Supplementary Material for Information measures and design issues in the study of mortality deceleration: Findings for the gamma-Gompertz model

Marie Böhnstedt *,1,2 , Jutta Gampe¹, and Hein Putter²

 ¹ Max Planck Institute for Demographic Research, Rostock, Germany
 ² Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, The Netherlands

December 2020

Contents

S.1	Derivatives of gamma-Gompertz log-densities	1
S.2	Computational details	4
S.3	Additional figures and tables for empirical studies	5

S.1 Derivatives of gamma-Gompertz log-densities

In the following subsections, we give explicit formulas of the second-order partial derivatives of the log-density of complete or left-truncated observations from a gamma-Gompertz model. These derivatives are the basis for computing the Fisher information matrix $I(\theta)$ according to formula (3) or (3') in the main paper,

$$\boldsymbol{I}(\boldsymbol{\theta}) = -\mathbb{E}\left[\frac{\partial^2}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}^T} \ln f_X(X; \boldsymbol{\theta})\right].$$
(3)

^{*}e-mail: boehnstedt@demogr.mpg.de

S.1.1 Complete Data

For the gamma-Gompertz model (1), the log-density $\ln f_X(\cdot; a, b, \sigma^2)$ of complete data X takes the form

$$\ln f_X(x; a, b, \sigma^2) = \ln a + bx - \left(1 + \frac{1}{\sigma^2}\right) \ln \left[1 + \sigma^2 \frac{a}{b} \left(e^{bx} - 1\right)\right].$$

Its partial derivatives with respect to the parameters are calculated as

$$\begin{aligned} \frac{\partial \ln f_X}{\partial a} &= \frac{1}{a} - \frac{(\sigma^2 + 1)}{b} \cdot \frac{e^{bx} - 1}{1 + \sigma^2 \frac{a}{b} (e^{bx} - 1)}, \\ \frac{\partial \ln f_X}{\partial b} &= x - \frac{a(\sigma^2 + 1)}{b^2} \cdot \frac{bx e^{bx} - (e^{bx} - 1)}{1 + \sigma^2 \frac{a}{b} (e^{bx} - 1)}, \quad \text{and} \\ \frac{\partial \ln f_X}{\partial \sigma^2} &= \frac{1}{\sigma^4} \ln \left[1 + \sigma^2 \frac{a}{b} \left(e^{bx} - 1 \right) \right] - \left(1 + \frac{1}{\sigma^2} \right) \frac{a}{b} \cdot \frac{e^{bx} - 1}{1 + \sigma^2 \frac{a}{b} (e^{bx} - 1)}. \end{aligned}$$

The second-order partial derivatives equal

$$\frac{\partial^2 \ln f_X}{\partial a^2} = -\frac{1}{a^2} + \frac{\sigma^2(\sigma^2 + 1)}{b^2} \cdot \frac{(e^{bx} - 1)^2}{[1 + \sigma^2 \frac{a}{b}(e^{bx} - 1)]^2}
\frac{\partial^2 \ln f_X}{\partial a \partial b} = \frac{(\sigma^2 + 1)}{b^2} \cdot \frac{(e^{bx} - 1) - bxe^{bx}}{[1 + \sigma^2 \frac{a}{b}(e^{bx} - 1)]^2}
\frac{\partial^2 \ln f_X}{\partial a \partial \sigma^2} = \frac{1}{b^2} \cdot \frac{a(e^{bx} - 1)^2 - b(e^{bx} - 1)}{[1 + \sigma^2 \frac{a}{b}(e^{bx} - 1)]^2}
\frac{\partial^2 \ln f_X}{\partial b^2} = \frac{a(\sigma^2 + 1)}{b} \cdot \frac{\frac{2}{b}xe^{bx} - \frac{2}{b^2}(e^{bx} - 1) - \sigma^2 \frac{a}{b^3}(e^{bx} - 1)^2 + (\sigma^2 \frac{a}{b} - 1)x^2e^{bx}}{[1 + \sigma^2 \frac{a}{b}(e^{bx} - 1)]^2}
\frac{\partial^2 \ln f_X}{\partial b \partial \sigma^2} = \frac{a}{b} \cdot \frac{[\frac{1}{b}(e^{bx} - 1) - xe^{bx}][1 - \frac{a}{b}(e^{bx} - 1)]}{[1 + \sigma^2 \frac{a}{b}(e^{bx} - 1)]^2}
\frac{\partial^2 \ln f_X}{\partial (\sigma^2)^2} = -\frac{2}{\sigma^6} \ln \left[1 + \sigma^2 \frac{a}{b}(e^{bx} - 1)\right] + \frac{2}{\sigma^4} \frac{a}{b} \cdot \frac{e^{bx} - 1}{1 + \sigma^2 \frac{a}{b}(e^{bx} - 1)}
+ \left(1 + \frac{1}{\sigma^2}\right) \frac{a^2}{b^2} \cdot \frac{(e^{bx} - 1)^2}{[1 + \sigma^2 \frac{a}{b}(e^{bx} - 1)]^2}.$$
(S.1)

