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A Results exact biomarker information: out-of-sample performance

To investigate the out-of-sample performance of the methods, we assume a uniform distribution for (ρ,τ)
over a larger set than Z. We can write Z as

Z = {(ρ,τ) : ρL ≤ ρ ≤ ρU ,τL ≤ τ ≤ τU}= {(ρ,τ) : |ρ̄−ρ| ≤ ερ , |τ̄− τ| ≤ ετ}, (A.1)

where (ερ ,ετ ) is the maximum deviation from the nominal scenario (ρ̄, τ̄). This allows us to define

Zc = {(ρ,τ) : |ρ̄−ρ| ≤ cερ , |τ̄− τ| ≤ cετ}, (A.2)

where c> 0 is a parameter. We assume a uniform distribution over the new set Zc. If c= 1, we have Zc = Z,
so we sample exactly from Z. If c > 1, we sample from an interval that is c2 times as large as Z (c times
larger for both ρ and τ). For c = 2 we obtain the results in Table A.1. The stage-1 dose d1 is the same as in
?? in the main manuscript for all methods except PI, because PI is the only method that is aware that the
sample is not taken from uncertainty set Z but from Z2. For NOM, the maximum violation percentage has
increased slightly. All other methods are able to deal with the out-of-sample realizations and do not have
any OAR constraint violations.

Due to the larger sampling space (the area of Z2 is four times the area of Z), the difference between
sample mean and sample worst-case performance is much larger than in ?? for all methods. The true
worst-case objective value in Z is still lower than the sample worst-case in Z2. The reason for this is that
the true worst-case scenario can differ per patient.

NOM-FH and ARO are near optimal for the worst-case sample scenario, and are also close to PI
in the sample 5% quantile and sample mean. The relative performance of the adaptive methods remains
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Method
NOM NOM-FH RO RO-FH ARO PI

Tumor BED - sample mean (Gy) 156.49 158.92 151.30 156.83 158.87 159.06
Tumor BED - sample 5% quantile (Gy) 140.14 142.11 137.55 141.11 142.11 142.32
Tumor BED - sample wc (Gy) 134.06 136.80 132.56 136.09 136.79 137.12
Tumor BED - wc over Z (Gy) 114.72 116.19 116.19 116.19 116.19 116.19
OAR violation - mean (%) 1.16 0 0 0 0 0
OAR violation - max (%) 5.30 0 0 0 0 0
Stage-1 dose d1 (Gy) 1.50 1.50 2.29 2.29 1.51 1.73
Stage-2 dose d2 (Gy) 3.45 3.21 2.48 2.92 3.21 3.15
Stage-2 fractions N2 20 22.9 27.2 22.9 22.9 22.9

Table A.1: Results for experiments with exact biomarker information and uniform sampling of (ρ,τ)
over Z2. For each scenario, results are averaged over 20 patients∗. All methods optimize for worst-case
tumor BED in Z, which is displayed in bold.
∗: the maximum OAR violation is computed over all patients and scenarios
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Fig. A.1: Cumulative scenario-tumor BED graph for experiments with exact biomarker information and
uniform sampling of (ρ,τ) over Z2 (200 scenarios). A point (x,y) indicates that in y% of scenarios the
tumor BED (averaged over 20 patients) is at least x Gy. ARO and NOM-FH are very close to PI.

mostly unchanged, RO-FH performs slightly worse than NOM-FH and ARO, similar to ??. Compared to
??, NOM and RO have poor performance across the sample. This indicates bad performance of the static
methods on scenarios outside of Z.

Figure A.1 shows the complete cumulative scenario-tumor BED graph for the ‘average patient’. Com-
pared to ?? in the main manuscript, the main difference is the decrease in performance of NOM. Naturally,
the performance of static nominal optimization is directly related to the magnitude of possible deviations
from the nominal scenario, which is higher in Z2 than in Z.
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B Extra analyses and proofs

For convenience, we repeat the definitions of functions B, g and f :

B(d′,N′;ρ) = ϕD
(

1+
ϕD
T

ρ

)
−σd1N1−σ

2
ρd2

1 N1 (B.1a)

g(d′,N′,N′′;ρ) =
−1+

√
1+ 4ρ

N′′ B(d
′,N′;ρ)

2σρ
(B.1b)

f (d1,N2;ρ,τ) =

{
N1d1 +N2g(d1,N1,N2;ρ)+ τ

(
N1d2

1 +N2g(d1,N1,N2;ρ)2) if d1 ∈ [0,g(0,0,N1;ρ)]

−∞ otherwise,
(B.1c)

see (??), (??) and (??).

B.1 Proof ??

First, we show that for fixed d1, feasible to (??), and given (ρ,τ), it is optimal to minimize the number of
stage-2 fractions if τ ≥ σρ , and it is optimal to maximize the number of stage-2 fractions otherwise. After
that, we show that with stage-2 dose d2 such that (??) holds with equality, N2(ρ,τ) = Nmin

2 is feasible if
τ ≥ σρ and N2(ρ,τ) = Nmax

2 is feasible otherwise.
Consider problem (??). At the start of stage 2, we have delivered N1 fractions with dose d1 per fraction.

