Supplementary Material for
Information measures and design issues in the study
of mortality deceleration:

Findings for the gamma-Gompertz model

Marie Bohnstedt*}!?, Jutta Gampe', and Hein Putter?

I Max Planck Institute for Demographic Research, Rostock, Germany
2 Department of Biomedical Data Sciences, Leiden University Medical Center,
Leiden, The Netherlands

December 2020

Contents

IS.1 Derivatives of gamma-Gompertz log-densities| 1
IS.2 Computational details| 4
IS.3 Additional figures and tables for empirical studies| 5

S.1 Derivatives of gamma-Gompertz log-densities

In the following subsections, we give explicit formulas of the second-order par-
tial derivatives of the log-density of complete or left-truncated observations from a
gamma-Gompertz model. These derivatives are the basis for computing the Fisher
information matrix I(0) according to formula (3) or (3’) in the main paper,
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S.1.1 Complete Data

For the gamma-Gompertz model (1), the log-density In fx(-;a,b,c?) of complete
data X takes the form
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Its partial derivatives with respect to the parameters are calculated as
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The second-order partial derivatives equal
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In the limit 02 — 0, we obtain
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where we have applied the rule of L’Ho6pital for the last equation.

S.1.2 Left-Truncated Data

For the gamma-Gompertz model (1), the log-density In fx|xs,(+;a,b,0?) for data
(X | X > y), left-truncated at age y, takes the form

In fxxsy(250,b,0%) = In fx(x;a,b,0°) — In Sx(y; a, b,0?)

1 a
=In fx(w;0,b,0%) + gln 1+025(eby — 1),

for x > y. The partial derivatives of the first summand have already been presented
in Section [S.I.1] Thus, we focus on the second summand here, which we denote
as g(y;a,b,0?). The partial derivatives of g with respect to the parameters are

computed as
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The second-order partial derivatives read
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by again applying the rule of L'Hopital for the last equation.

S.2 Computational details on the calculation of the observed Fisher

information matrix

The calculation of the observed Fisher information matrix J(,) in the gamma-
Gompertz model is based on the negative second-order partial derivatives of the
log-likelihood and the maximum likelihood estimate (MLE) 0, of the parameter
vector 0 = (a,b,0%)T.

The MLE can be determined by numerical optimization of the log-likelihood using
function nlm() in R. Optimization over the log-scale of the parameters ensures non-
negativity of the parameter estimates. The numerical stability of the estimation
problem for values of o2 close to zero can be improved by providing also the analytic

gradient of the log-likelihood to the optimization routine as well as by using Taylor
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expansions of the log-likelihood and the gradient if the current value of o2 is smaller
than 107°. In addition, a number of different starting values for the parameter o
should be considered.

Although we have derived explicit formulas for the partial derivatives of the log-
density of the gamma-Gompertz model, it turns out that the expressions for the
second-order partial derivatives with respect to o2, given in and , are
not numerically stable if o2 approaches zero. Therefore, when calculating J (én),
we approximate the term In [1 + 02%(61” — 1)} in expressions and by a

Taylor expansion if 62 < 107°.

S.3 Additional figures and tables for empirical studies

In this section, we present additional figures and tables displaying some results of

our empirical studies in Section 5 of the main paper.

Table reports on the performance of the numerical integration approach

for computing the Fisher information I(6).

The relation between the information measure =2 and the variance of 62, as

discussed in Section 3.3 of the main paper, is illustrated in Figure [S.1]

e The information measures corresponding to the criteria of D-, A-, and E-
optimality (see Section 2.3 of the main paper) are examined in Figures
and [S.3] for Scenarios S; and Ss, respectively.

In Section [S.3.3] we study the various information measures and the perfor-
mance of the likelihood ratio test for scenarios with different values for the
Gompertz parameters. More precisely, for Scenarios S to Sg, we set a = 0.021
and b = 0.082, while the values for the frailty variance are the same as in the
previous scenarios, that is, 0? = 0.043 in Scenario S;, 0? = 0.021 in Sce-
nario S5, and o2 = 0 in Scenario Ss.

Figure [S.4] depicts the patterns of the criterion of D 4-optimality across differ-
ent age ranges for Scenarios Sy and Sg, while in Figures[S.5)and [S.6] the criteria
of D-, A-, and F-optimality are presented. Figure displays the criterion
[1(0)]33 for Scenarios Sy and S.