In the limit $\sigma^2 \to 0$, we obtain

$$\frac{\partial^2 \ln f_X}{\partial a^2} = -\frac{1}{a^2}$$
$$\frac{\partial^2 \ln f_X}{\partial a \partial b} = \frac{1}{b^2} (e^{bx} - 1) - \frac{1}{b} x e^{bx}$$

$$\begin{split} &\frac{\partial^2 \ln f_X}{\partial a \partial \sigma^2} = \frac{a}{b^2} (e^{bx} - 1)^2 - \frac{1}{b} (e^{bx} - 1) \\ &\frac{\partial^2 \ln f_X}{\partial b^2} = \frac{2a}{b^2} x e^{bx} - \frac{2a}{b^3} (e^{bx} - 1) - \frac{a}{b} x^2 e^{bx} \\ &\frac{\partial^2 \ln f_X}{\partial b \partial \sigma^2} = \frac{a}{b} \left[\frac{1}{b} (e^{bx} - 1) - x e^{bx} \right] \left[1 - \frac{a}{b} (e^{bx} - 1) \right] \\ &\frac{\partial^2 \ln f_X}{\partial (\sigma^2)^2} = -\frac{2a^3}{3b^3} (e^{bx} - 1)^3 + \frac{a^2}{b^2} (e^{bx} - 1)^2, \end{split}$$

where we have applied the rule of L'Hôpital for the last equation.

S.1.2 Left-Truncated Data

For the gamma-Gompertz model (1), the log-density $\ln f_{X|X>y}(\cdot; a, b, \sigma^2)$ for data $(X \mid X > y)$, left-truncated at age y, takes the form

$$\ln f_{X|X>y}(x; a, b, \sigma^2) = \ln f_X(x; a, b, \sigma^2) - \ln S_X(y; a, b, \sigma^2)$$
$$= \ln f_X(x; a, b, \sigma^2) + \frac{1}{\sigma^2} \ln \left[1 + \sigma^2 \frac{a}{b} (e^{by} - 1) \right],$$

for x > y. The partial derivatives of the first summand have already been presented in Section S.1.1. Thus, we focus on the second summand here, which we denote as $g(y; a, b, \sigma^2)$. The partial derivatives of g with respect to the parameters are computed as

$$\begin{aligned} \frac{\partial g}{\partial a} &= \frac{1}{b} \cdot \frac{e^{by} - 1}{1 + \sigma^2 \frac{a}{b} (e^{by} - 1)}, \\ \frac{\partial g}{\partial b} &= \frac{a}{b^2} \cdot \frac{by e^{by} - (e^{by} - 1)}{1 + \sigma^2 \frac{a}{b} (e^{by} - 1)}, \quad \text{and} \\ \frac{\partial g}{\partial \sigma^2} &= -\frac{1}{\sigma^4} \ln \left[1 + \sigma^2 \frac{a}{b} \left(e^{by} - 1 \right) \right] + \frac{a}{b\sigma^2} \cdot \frac{(e^{by} - 1)}{1 + \sigma^2 \frac{a}{b} (e^{by} - 1)}. \end{aligned}$$