Let (ρ,τ) be the realization of the uncertain parameters. The stage-2 problem reads

N1d1 + τN1d2
1 +max

d2 ,N2
N2d2 + τN2d2

2 (B.2a)

s.t. σN2d2 +ρσ
2N2d2

2 ≤ B(d1,N1,ρ) (B.2b)

d2 ≥ dmin (B.2c)

N2 ∈ {Nmin
2 , . . . ,Nmax

2 }. (B.2d)

This is a static fractionation problem. Constraint (B.2b) will hold with equality at the optimum, because it
is the only dose-limiting constraint. This yields

d∗2(d1,N2;ρ) = g(d1,N1,N2;ρ). (B.3)

Secondly, this allows us to rewrite the objective to

max
d2 ,N2

N2d2

(
σρ− τ

σρ

)
+

τB(d1,N1,ρ)

σ2ρ
, (B.4)

which implies that if τ > σρ it is optimal to minimize d2N2. If τ < σρ it is optimal to maximize d2N2,
and if τ = σρ the objective value is independent of the value of N2. Similar results are obtained in Mizuta
et al. (2012); Bortfeld et al. (2015). As given in ??, at the optimum

N2d∗2(d1,N2;ρ) = N2g(d1,N1,N2;ρ) =
−N2 +

√
N2

2 +4N2ρB(d1,N1;ρ)

2σρ
, (B.5)

and it is straightforward to show that

∂N2g(d1,N1,N2;ρ)

∂N2
≥ 0. (B.6)

Hence, if τ >σρ , it is optimal to minimize the number of fractions, and if τ <σρ it is optimal to maximize
the number of fractions. If τ = σρ , every feasible number of fractions is optimal.



4 Ten Eikelder et al.

For the second part, we must show that for any (ρ,τ) ∈ Z∩{τ ≥ σρ} resp. (ρ,τ) ∈ Z∩{τ < σρ}, it
is indeed possible to deliver Nmin

2 resp. Nmax
2 fractions with dose according to (B.3) in stage 2. That is, we

must show

g(d1,N1,Nmin
2 ;ρ)≥ dmin, ∀(ρ,τ) ∈ Z∩{τ ≥ σρ} (B.7a)

g(d1,N1,Nmax
2 ;ρ)≥ dmin, ∀(ρ,τ) ∈ Z∩{τ < σρ}, (B.7b)

which is equivalent to

d1 ≤ g(dmin,Nmin
2 ,N1;ρ), ∀(ρ,τ) ∈ Z∩{τ ≥ σρ} (B.8a)

d1 ≤ g(dmin,Nmax
2 ,N1;ρ), ∀(ρ,τ) ∈ Z∩{τ < σρ}. (B.8b)

Lemma 3a states that g is increasing or decreasing in ρ for a fixed first argument. Hence, it is sufficient to
consider only the largest and smallest value of ρ in either subset of Z. Therefore, (B.8) is equivalent to

d1 ≤ g(dmin,Nmin
2 ,N1;ρL) (B.9a)

d1 ≤ g(dmin,Nmin
2 ,N1;min{ τU

σ
,ρU}) (B.9b)

d1 ≤ g(dmin,Nmax
2 ,N1;

τL

σ
) (B.9c)

d1 ≤ g(dmin,Nmax
2 ,N1;ρU ). (B.9d)

From (B.1b) we see that function g is decreasing in its second argument, so (B.9b) is redundant. The
remaining three conditions in (B.9) hold true due to ??. Hence, an optimal decision rule for N2(·) is given
by

N∗2 (ρ,τ) =

{
Nmin

2 if τ ≥ σρ

Nmax
2 otherwise,

(B.10)

and

d∗2(d1;ρ,τ) =

{
g(d1,N1,Nmin

2 ;ρ) if τ ≥ σρ

g(d1,N1,Nmax
2 ;ρ) otherwise.

(B.11)

are optimal decision rules for N2(·) and d2(·), respectively. For τ 6= σρ , these give the unique optimal
decisions. For τ = σρ any N2 ∈ {Nmin

2 , . . . ,Nmax
2 } is optimal, and the corresponding optimal d2 follows

according to (B.3).

B.2 Proof ??

Due to ?? a stage-1 decision d1 is PARO according to ?? if conditions (??) hold with (d∗2(·),N∗2 (·))
plugged in. Thus, we must show that for any d1 ∈ XPARO there is no ARO d̄1 such that

f (d1,N∗2 (ρ,τ);ρ,τ)≤ f (d̄1,N∗2 (ρ,τ);ρ,τ) ∀(ρ,τ) ∈ Z (B.12a)

f (d1,N∗2 (ρ̄, τ̄); ρ̄, τ̄)< f (d̄1,N∗2 (ρ̄, τ̄); ρ̄, τ̄) for some (ρ̄, τ̄) ∈ Z. (B.12b)

If |XPARO| = 1, then the single element yields a strictly better objective value than all other elements in
XARO in either scenario (ρaux-min,τaux-min) or (ρaux-max,τaux-max) or both, so it is PARO. For the remain-
der of this proof we assume |XPARO| ≥ 2.

Consider Xaux-min. By construction of (ρaux-min,τaux-min) it holds that τaux-min 6= σρaux-min. Hence,
according to Lemma 4, there can be at most two values for d1 in Xaux-min that yield the same objective
value f in scenario (ρaux-min,τaux-min). Hence, |Xaux-min| = |XPARO| = 2. Denote the two elements of
XPARO by d′1 and d′′1 , let d′1 < d′′1 . Solutions d′1 and d′′1 are both optimal to (??) and (??). Hence, according
to Lemma 4, it holds that

d′′1 = t(d′1;ρ
aux-min,τaux-min) (B.13a)

d′′1 = t(d′1;ρ
aux-max,τaux-max). (B.13b)
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From the definition of t (see (C.21)) we derive for σρ 6= τ:

∂ t(d1;ρ,τ)

∂ρ
=

2N∗2 (ρ,τ)
N1 +N∗2 (ρ,τ)

∂g(d1,N1,N∗2 (ρ,τ);ρ)

∂ρ
, (B.14)

because N∗2 (ρ,τ) is constant in ρ unless σρ = τ . According to Lemma 3a, if for given N2 it holds that
d1 6= d−1 (N2) and d1 6= d+

1 (N2) (defined in (C.3)), then function g(d1,N1,N2,ρ) is strictly increasing or de-
creasing in ρ . By construction, it holds that d+

1 (N2) = t(d−1 (N2);ρ,τ) for any ρ . According to Lemma 2b,
we have d−1 (Nmin

2 ) 6= d−1 (Nmax
2 ), so d′1 cannot be equal to both. Additionally, it cannot hold that d′1 =

d+
1 (Nmin

2 ) or d′1 = d+
1 (Nmax

2 ), because it would imply d′′ ≤ d′. Hence, either d′1 /∈ {d−1 (Nmin
2 ),d+

1 (Nmin
2 )}

or d′1 /∈ {d−1 (Nmax
2 ),d+

1 (Nmax
2 )} holds (or both).