Finally, the power of the likelihood ratio test to detect a positive o2 in Sce-
narios Sy (6% = 0.043) and S5 (02 = 0.021) based on different age ranges and
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sample sizes at a level of a = 0.05 was calculated based on formula (6) of the
main paper. The results are presented in Table

Table S.1: Mean relative difference between the Fisher information I,,(0) and the

average J of observed Fisher information matrices across 1,000 replica-
tions of Scenarios 57, So, and S3 for different sample sizes and age ranges

Survivors to ages

Scenario N+ 60+ 80+ 85+ 90+
Si: 0% =0.043 10,000 0.00027 0.00344 0.01116 0.05487
20,000 0.00019 0.00114 0.00512 0.02553
105,000 0.00009 0.00025 0.00136 0.00579
Sy: 0% =0.021 10,000 0.00053 0.00356 0.01382 0.06592
20,000 0.00023 0.00134 0.00614 0.03601
105,000 0.00009 0.00033 0.00119 0.00591
Sy 02 =0 10,000 0.00816 0.01540 0.03389 0.12065
20,000 0.00611 0.01073 0.02114 0.07251
105,000 0.00249 0.00504 0.00997 0.02829
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S.3.1 Relation between information measures and estimator precision
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Figure S.1: Information measure nx~2 (red-dashed line, crosses) and inverse of the

empirical variance of 62 (black-solid line, circles) based on 1,000 samples
from a gamma-Gompertz model under the medium-sized Scenarios S;
(top) and S5 (bottom) depending on the age range of the data (left to
right: 60+, 80+, 85+, or 90+). Left: absolute values, right: relative to
the value for the 60+ setting
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S.3.2 Alternative information measures
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Figure S.2: Information measures Z (black-solid line, circles) and scaled mea-

sures Z) (red-dashed line, crosses) under Scenario S; depending on
the age range of the data (left to right: 60+, 80+, 85+, or 90+).
Top: Z = det(I(0)) for D-optimality, middle: Z = 1/tr([I(0)]™!) for
A-optimality, bottom: Z as the minimum eigenvalue of I(0) for E-
optimality. Left: absolute values of (scaled) Z, right: (scaled) ratios

T+ /Tsos for z = 80,85,90
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Figure S.3: Information measures Z (black-solid line, circles) and scaled mea-

sures Z®) (red-dashed line, crosses) under Scenario S3 depending on
the age range of the data (left to right: 60+, 80+, 85+, or 90+).
Top: Z = det(I(0)) for D-optimality, middle: Z = 1/tr([I(0)]™') for
A-optimality, bottom: Z as the minimum eigenvalue of I(0) for E-
optimality. Left: absolute values of (scaled) Z, right: (scaled) ratios

Tos /Tsos for z = 80,85,90
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S.3.3 Information measures and power of the likelihood ratio test

for scenarios with different values of the Gompertz parameters
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Figure S.4: Information measure Z = =2 (black-solid line, circles) and scaled mea-
sure Z(*) (red-dashed line, crosses) under Scenarios Sy (top) and Sg (bot-
tom) depending on the age range of the data (left to right: 60+, 80+,
85+, or 90+). Left: absolute values of (scaled) Z, right: (scaled) ratios
Zot/Iso+ for x = 80,85,90
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Figure S.5: Information measures Z (black-solid line, circles) and scaled mea-
sures Z®) (red-dashed line, crosses) under Scenario S, depending on
the age range of the data (left to right: 60+, 80+, 85+, or 90+).
Top: Z = det(I(0)) for D-optimality, middle: Z = 1/tr([I(0)]™!) for
A-optimality, bottom: Z as the minimum eigenvalue of I(0) for E-
optimality. Left: absolute values of (scaled) Z, right: (scaled) ratios

T, /Tso,. for z = 80,85, 90
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Figure S.6: Information measures Z (black-solid line, circles) and scaled mea-
sures Z®) (red-dashed line, crosses) under Scenario Ss depending on
the age range of the data (left to right: 60+, 80+, 85+, or 90+).
Top: Z = det(I(0)) for D-optimality, middle: Z = 1/tr([I(0)]™!) for
A-optimality, bottom: Z as the minimum eigenvalue of I(0) for E-
optimality. Left: absolute values of (scaled) Z, right: (scaled) ratios

T, /Tso,. for z = 80,85, 90
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Figure S.7: Information measure Z = [I(0)]33 (black-solid line, circles) and scaled

measure Z®) (red-dashed line, crosses) depending on the age range of
the data (left to right: 60+, 80+, 85+, or 90+) under Scenarios Sy (left)
and Sg (right)

Table S.2: Power ( of the likelihood ratio test, performed at the 5% level, according

to formula (6), under Scenarios Sy (6 = 0.043) and S5 (0% = 0.021) for
three sample size settings (s — small, m — medium, 1 — large) and varying
age range

Survivors to ages

287,493 0.998 100,362 0.470 52,392 0.239 20,000 0.119

60+ 80+ 85+ 90+
Scen. n NG04 Beo+ N80+ Bso+ 854 Bss+ noo+  Boot
Sy S 133,506 1.000 47,165 0.678 25,090 0.352 10,000  0.157
m 267,012  1.000 94,329 0.909 50,179  0.557 20,000 0.228
1 1,401,813 1.000 495,229 1.000 263,441 0.993 105,000 0.662
S S 143,746  0.935 50,181 0.296 26,196 0.163 10,000 0.094
m
|

1,509,337 1.000 526,901 0.975 275,058 0.692 105,000 0.281
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