the total follow-up time $\tau ;$ MCSD: Monte Carlo standard deviation of the estimates; ASE: average of standard error estimates; CP: coverage probability

Table 6 Pointwise simulation results for the proposed MPPLE method in terms of the baseline cumulative cause-specific hazard function $\Lambda_{0,1}(t)$ and the baseline cumulative incidence function $F_{0,1}(t)$, under a misspecified model $\pi_{1}(\mathbf{W}, \gamma)$ with $\eta=0.1$ (scenario 4).

|  |  |  | $\Lambda_{0,1}(t)$ |  |  |  | $F_{0,1}(t)$ |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $n$ | $p_{m}$ | $t$ | Bias | MCSD | ASE | CP | Bias | MCSD | ASE | CP |
| 200 | $30 \%$ | $\tau_{0.1}$ | -0.003 | 0.069 | 0.067 | 0.953 | 0.008 | 0.032 | 0.031 | 0.937 |
|  |  | $\tau_{0.2}$ | -0.015 | 0.117 | 0.116 | 0.952 | 0.004 | 0.043 | 0.042 | 0.932 |
|  |  | $\tau_{0.4}$ | -0.014 | 0.229 | 0.222 | 0.941 | 0.004 | 0.055 | 0.054 | 0.932 |
|  |  | $\tau_{0.8}$ | 0.031 | 0.498 | 0.466 | 0.942 | 0.006 | 0.060 | 0.060 | 0.942 |
|  | $62 \%$ | $\tau_{0.1}$ | -0.003 | 0.082 | 0.078 | 0.941 | 0.016 | 0.045 | 0.041 | 0.936 |
|  |  | $\tau_{0.2}$ | -0.030 | 0.133 | 0.127 | 0.937 | 0.005 | 0.054 | 0.052 | 0.921 |
|  |  | $\tau_{0.4}$ | -0.032 | 0.256 | 0.242 | 0.935 | 0.001 | 0.067 | 0.065 | 0.934 |
|  |  | $\tau_{0.8}$ | 0.029 | 0.559 | 0.518 | 0.945 | 0.004 | 0.072 | 0.071 | 0.936 |
| 400 | $30 \%$ | $\tau_{0.1}$ | 0.001 | 0.050 | 0.048 | 0.949 | 0.008 | 0.022 | 0.022 | 0.958 |
|  |  | $\tau_{0.2}$ | -0.012 | 0.086 | 0.083 | 0.940 | 0.002 | 0.030 | 0.030 | 0.951 |
|  |  | $\tau_{0.4}$ | -0.008 | 0.168 | 0.160 | 0.943 | 0.002 | 0.039 | 0.039 | 0.943 |
|  |  | $\tau_{0.8}$ | 0.014 | 0.340 | 0.329 | 0.942 | 0.003 | 0.042 | 0.042 | 0.948 |
|  | $62 \%$ | $\tau_{0.1}$ | -0.001 | 0.059 | 0.057 | 0.945 | 0.017 | 0.030 | 0.030 | 0.952 |
|  |  | $\tau_{0.2}$ | -0.035 | 0.096 | 0.091 | 0.920 | 0.004 | 0.037 | 0.038 | 0.956 |
|  |  | $\tau_{0.4}$ | -0.040 | 0.187 | 0.175 | 0.931 | 0.001 | 0.046 | 0.047 | 0.947 |
|  |  | $\tau_{0.8}$ | -0.005 | 0.387 | 0.367 | 0.946 | 0.002 | 0.050 | 0.051 | 0.944 |
| 2000 | $30 \%$ | $\tau_{0.1}$ | -0.003 | 0.022 | 0.021 | 0.943 | 0.008 | 0.010 | 0.010 | 0.893 |
|  |  | $\tau_{0.2}$ | -0.023 | 0.036 | 0.036 | 0.908 | 0.001 | 0.014 | 0.013 | 0.938 |
|  |  | $\tau_{0.4}$ | -0.025 | 0.068 | 0.070 | 0.936 | 0.000 | 0.017 | 0.017 | 0.942 |
|  | $\tau_{0.8}$ | -0.018 | 0.138 | 0.144 | 0.954 | 0.001 | 0.019 | 0.019 | 0.947 |  |
|  | $62 \%$ | $\tau_{0.1}$ | -0.000 | 0.026 | 0.025 | 0.938 | 0.020 | 0.014 | 0.014 | 0.746 |
|  |  | $\tau_{0.2}$ | -0.042 | 0.039 | 0.040 | 0.823 | 0.006 | 0.017 | 0.017 | 0.939 |
|  | $\tau_{0.4}$ | -0.055 | 0.074 | 0.077 | 0.907 | 0.002 | 0.021 | 0.021 | 0.950 |  |
|  | $\tau_{0.8}$ | -0.033 | 0.155 | 0.160 | 0.948 | 0.003 | 0.023 | 0.023 | 0.947 |  |