We show that in either case, we can construct two new scenarios where d′1 outperforms d′′1 in one
scenario, and vice versa in the other. Suppose d′1 /∈ {d−1 (Nmin

2 ),d+
1 (Nmin

2 )}. In this case, it holds that

∂ t(d′1;ρaux-min,τaux-min)

∂ρ
6= 0. (B.15)

We consider two new scenarios. Let ε > 0 be a sufficiently small number and define

(ρ1,τ1) = (ρaux-min− ε,τaux-min) (∈ int(Zmin)) (B.16a)

(ρ2,τ2) = (ρaux-min + ε,τaux-min). (∈ int(Zmin)) (B.16b)

This is visualized in Figure B.1. Due to (B.15) and (B.13a), it holds that(
t(d′1;ρ1,τ1)> d′′ ∧ t(d′1;ρ2,τ2)< d′′

)
∨
(
t(d′1;ρ1,τ1)< d′′ ∧ t(d′1;ρ2,τ2)> d′′

)
. (B.17)

If the first clause is is true, we obtain

f (d′1,N
min
2 ;ρ1,τ1)> f (d′′1 ,N

min
2 ;ρ1,τ1) (B.18a)

f (d′1,N
min
2 ;ρ2,τ2)< f (d′′1 ,N

min
2 ;ρ2,τ2), (B.18b)

where we used convexity of f (d1,Nmin
2 ;ρ,τ) for (ρ,τ) ∈ int(Zmin). Similarly, if the second clause of

(B.17) is true, we obtain

f (d′1,N
min
2 ;ρ1,τ1)< f (d′′1 ,N

min
2 ;ρ1,τ1) (B.19a)

f (d′1,N
min
2 ;ρ2,τ2)> f (d′′1 ,N

min
2 ;ρ2,τ2). (B.19b)

In either case, there is a scenario in Zmin where d′1 outperforms d′′1 and a scenario in Zmin where d′′1
outperforms d′1. Hence, both d′1 and d′′1 are PARO. Using similar arguments, we can show that in case
d′1 /∈ {d−1 (Nmax

2 ),d+
1 (Nmax

2 )} also both d′1 and d′′1 are PARO.

B.3 Proof ??

Consider problem (??). At the start of stage 2, we have delivered N1 fractions with dose d1 per fraction.
Let (ρ̂, τ̂) be the observation. The resulting stage-2 problem for (??) reads

max
d2 ,N2

min
(ρ,τ)∈Z(ρ̂,τ̂)

(N1d1 +N2d2)+ τ(N1d2
1 +N2d2

2) (B.20a)

s.t. σN2d2 +ρσ
2N2d2

2 ≤ B(d1,N1,ρ) ∀(ρ,τ) ∈ Zρ̂,τ̂ (B.20b)

d2 ≥ dmin (B.20c)

N2 ∈ {Nmin
2 , . . . ,Nmax

2 }. (B.20d)

This is a static robust optimization problem. Constraint (B.20b) will hold with equality at the optimum,
because it is the only dose-limiting constraint. Solving for d2 yields the constraint

d2 = g(d1,N1,N2;ρ), ∀(ρ,τ) ∈ Z(ρ̂,τ̂), (B.21)
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ρL ρU

τL

τU

(ρaux-min, τ aux-min)

(ρ1, τ1) (ρ2, τ2)

τ = σρ

ρ

τ

Fig. B.1: Case d′1 6= d−1 (Nmin
2 ). Construction of two new scenarios (ρ1,τ1) and (ρ2,τ2) from scenario

(ρaux-min,τaux-min). Solution d′1 outperforms d′′1 at one scenario, vice versa at the other.

and this is used to rewrite (B.20a) and (B.20b) in terms of functions f and g. Problem (B.20) is equivalent
to

max
N2

min
(ρ,τ)∈Z(ρ̂,τ̂)

f (d1,N2,ρ,τ) (B.22a)

s.t. g(d1,N1,N2;ρ)≥ dmin, ∀(ρ,τ) ∈ Z(ρ̂,τ̂) (B.22b)

N2 ∈ {Nmin
2 , . . . ,Nmax

2 }. (B.22c)

Similar to the exact case (??), in any worst-case realization it will hold that τ is at its lowest value, so
it is sufficient to consider only those observations (ρ,τ) ∈ Z(ρ̂,τ̂) with τ = τ̂L. Additionally, according to
Lemma 3 functions f and g are increasing or decreasing in ρ . Hence, there are two candidate worst-case
scenarios: (ρ̂L, τ̂L) and (ρ̂U , τ̂L). We can rewrite (B.22) to

max
N2

min
{

f (d1,N2, ρ̂L, τ̂L), f (d1,N2, ρ̂U , τ̂L)
}

(B.23a)

s.t. g(d1,N1,N2; ρ̂L)≥ dmin (B.23b)

g(d1,N1,N2; ρ̂U )≥ dmin (B.23c)