The second-order partial derivatives read

$$\begin{split} \frac{\partial^2 g}{\partial a^2} &= -\frac{\sigma^2}{b^2} \cdot \frac{(e^{by}-1)^2}{[1+\sigma^2 \frac{a}{b}(e^{by}-1)]^2}\\ \frac{\partial^2 g}{\partial a \partial b} &= \frac{1}{b^2} \cdot \frac{1-e^{by}+bye^{by}}{[1+\sigma^2 \frac{a}{b}(e^{by}-1)]^2}\\ \frac{\partial^2 g}{\partial a \partial \sigma^2} &= -\frac{a}{b^2} \cdot \frac{(e^{by}-1)^2}{[1+\sigma^2 \frac{a}{b}(e^{by}-1)]^2} \end{split}$$

$$\frac{\partial^2 g}{\partial b^2} = \frac{a}{b} \cdot \frac{\frac{2}{b^2} (e^{by} - 1) + \sigma^2 \frac{a}{b^3} (e^{by} - 1)^2 - \frac{2}{b} y e^{by} + (1 - \sigma^2 \frac{a}{b}) y^2 e^{by}}{[1 + \sigma^2 \frac{a}{b} (e^{by} - 1)]^2}$$
$$\frac{\partial^2 g}{\partial b \partial \sigma^2} = -\frac{a^2}{b^3} \cdot \frac{by e^{by} (e^{by} - 1) - (e^{by} - 1)^2}{[1 + \sigma^2 \frac{a}{b} (e^{by} - 1)]^2}$$
$$\frac{\partial^2 g}{\partial (\sigma^2)^2} = \frac{2}{\sigma^6} \ln \left[1 + \sigma^2 \frac{a}{b} (e^{by} - 1) \right] - \frac{2}{\sigma^4} \cdot \frac{\frac{a}{b} (e^{by} - 1)}{1 + \sigma^2 \frac{a}{b} (e^{by} - 1)}$$
$$- \frac{1}{\sigma^2} \left[\frac{\frac{a}{b} (e^{by} - 1)}{1 + \sigma^2 \frac{a}{b} (e^{by} - 1)} \right]^2. \tag{S.2}$$

In the limit $\sigma^2 \to 0$, we have

$$\begin{split} \frac{\partial^2 g}{\partial a^2} &= 0\\ \frac{\partial^2 g}{\partial a \partial b} &= \frac{1}{b^2} \cdot [1 - e^{by} + by e^{by}]\\ \frac{\partial^2 g}{\partial a \partial \sigma^2} &= -\frac{a}{b^2} (e^{by} - 1)^2\\ \frac{\partial^2 g}{\partial b^2} &= \frac{a}{b} \left[\frac{2}{b^2} (e^{by} - 1) - \frac{2}{b} y e^{by} + y^2 e^{by} \right]\\ \frac{\partial^2 g}{\partial b \partial \sigma^2} &= -\frac{a^2}{b^3} \left[by e^{by} (e^{by} - 1) - (e^{by} - 1)^2 \right]\\ \frac{\partial^2 g}{\partial (\sigma^2)^2} &= \frac{2a^3}{3b^3} (e^{by} - 1)^3, \end{split}$$

by again applying the rule of L'Hôpital for the last equation.

S.2 Computational details on the calculation of the observed Fisher information matrix

The calculation of the observed Fisher information matrix $\mathcal{J}(\hat{\theta}_n)$ in the gamma-Gompertz model is based on the negative second-order partial derivatives of the log-likelihood and the maximum likelihood estimate (MLE) $\hat{\theta}_n$ of the parameter vector $\boldsymbol{\theta} = (a, b, \sigma^2)^T$.

The MLE can be determined by numerical optimization of the log-likelihood using function nlm() in R. Optimization over the log-scale of the parameters ensures non-negativity of the parameter estimates. The numerical stability of the estimation problem for values of σ^2 close to zero can be improved by providing also the analytic gradient of the log-likelihood to the optimization routine as well as by using Taylor

expansions of the log-likelihood and the gradient if the current value of σ^2 is smaller than 10^{-5} . In addition, a number of different starting values for the parameter σ^2 should be considered.

Although we have derived explicit formulas for the partial derivatives of the logdensity of the gamma-Gompertz model, it turns out that the expressions for the second-order partial derivatives with respect to σ^2 , given in (S.1) and (S.2), are not numerically stable if σ^2 approaches zero. Therefore, when calculating $\mathcal{J}(\hat{\theta}_n)$, we approximate the term $\ln \left[1 + \sigma^2 \frac{a}{b}(e^{bx} - 1)\right]$ in expressions (S.1) and (S.2) by a Taylor expansion if $\hat{\sigma}^2 < 10^{-5}$.

S.3 Additional figures and tables for empirical studies

In this section, we present additional figures and tables displaying some results of our empirical studies in Section 5 of the main paper.