$\overline{p_{m}}$ : percent of missingness; $\tau_{p}: p \%$ of the total follow-up time $\tau$; MCSD: Monte Carlo standard deviation of the estimates; ASE: average of standard error estimates; CP: coverage probability

Table 7 Simulation results for the coverage probability of the proposed $95 \%$ simultaneous confidence bands for $\Lambda_{0,1}(t)$ and $F_{0,1}(t)$ under a correctly specified model $\pi_{1}(\mathbf{W}, \gamma)$ (scenario $1)$.

|  |  | $\Lambda_{0,1}(t)$ |  | $F_{0,1}(t)$ |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $n$ | $p_{m}$ | EP | HW | EP | HW |
| 200 | $25 \%$ | 0.947 | 0.953 | 0.944 | 0.952 |
|  | $44 \%$ | 0.949 | 0.949 | 0.946 | 0.948 |
|  | $56 \%$ | 0.942 | 0.949 | 0.941 | 0.949 |
| 400 | $25 \%$ | 0.944 | 0.944 | 0.948 | 0.943 |
|  | $44 \%$ | 0.945 | 0.945 | 0.950 | 0.952 |
|  | $56 \%$ | 0.945 | 0.940 | 0.954 | 0.950 |
| 2000 | $25 \%$ | 0.950 | 0.950 | 0.952 | 0.959 |
|  | $44 \%$ | 0.956 | 0.959 | 0.956 | 0.956 |
|  | $56 \%$ | 0.956 | 0.958 | 0.948 | 0.954 |

$\overline{\bar{p}_{m}}$ : average percent of missingness over the two scenarios; EP: equal-precision-type band; HW: Hall-Wellner-type band

Table 8 Simulation results for the coverage probability of the proposed $95 \%$ simultaneous confidence bands for $\Lambda_{0,1}(t)$ and $F_{0,1}(t)$ under misspecified models $\pi_{1}(\mathbf{W}, \gamma)$ (scenarios 2-4).

| Scenario | $\eta$ | $n$ | $p_{m}$ | $\Lambda_{0,1}(t)$ |  | $F_{0,1}(t)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | EP | HW | EP | HW |
| 2 | 0.5 | 200 | 27\% | 0.901 | 0.924 | 0.922 | 0.950 |
|  |  |  | 46\% | 0.827 | 0.887 | 0.867 | 0.924 |
|  |  |  | 59\% | 0.757 | 0.835 | 0.810 | 0.898 |
|  |  | 400 | 27\% | 0.867 | 0.900 | 0.912 | 0.941 |
|  |  |  | 46\% | 0.757 | 0.829 | 0.809 | 0.919 |
|  |  |  | 59\% | 0.656 | 0.754 | 0.728 | 0.886 |
|  |  | 2000 | 27\% | 0.693 | 0.855 | 0.772 | 0.905 |
|  |  |  | 46\% | 0.298 | 0.586 | 0.387 | 0.746 |
|  |  |  | 59\% | 0.121 | 0.325 | 0.163 | 0.508 |
| 3 | 2 | 200 | 23\% | 0.946 | 0.945 | 0.947 | 0.953 |
|  |  |  | 40\% | 0.960 | 0.954 | 0.947 | 0.949 |
|  |  |  | 54\% | 0.956 | 0.957 | 0.941 | 0.950 |
|  |  | 400 | 23\% | 0.948 | 0.946 | 0.946 | 0.955 |
|  |  |  | 40\% | 0.947 | 0.950 | 0.942 | 0.955 |
|  |  |  | 54\% | 0.944 | 0.941 | 0.934 | 0.952 |
|  |  | 2000 | 23\% | 0.939 | 0.958 | 0.938 | 0.951 |
|  |  |  | 40\% | 0.936 | 0.946 | 0.928 | 0.938 |
|  |  |  | 54\% | 0.927 | 0.938 | 0.914 | 0.933 |
| 4 | 0.1 | 200 | 30\% | 0.682 | 0.781 | 0.854 | 0.921 |
|  |  |  | 49\% | 0.431 | 0.524 | 0.646 | 0.792 |
|  |  |  | 62\% | 0.271 | 0.326 | 0.476 | 0.618 |
|  |  | 400 | 30\% | 0.601 | 0.718 | 0.829 | 0.924 |
|  |  |  | 49\% | 0.203 | 0.296 | 0.514 | 0.708 |
|  |  |  | 62\% | 0.083 | 0.123 | 0.284 | 0.420 |
|  |  | 2000 | 30\% | 0.160 | 0.325 | 0.617 | 0.836 |
|  |  |  | 49\% | 0.000 | 0.003 | 0.080 | 0.220 |
|  |  |  | 62\% | 0.000 | 0.000 | 0.005 | 0.011 |