N2 ∈ {Nmin
2 , . . . ,Nmax

2 }. (B.23d)

We distinguish three cases:
– Case (ρ̂, τ̂)∈ Zmax

ID : Analogous to the proof of ??, one can show that for any realization (ρ,τ)∈ Z(ρ̂,τ̂)

it is optimal to maximize the number of fractions in stage 2. We plug in N∗2 (ρ,τ) = Nmax
2 and show

that it is feasible. Constraints (B.23b) and (B.23c) reduce to

min
{

g(d1,N1,Nmax
2 ; ρ̂L),g(d1,N1,Nmax

2 ; ρ̂U )
}
≥ dmin, (B.24)

which is equivalent to

d1 ≤min
{

g(dmin,Nmax
2 ,N1; ρ̂L),g(dmin,Nmax

2 ,N1; ρ̂U )
}
. (B.25)

It holds that ρ̂L ≥ τ̂L
σ
≥ τL

σ
, and ρ̂U ≤ ρU . According to Lemma 3a function g is either increasing or

decreasing in ρ for other arguments fixed. Hence, by ?? condition (B.25) holds. Hence, N∗2 (ρ,τ) =
Nmax

2 is feasible and optimal. Thus, (B.22) equals

min
{

f (d1,Nmax
2 , ρ̂L, τ̂L), f (d1,Nmax

2 , ρ̂U , τ̂L)
}
. (B.26)
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By definition of f , this implies

d2 = min
{

g(d1,N1,Nmax
2 ; ρ̂L),g(d1,N1,Nmax

2 ; ρ̂U )
}
. (B.27)

– Case (ρ̂, τ̂) ∈ Zmin
ID : Similar to the previous case. Analogous to the proof of ??, one can show that for

any realization (ρ,τ) ∈ Z(ρ̂,τ̂) it is optimal to minimize the number of fractions in stage 2. We plug
in N∗2 (ρ,τ) = Nmin

2 and show that it is feasible. Similar to the previous case, constraints (B.23b) and
(B.23c) reduce to

d1 ≤min
{

g(dmin,Nmin
2 ,N1; ρ̂L),g(dmin,Nmin

2 ,N1; ρ̂U )
}
. (B.28)

It holds that ρ̂L ≥ ρL, and ρ̂U ≤ ρU . Hence, by ??, Lemma 3a and using the fact that function g is
decreasing in its second argument, condition (B.28) holds. Hence, N∗2 (ρ,τ) = Nmin

2 is feasible and
optimal. Similar to the previous case, we find

d2 = min
{

g(d1,N1,Nmin
2 ; ρ̂L),g(d1,N1,Nmin

2 ; ρ̂U )
}
. (B.29)

– Case (ρ̂, τ̂) ∈ Zint
ID : The optimal number of fractions in stage-2 is not known a priori. By definition of

Zint
ID , it holds that ρ̂L ≥max{ρL,

τL
σ
−2rρ )} and ρ̂U ≤ ρU . By ?? it holds that

d1 ≤min
{

g(dmin,Nmax
2 ,N1;max{ρL,

τL

σ
−2rρ )},g(dmin,Nmax

2 ,N1;ρU )
}
. (B.30)

Lemma 3a, the fact that function g is decreasing in its third argument and (B.30) together imply that
(B.23b) and (B.23c) hold for any feasible N2. Hence, from problem (B.23) we derive

N∗2 (d1; ρ̂, τ̂) = argmax
N2∈{Nmin

2 ,...,Nmax
2 }

min
{

f (d1,N2, ρ̂L, τ̂L), f (d1,N2, ρ̂U , τ̂L)
}
, (B.31)

and by definition of f the corresponding value for d2 is

d2 = min
{

g(d1,N1,N∗2 (d1; ρ̂, τ̂); ρ̂L),g(d1,N1,N∗2 (d1; ρ̂, τ̂); ρ̂U )
}
. (B.32)

Combining the above three cases, we arrive at the optimal decision rules (??) and (??) for fixed d1.

B.4 Extra analysis to ??

This analysis makes use of the lemmas in Appendix C. Consider problem (??). For given d1, the optimal
stage-2 decision rules are given by ??. As stated in ??, we split the uncertainty set Z into three subsets. This
enables us to exploit the fact that depending on (ρ̂, τ̂) the value N∗2 (d1; ρ̂, τ̂) may be known in advance.
The split (??) is repeated here for convenience

Zmin
ID = {(ρ̂, τ̂) ∈ Z : τ̂L ≥ σρ̂U} (B.33a)

Zint
ID = {(ρ̂, τ̂) ∈ Z : σρ̂L < τ̂L < σρ̂U} (B.33b)

Zmax
ID = {(ρ̂, τ̂) ∈ Z : τ̂L ≤ σρ̂L}, (B.33c)

so that Z = Zmin
ID ∪Zint

ID ∪Zmax
ID . The associated sets of observation-realization pairs (ρ,τ, ρ̂, τ̂) are given by

U i =U ∩{(ρ,τ, ρ̂, τ̂) : (ρ̂, τ̂) ∈ Zi
ID}, i ∈ {min, int,max}, (B.34)

so it holds that U =Umin∪U int∪Umax. Set U i can be interpreted as the set of observation-realization pairs
for which the observation (ρ̂, τ̂) is in set Zi