- Table S.1 reports on the performance of the numerical integration approach for computing the Fisher information $I(\theta)$.
- The relation between the information measure κ^{-2} and the variance of $\hat{\sigma}^2$, as discussed in Section 3.3 of the main paper, is illustrated in Figure S.1.
- The information measures corresponding to the criteria of D-, A-, and Eoptimality (see Section 2.3 of the main paper) are examined in Figures S.2
 and S.3 for Scenarios S_1 and S_3 , respectively.
- In Section S.3.3, we study the various information measures and the performance of the likelihood ratio test for scenarios with different values for the Gompertz parameters. More precisely, for Scenarios S_4 to S_6 , we set a = 0.021and b = 0.082, while the values for the frailty variance are the same as in the previous scenarios, that is, $\sigma^2 = 0.043$ in Scenario S_4 , $\sigma^2 = 0.021$ in Scenario S_5 , and $\sigma^2 = 0$ in Scenario S_6 .

Figure S.4 depicts the patterns of the criterion of D_A -optimality across different age ranges for Scenarios S_4 and S_6 , while in Figures S.5 and S.6 the criteria of D-, A-, and E-optimality are presented. Figure S.7 displays the criterion $[\boldsymbol{I}(\boldsymbol{\theta})]_{33}$ for Scenarios S_4 and S_6 .

Finally, the power of the likelihood ratio test to detect a positive σ^2 in Scenarios S_4 ($\sigma^2 = 0.043$) and S_5 ($\sigma^2 = 0.021$) based on different age ranges and

sample sizes at a level of $\alpha = 0.05$ was calculated based on formula (6) of the main paper. The results are presented in Table S.2.

Table S.1: Mean relative difference between the Fisher information $I_n(\theta)$ and the average $\overline{\mathcal{J}}$ of observed Fisher information matrices across 1,000 replications of Scenarios S_1 , S_2 , and S_3 for different sample sizes and age ranges

	Survivors to ages				
Scenario	n_{90+}	60+	80+	85 +	90+
$S_1: \sigma^2 = 0.043$	10,000	0.00027	0.00344	0.01116	0.05487
	20,000	0.00019	0.00114	0.00512	0.02553
	$105,\!000$	0.00009	0.00025	0.00136	0.00579
$S_2: \sigma^2 = 0.021$	10,000	0.00053	0.00356	0.01382	0.06592
	20,000	0.00023	0.00134	0.00614	0.03601
	$105,\!000$	0.00009	0.00033	0.00119	0.00591
$S_3: \sigma^2 = 0$	10,000	0.00816	0.01540	0.03389	0.12065
	20,000	0.00611	0.01073	0.02114	0.07251
	$105,\!000$	0.00249	0.00504	0.00997	0.02829

S.3.1 Relation between information measures and estimator precision

Figure S.1: Information measure $n\kappa^{-2}$ (red-dashed line, crosses) and inverse of the empirical variance of $\hat{\sigma}^2$ (black-solid line, circles) based on 1,000 samples from a gamma-Gompertz model under the medium-sized Scenarios S_1 (top) and S_3 (bottom) depending on the age range of the data (left to right: 60+, 80+, 85+, or 90+). Left: absolute values, right: relative to the value for the 60+ setting

S.3.2 Alternative information measures

Figure S.2: Information measures \mathcal{I} (black-solid line, circles) and scaled measures $\mathcal{I}^{(s)}$ (red-dashed line, crosses) under Scenario S_1 depending on the age range of the data (left to right: 60+, 80+, 85+, or 90+). Top: $\mathcal{I} = \det(\boldsymbol{I}(\boldsymbol{\theta}))$ for *D*-optimality, middle: $\mathcal{I} = 1/\text{tr}([\boldsymbol{I}(\boldsymbol{\theta})]^{-1})$ for *A*-optimality, bottom: \mathcal{I} as the minimum eigenvalue of $\boldsymbol{I}(\boldsymbol{\theta})$ for *E*-optimality. Left: absolute values of (scaled) \mathcal{I} , right: (scaled) ratios $\mathcal{I}_{x+}/\mathcal{I}_{80+}$ for x = 80, 85, 90

Figure S.3: Information measures \mathcal{I} (black-solid line, circles) and scaled measures $\mathcal{I}^{(s)}$ (red-dashed line, crosses) under Scenario S_3 depending on the age range of the data (left to right: 60+, 80+, 85+, or 90+). Top: $\mathcal{I} = \det(\boldsymbol{I}(\boldsymbol{\theta}))$ for *D*-optimality, middle: $\mathcal{I} = 1/\text{tr}([\boldsymbol{I}(\boldsymbol{\theta})]^{-1})$ for *A*-optimality, bottom: \mathcal{I} as the minimum eigenvalue of $\boldsymbol{I}(\boldsymbol{\theta})$ for *E*-optimality. Left: absolute values of (scaled) \mathcal{I} , right: (scaled) ratios $\mathcal{I}_{x+}/\mathcal{I}_{80+}$ for x = 80, 85, 90