$\overline{p_{m}}$ : average percent of missingness over the two scenarios; EP: equal-precision-type band; HW: Hall-Wellner-type band

## 5 Results from the Analysis of the Bladder Cancer Trial Data

This section includes the results from the application of the proposed methods to the EORTC bladder cancer trial data.

Table 9 Descriptive statistics for the EORTC bladder cancer trial.

|  | BCG treatment group |  |
| :--- | :--- | :--- |
|  | $1 / 3$ dose <br> $n(\%)$ | Full dose <br> $n(\%)$ |
| Vital status | $258(75.7)$ | $251(74.0)$ |
| Alive <br> Deceased <br> Cause of death <br> Bladder cancer <br> Other causes <br> Missing | $83(24.3)$ | $88(26.0)$ |
| WHO performance status <br> Fully active <br> Reduced activity | $13(15.7)$ | $20(22.7)$ |
|  | $55(66.3)$ | $60(68.2)$ |
| Age (years) | $281(82.4)$ | $278(9.1)$ |
| WHO: World Health Organization | $61(18.0)$ |  |

WHO: World Health Organization

Table 10 Data analysis of the EORTC bladder cancer trial sample.

|  | Proposed MPPLE |  |  |  | AIPW |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| Covariate | $\hat{\beta}_{n}$ | SE | $p$-value | $\hat{\beta}_{n}$ | SE | $p$-value |  |
| Death due to bladder cancer |  |  |  |  |  |  |  |
| Group (Full dose $=1,1 / 3$ dose $=0)$ | 0.451 | 0.356 | 0.204 | 0.421 | 0.372 | 0.258 |  |
| Age (years) | 0.026 | 0.019 | 0.174 | 0.027 | 0.021 | 0.191 |  |
| Fully active (no $=1$, yes $=0$ ) | 0.488 | 0.412 | 0.237 | 0.512 | 0.453 | 0.259 |  |
|  |  |  |  |  |  |  |  |
| Death from other causes |  |  |  |  |  |  |  |
| Group (Full dose $=1,1 / 3$ dose $=0)$ | 0.084 | 0.175 | 0.633 | 0.091 | 0.184 | 0.620 |  |
| Age (years) | 0.085 | 0.013 | $<0.001$ | 0.085 | 0.013 | $<0.001$ |  |
| Fully active (no $=1$, yes $=0)$ | 0.105 | 0.221 | 0.635 | 0.097 | 0.214 | 0.650 |  |

MPPLE: maximum pseudo partial likelihood estimator; AIPW: augmented inverse probability weighting estimator; SE: estimated standard error of $\hat{\beta}_{n}$


Fig. 1 Cumulative residual process for the evaluation of the parametric model $\pi_{1}\left(\boldsymbol{W}, \boldsymbol{\gamma}_{0}\right)$ based on the EORTC bladder cancer trial data along with the $95 \%$ goodness-of-fit band (grey area) and the corresponding p-value.


Fig. 2 Predicted cumulative incidence functions (solid lines) of death from (a) bladder cancerr and (b) other causes, for a 68-year old patient who is fully active and who was assigned in the $1 / 3$ dose of BCG, along with the $95 \%$ simultaneous confidence bands based on equal precision (dotted lines) and Hall-Wellner-type weights (dashed lines). The time interval depicted was restricted according to the guidlines provided in subsection 3.2 of the main text.

## References

1. Cheng, S.C., Fine, J.P., Wei, L.J.: Prediction of cumulative incidence function under the proportional hazards model. Biometrics 54, 219-228 (1998)
2. Kosorok, M.R.: Introduction to Empirical Processes and Semiparametric Inference. Springer, New York (2008)
3. Spiekerman, C.F., Lin, D.Y.: Marginal regression models for multivariate failure time data. Journal of the American Statististical Association 93, 1164-1175 (1998)
4. van der Vaart, A.W., Wellner, J.A.: Weak Convergence and Empirical Processes with Applications to Statistics. Springer-Verlag, New York (1996)