ID. ?? illustrates the subsets Zi
ID. Set Umin consists of those

observation-realization pairs (ρ,τ, ρ̂, τ̂) for which N∗2 (d1; ρ̂, τ̂) = Nmax
2 . If (ρ,τ, ρ̂, τ̂) ∈U int, then based
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on the observation (ρ̂, τ̂) it is unclear what fractionation is worst-case optimal. Last, if (ρ,τ, ρ̂, τ̂) ∈Umax

we know N∗2 (d1; ρ̂, τ̂) = Nmin
2 . Problem (??) is equivalent to

max
d1 ,q

q (B.35a)

s.t. q≤ f (d1,Nmin
2 ;ρ,τ), ∀(ρ,τ, ρ̂, τ̂) ∈Umin (B.35b)

q≤ f (d1,N∗2 (d1; ρ̂, τ̂);ρ,τ), ∀(ρ,τ, ρ̂, τ̂) ∈U int (B.35c)

q≤ f (d1,Nmax
2 ;ρ,τ), ∀(ρ,τ, ρ̂, τ̂) ∈Umax (B.35d)

dmin ≤ d1 ≤ dmax
1 . (B.35e)

Similar to the exact case (??), in any worst-case realization it will hold that τ = τL. Therefore, any obser-
vation with τ̂− rτ > τL cannot yield the worst-case realization. Define

U i
L =Ui ∩{(ρ,τ, ρ̂, τ̂) : τ̂− rτ ≤ τL}, i ∈ {min, int,max}, (B.36)

which is the subset of U i of observation-realization pairs for which τL is a possible realization of τ . Con-
straints (B.35b)-(B.35e) can be replaced by

q≤ f (d1,Nmin
2 ;ρ,τ), ∀(ρ,τ, ρ̂, τ̂) ∈Umin

L (B.37a)

q≤ f (d1,N∗2 (d1; ρ̂, τ̂);ρ,τ), ∀(ρ,τ, ρ̂, τ̂) ∈U int
L (B.37b)

q≤ f (d1,Nmax
2 ;ρ,τ), ∀(ρ,τ, ρ̂, τ̂) ∈Umax

L (B.37c)

For (B.37a) and (B.37c) it remains to find the worst-case realization of ρ for which the observation-
realization pair is in Umin

L and Umax
L , respectively. According to Lemma 3b, function f is increasing or

decreasing in ρ for fixed d1, so it is sufficient to check the maximum and minimum realization of ρ for
which the observation-realization pair is in those sets. These are

min{ρ : (ρ,τ, ρ̂, τ̂) ∈Umin
L }= ρL, max{ρ : (ρ,τ, ρ̂, τ̂) ∈Umin

L }= τL

σ
(B.38a)

min{ρ : (ρ,τ, ρ̂, τ̂) ∈Umax
L }= τL

σ
, max{ρ : (ρ,τ, ρ̂, τ̂) ∈Umax

L }= ρU . (B.38b)

Plugging in ρ = τL
σ

in (B.37a) and (B.37c) yields q≤ K, with K defined by (??). Lemma 5 provides a con-
servative approximation of constraint (B.37b). Putting everything together, the optimum of the following
problem is a lower bound to the optimum of (B.35) (or, equivalently, (??)):

max
d1 ,q

q (B.39a)

s.t. q≤ f (d1,Nmin
2 ;ρL,τL) (B.39b)

q≤ f (d1,Nmax
2 ;ρU ,τL) (B.39c)

q≤ K (B.39d)

q≤ p(d1) (B.39e)

dmin ≤ d1 ≤ dmax
1 , (B.39f)

with p(d1) defined by (C.32) in Appendix C. Constraint (B.39e) is the only conservative constraint, all
other constraints are exact reformulations. In particular, this means that if for a solution the objective value
equals K, it is certain that this is an optimal solution. It is easy to obtain other straightforward conservative
approximations of (B.35c). For instance, a policy that delivers Nmin

2 or Nmax
2 fractions (or any number in

between, for that matter) for any observation (ρ̂, τ̂) ∈ Zint
ID is a conservative approximation. However, these

perform less good and do not use all available information, as explained in the proof of Lemma 5.

C Extra lemmas

This appendix states and proves several frequently used properties of functions g and f .
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Lemma 1 (Convexity/concavity f w.r.t. d1) Let ρ > 0, τ > 0 and N1,N2 ∈N+. Let d1 ∈ [0,g(0,0,N1;ρ)].
The following properties hold for function f :

– Function f (d1,N2;ρ,τ) is strictly convex in d1 if τ > ρσ , with unique minimizer g(0,0,N1 +N2;ρ);
– Function f (d1,N2;ρ,τ) is strictly concave in d1 if τ < ρσ , with unique maximizer g(0,0,N1 +N2;ρ);
– Function f (d1,N2;ρ,τ) is constant in d1 if τ = ρσ , with value 1

σ
B(0,0, τ

σ
).

Proof The partial derivative of f w.r.t. d1 is given by

∂ f (d1,N2;ρ,τ)

∂d1
= N1 +N2

∂g(d1,N1,N2;ρ)

∂d1
+ τ

(
2N1d1 +2N2g(d1,N1,N2;ρ)

∂g(d1,N1,N2;ρ)

∂d1

)
, (C.1)

where the partial derivative of g w.r.t. d1 is given by

∂g(d1,N1,N2;ρ)

∂d1
=− 1

N2
(N1 +2N1d1σρ)

(
1+

4ρ

N2
B(d1,N1;ρ)

)− 1
2
. (C.2)

Define h(d1,N2;ρ) = 1+4 ρ

N2
B(d1,N1;ρ). Then, plugging (C.2) in (C.1), we obtain

∂ f (d1,N2;ρ,τ)

∂d1
= (N1− (N1 +2N1d1σρ)h(d1,N2;ρ)−

1
2

+ τ

(
2N1d1−

2
N2

(N1 +2N1d1σρ)h(d1,N2;ρ)−
1
2 N2
−1+h(d1,N2;ρ)

1
2

2σρ

)
=

N1

σρ

(
h(d1,N2;ρ)−

1
2 (2σρd1 +1)−1

)
(τ−ρσ).