S.3.3 Information measures and power of the likelihood ratio test for scenarios with different values of the Gompertz parameters

Figure S.4: Information measure $\mathcal{I} = \kappa^{-2}$ (black-solid line, circles) and scaled measure $\mathcal{I}^{(s)}$ (red-dashed line, crosses) under Scenarios S_4 (top) and S_6 (bottom) depending on the age range of the data (left to right: 60+, 80+, 85+, or 90+). Left: absolute values of (scaled) \mathcal{I} , right: (scaled) ratios $\mathcal{I}_{x+}/\mathcal{I}_{80+}$ for x = 80, 85, 90

Figure S.5: Information measures \mathcal{I} (black-solid line, circles) and scaled measures $\mathcal{I}^{(s)}$ (red-dashed line, crosses) under Scenario S_4 depending on the age range of the data (left to right: 60+, 80+, 85+, or 90+). Top: $\mathcal{I} = \det(\boldsymbol{I}(\boldsymbol{\theta}))$ for *D*-optimality, middle: $\mathcal{I} = 1/\text{tr}([\boldsymbol{I}(\boldsymbol{\theta})]^{-1})$ for *A*-optimality, bottom: \mathcal{I} as the minimum eigenvalue of $\boldsymbol{I}(\boldsymbol{\theta})$ for *E*-optimality. Left: absolute values of (scaled) \mathcal{I} , right: (scaled) ratios $\mathcal{I}_{x+}/\mathcal{I}_{80+}$ for x = 80, 85, 90

Figure S.6: Information measures \mathcal{I} (black-solid line, circles) and scaled measures $\mathcal{I}^{(s)}$ (red-dashed line, crosses) under Scenario S_6 depending on the age range of the data (left to right: 60+, 80+, 85+, or 90+). Top: $\mathcal{I} = \det(\boldsymbol{I}(\boldsymbol{\theta}))$ for *D*-optimality, middle: $\mathcal{I} = 1/\text{tr}([\boldsymbol{I}(\boldsymbol{\theta})]^{-1})$ for *A*-optimality, bottom: \mathcal{I} as the minimum eigenvalue of $\boldsymbol{I}(\boldsymbol{\theta})$ for *E*-optimality. Left: absolute values of (scaled) \mathcal{I} , right: (scaled) ratios $\mathcal{I}_{x+}/\mathcal{I}_{80+}$ for x = 80, 85, 90

Figure S.7: Information measure $\mathcal{I} = [\mathbf{I}(\boldsymbol{\theta})]_{33}$ (black-solid line, circles) and scaled measure $\mathcal{I}^{(s)}$ (red-dashed line, crosses) depending on the age range of the data (left to right: 60+, 80+, 85+, or 90+) under Scenarios S_4 (left) and S_6 (right)

Table S.2: Power β of the likelihood ratio test, performed at the 5% level, according to formula (6), under Scenarios S_4 ($\sigma^2 = 0.043$) and S_5 ($\sigma^2 = 0.021$) for three sample size settings (s – small, m – medium, l – large) and varying age range

				Sı	irvivors	to ages			
	60+		80+		85+		90+		
Scen.	n	n_{60+}	β_{60+}	n_{80+}	β_{80+}	n_{85+}	β_{85+}	n_{90+}	β_{90+}
$\overline{S_4}$	\mathbf{S}	133,506	1.000	47,165	0.678	25,090	0.352	10,000	0.157
	m	267,012	1.000	$94,\!329$	0.909	50,179	0.557	20,000	0.228
	1	$1,\!401,\!813$	1.000	$495,\!229$	1.000	$263,\!441$	0.993	$105,\!000$	0.662
S_5	\mathbf{S}	143,746	0.935	50,181	0.296	26,196	0.163	10,000	0.094
	m	$287,\!493$	0.998	100,362	0.470	$52,\!392$	0.239	20,000	0.119
	1	$1,\!509,\!337$	1.000	$526,\!901$	0.975	$275,\!058$	0.692	$105,\!000$	0.281