Further elementary math shows that h(d1,N2;ρ)−
1
2 (2σρd1 + 1)− 1 = 0 if and only if d1 = g(0,0,N1 +

N2;ρ). For the second derivative of f w.r.t. d1 we obtain:

∂ 2 f (d1,N2;ρ,τ)

∂d2
1

=
(

τ−ρσ

σρ
N1

)
∂

∂d1
h(d1,N2;ρ)−

1
2 (2σρd1 +1)

=
(

τ−ρσ

σρ
N1

)[
h(d1,N2;ρ)−

1
2 2σρ +

2ρ

N2
(2σρd1 +1)h(d1,N2,ρ)

− 3
2 (σN1 +2ρσ

2d1N1)

]
,

and the second part of this product is positive. Hence, its sign depends only on the term τ−ρσ . Combining
the result for the first and second derivative, we obtain

– Function f (d1,N2;ρ,τ) is strictly convex in d1 if τ > ρσ , with unique minimizer g(0,0,N1 +N2;ρ);
– Function f (d1,N2;ρ,τ) is strictly concave in d1 if τ < ρσ , with unique maximizer g(0,0,N1+N2;ρ);
– Function f (d1,N2;ρ,τ) is constant in d1 otherwise.

If τ = ρσ , we can rewrite f (d1,N2; τ

σ
,τ) to

f (d1,N2;
τ

σ
,τ) = max

d2

{
d1N1 +d2N2 + τ(d2

1 N1 +d2
2 N2) | σ(d1N1 +d2N2)+ρσ

2(d2
1 N1 +d2

2 N2)≤ B(0,0;ρ)
}

= max
d2

{
d1N1 +d2N2 + τ(d2

1 N1 +d2
2 N2) | σ(d1N1 +d2N2)+ρσ

2(d2
1 N1 +d2

2 N2) = B(0,0;ρ)
}

= max
d2

{
d1N1 +d2N2 + τ(d2

1 N1 +d2
2 N2) | d1N1 +d2N2 + τ(d2

1 N1 +d2
2 N2) =

1
σ

B(0,0,
τ

σ
)
}

=
1
σ

B(0,0,
τ

σ
).
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Define

d−1 (N2) =


ϕD−ϕD

(
1+(N1 +N2)

N2−T
N1T

) 1
2

σ(N1 +N2)
if N1 +N2 ≥ T ∧N1 ≤ T

−∞ otherwise

(C.3a)

d+
1 (N2) =


ϕD+ϕD

(
1+(N1 +N2)

N2−T
N1T

) 1
2

σ(N1 +N2)
if N1 +N2 ≥ T ∧N2 ≤ T

+∞ otherwise.

(C.3b)

If two functions f with equal N2 but different ρ intersect, d1 takes value d−1 (N2) or d+
1 (N2). The following

lemma provides information on the existence and location of these intersection points. We consider only
those values for d1 where function f (d1,N2;ρ,τ) is finite for all (ρ,τ) ∈ Z. Let

dUB = min
(ρ,τ)∈Z

g(0,0,N1;ρ). (C.4)

Lemma 2 (Properties d−1 and d+
1 ) Let N1,T ∈ N+.

(a) Let N2 ∈ N+. If ρ1 6= ρ2, the equation

f (d1,N2;ρ1,τ) = f (d1,N2;ρ2,τ), (C.5)

has the following real roots for d1 on the interval [0,dUB]:

• d−1 (N2) and d+
1 (N2) if N1 +N2 ≥ T, N2 ≤ T and N1 ≤ T (C.6a)

• d−1 (N2) if N1 +N2 ≥ T, N2 ≤ T and N1 > T (C.6b)

• d+
1 (N2) if N1 +N2 ≥ T, N2 > T and N1 ≤ T (C.6c)

• no roots on interval if N1 +N2 ≥ T, N2 > T and N1 > T (C.6d)

• no real roots otherwise. (C.6e)

(b) Let NA
2 ,N

B
2 ∈ N+ such that NA

2 < NB
2 . It holds that

(i) If d−1 (NA
2 ) and d−1 (NB

2 ) are both finite, then d−1 (NA
2 )> d−1 (NB

2 );
(ii) If d+

1 (NA
2 ) and d+

1 (NB
2 ) are both finite, then d+

1 (NA
2 )≤ d+

1 (NB
2 ).

Proof Both parts of the lemma are proved individually.
Proof Lemma 2a
By definition of f , the equation f (d1,N2;ρ1,τ)= f (d1,N2;ρ2,τ) reduces to g(d1,N1,N2;ρ1)= g(d1,N1,N2;ρ2)
with d1 ∈ [0,min{g(0,0,N1;ρ1),g(0,0,N1;ρ2)}]. By construction of g, this means we are interested in the
pairs (d1,d2) that solve the system

σ(N1d1 +N2d2)+ρ1σ
2(N1d2

1 +N2d2
2) = ϕD(1+ρ1

D
T

ϕ) (C.7a)

σ(N1d1 +N2d2)+ρ2σ
2(N1d2

1 +N2d2
2) = ϕD(1+ρ2

D
T

ϕ) (C.7b)

d1 ≥ 0, d2 ≥ 0. (C.7c)

We subtract ρ2
ρ1

times (C.7a) from (C.7b) and solve for d1 to obtain

d1 =
ϕD−σN2d2

σN1
. (C.8)
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We know that d2 = g(d1,N1,N2;ρ1). Plugging in (C.8) in this expression and simplifying yields the fol-
lowing roots for d2:

r−2 (N2) =
ϕD+ϕD

(
1+(N1 +N2)

(N1
T −1

)
/N2

) 1
2

σ(N1 +N2)
(C.9a)

r+2 (N2) =
ϕD−ϕD

(
1+(N1 +N2)

(N1
T −1

)
/N2

) 1
2

σ(N1 +N2)
. (C.9b)

Plugging (C.9) in (C.8) and simplifying yields the following roots for d1:

r−1 (N2) =
ϕD−ϕD

(
1+(N1 +N2)

N2−T
N1T

) 1
2

σ(N1 +N2)
(C.10a)

r+1 (N2) =
ϕD+ϕD

(
1+(N1 +N2)

N2−T
N1T

) 1
2

σ(N1 +N2)
. (C.10b)

These roots need not be real-valued, nor in the interval [0,min{g(0,0,N1;ρ1),g(0,0,N1;ρ2)}]. For both
r−1 (N2) and r+1 (N2) to be real-valued, we require that

1+(N1 +N2)
(N1

T
−1
)
/N2 ≥ 0,

which reduces to N1 +N2 ≥ T . Furthermore, for nonnegativity of r−1 (N2) and r+1 (N2) it suffices to check
nonnegativity of the former. This is equivalent to

ϕD−σN2d−2 ≥ 0,

which reduces to N2≤T . Moreover, it needs to hold that r+1 (N2)≤ g(0,0,N1;ρ1) and r+1 (N2)≤ g(0,0,N1;ρ2).
This is equivalent to r+2 (N2)≥ 0, which can be rewritten to

1+(N1 +N2)
(N1

T
−1
)
/N2 ≤ 1,

and this reduces to N1 ≤ T . Parameters d−1 (N2) resp. d+
1 (N2) (see (C.3)) take the values of r−1 (N2) resp.

r−1 (N2) if they are a root of (C.5), and −∞ resp. +∞ otherwise. All together, we obtain the cases in (C.6).
It remains to show that the obtained roots are in the interval [0,dUB]. It is already shown that, if they

are (real-valued) roots to (C.5), then d−1 (N2),d+
1 (N2) are nonnegative. Furthermore, in that case d−1 (N2)≤

d+
1 (N2). It holds that

∂g(0,0,N1;ρ)

∂ρ
≤ 0⇔ N1 ≤ T.

Hence, if d+
1 (N2) is a real-valued root to (C.5) it follows that

dUB = min
(ρ,τ)∈Z

g(0,0,N1;ρ)≥ lim
ρ→+∞

g(0,0,N1;ρ) =
ϕD

σ
√

N1T
≥ d+

1 (N2),

where the second equality follows from the definition of g. This implies that indeed d−1 (N2),d+
1 (N2) ∈

[0,dUB].

Proof Lemma 2b
Assume NA

2 ,N
B
2 ∈ N+ such that NA

2 ≤ NB
2 , and assume N1 +NA

2 ≥ T . Statements (i) and (ii) are proved
individually.

Proof part (i)
Assume d−1 (NA

2 ) and d−1 (NB
2 ) are both finite. The denominator of d−1 (N2) (see (C.3a)) is increasing in
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N2. The derivative (w.r.t. N2) of the part within the square root in the numerator of (C.3a) is given by
(N1T )−1(N1 + 2N2−T ) ≥ 0, because N1 +N2 ≥ T . Hence, the numerator is decreasing in N2, while the
denominator is increasing in N2. This implies d−1 (NA

2 )> d−1 (NB
2 ).

Proof part (ii)
Assume d+

1 (NA
2 ) and d+

1 (NB
2 ) are both finite. One can show that

∂d+
1 (N2)

∂N2
= ϕD

(N1 +N2)(N1 +2N2−T )−2N1T
√

N2(N1+N2−T )
N1T −2N2(N1 +N2−T )

2N1T σ(N1 +N2)2
√

N2(N1+N2−T )
N1T

. (C.11)

This implies

∂d+
1 (N2)

∂N2
≥ 0

⇔ (N1 +N2)(N1 +2N2−T )−2N1T

√
N2(N1 +N2−T )

N1T
−2N2(N1 +N2−T )≥ 0

⇔ N1(N1 +N2−T )+T N2

2N1T
≥

√
N2(N1 +N2−T )

N1T

⇔
(
N1(N1 +N2−T )+T N2

)2

4N2
1 T 2 ≥ N2(N1 +N2−T )

N1T

⇔ (N1−T )2(N1 +N2)
2

4N2
1 T 2 ≥ 0, (C.12)

where the fourth line is obtained by using the fact that N1 +N2 ≥ T , and squaring on both sides. The last
line follows from simple algebraic manipulations. Condition (C.12) clearly holds, so d+

1 (NA
2 )≤ d+

1 (NB
2 ).

Lemma 3 (Derivative f and g w.r.t. ρ) Let (ρ,τ) ∈ Z.

(a) Let N′,N′′ ∈ N+. Let d′ ∈ [0,dUB]. If N′+N′′ < T , then

∂g(d′,N′,N′′;ρ)

∂ρ
< 0 for all d′ ∈ [0,dUB]. (C.13)

If N′+N′′ ≥ T , then

∂g(d′,N′,N′′;ρ)

∂ρ


< 0 if d′ ∈ [0,d−1 (N′′))∪ (d+

1 (N′′),dUB]

= 0 if d′ ∈ [0,dUB]∩{d−1 (N′′),d+
1 (N′′)}

> 0 if d′ ∈ [0,dUB]∩ (d−1 (N′′),d+
1 (N′′)).

(C.14)

(b) Let N1,N2 ∈ N+. Let d1 ∈ [0,dUB]. If N1 +N2 < T , then

∂ f (d1,N2;ρ,τ)

∂ρ
< 0 for all d1 ∈ [0,dUB]. (C.15)

If N1 +N2 ≥ T , then

∂ f (d1,N2;ρ,τ)

∂ρ


< 0 if d1 ∈ [0,d−1 (N2))∪ (d+

1 (N2),dUB]

= 0 if d1 ∈ [0,dUB]∩{d−1 (N2),d+
1 (N2)}

> 0 if d1 ∈ [0,dUB]∩ (d−1 (N2),d+
1 (N2)).

(C.16)
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Proof We first prove Lemma 3a, after that the result of Lemma 3b is easily obtained.
It holds that

∂g(d′,N′,N′′;ρ)

∂ρ
=

√
1+ 4ρ

N′′ B(d
′,N′;ρ)−1+ 2ρ

N′′ (d
′N′σ −ϕD)

2σρ2
√

1+ 4ρ

N′′ B(d
′,N′;ρ)

, (C.17)

so

∂g(d′,N′,N′′;ρ)

∂ρ
≥ 0⇔

√
(N′′)2 +4ρN′′B(d′,N′;ρ)≥ N′′+2ρ(ϕD−d′N′σ). (C.18)

We distinguish 2 cases:

– ϕD≥ d′N′σ . In this case, squaring (C.18) on both sides and simplifying results in

−σ
2N′(N′+N′′)d′2 +2ϕDN′σd′+

(N′′

T
−1
)
ϕ

2D2 ≥ 0, (C.19)

which is a condition independent of ρ . If N′+N′′ < T , this inequality has no roots for d′, and (C.19)
holds for all d′ ∈ [0, ϕD

N′σ ]. If N′ +N′′ ≥ T one can verify that d1 = d−1 (N′′) and d1 = d+
2 (N′′) are

the roots of this concave parabola if they are finite. The smaller root, d−1 (N′′), is finite if and only if
N′′ ≤ T . The larger root, d+

1 (N′′) is finite if and only if N′ ≤ T .
– ϕD < d′N′σ . In this case, B(d′,N′;ρ) > 0 only if N′ > T . In this case, the delivered dose exceeds

the dose that is used to set the BED tolerance, which is only possible if the number of fractions
N′ is strictly larger than the reference number of fractions T . Condition (C.18) clearly holds, so
g(d′,N′,N′′;ρ) is increasing in ρ . Using the fact that N′ > T it is easily shown that d−1 < ϕD

σN′ < d′.
Additionally, it can be shown that dUB < d+

1 (N′′). Hence this case satisfies (C.14). Putting all of the
above together yields the required result for g, i.e., Lemma 3a.

The partial derivative of f w.r.t. ρ is given by

∂ f (d1,N2;ρ,τ)

∂ρ
=

∂g(d1,N1,N2;ρ)

∂ρ

(
N2 +2τN2g(d1,N1,N2;ρ)

)
. (C.20)

Hence, the sign of the partial derivative of f w.r.t. ρ is equal to the sign of the partial derivative of g w.r.t.
ρ . The result of Lemma 3b immediately follows.

For given (ρ,τ) such that τ 6= σρ , define the twin point of d1 ∈W (ρ,τ) as

t(d1;ρ,τ) =

(
N1−N∗2 (ρ,τ)

)
d1 +2N∗2 (ρ,τ)g

(
d1,N1,N∗2 (ρ,τ);ρ

)
N1 +N∗2 (ρ,τ)

, (C.21)

where

W (ρ,τ) =
[

max{0, t(g(0,0,N1;ρ);ρ,τ)}, min{t(0;ρ,τ),g(0,0,N1;ρ)}
]
\{g(0,0,N1 +N2;ρ)}. (C.22)

Figure C.1 illustrates the relation between d1 and t(d1;ρ,τ). Set W can be interpreted as the points d1
for which there exists another point the graph of f that has the same value, we refer to such points as
twin points. The following lemma proves that for fixed (ρ,τ) any d1 in the set W (ρ,τ) has a twin point
t(d1;ρ,τ) that is also in the set W (ρ,τ), and their objective values are equal.

Lemma 4 Let (ρ,τ) ∈ Z such that τ 6= σρ , let N2 = N∗2 (ρ,τ) and let d1 ∈ [0,g(0,0,N1;ρ)]. The equation

f (d1,N2;ρ,τ) = f (d′1,N2;ρ,τ) (C.23)

has a solution d′1 ∈ [0,g(0,0,N1;ρ)] unequal to d1 if and only if d1 ∈W (ρ,τ). In that case, there is a
unique solution d′1 = t(d1;ρ,τ) ∈W (ρ,τ), and it holds that d1 = t(t(d1;ρ,τ);ρ,τ).
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0
d
1

t(d
1 ; ρ, τ )

t(0; ρ, τ )

g(0, 0, N
1 ; ρ)

g(0, 0, N
1 +

N
2 ; ρ)

f

(a) Case t(0;ρ,τ)< g(0,0,N1;ρ).

0
d
1

t(d
1 ; ρ, τ )

t(g(0, 0, N
1 ; ρ);ρ, τ )

g(0, 0, N
1 ; ρ)

g(0, 0, N
1 +

N
2 ; ρ)

f

(b) Case t(0;ρ,τ)> g(0,0,N1;ρ).

Fig. C.1: Illustration of d1 and t(d1;ρ,τ), for convex f .

Proof Let (ρ,τ) such that τ 6= σρ , let N2 = N∗2 (ρ,τ). We first show that if there exists a solution d′1 to
(C.23) unequal to d1, then this solution is d′1 = t(d1;ρ,τ) and that d1 = t(t(d1;ρ,τ);ρ,τ). Subsequently,
we show that this solution exists only if d1 ∈W (τ,ρ) and that in that case also t(d1;ρ,τ) ∈W (ρ,τ).

First part:
Let L,Q ∈ R+ denote the linear and quadratic contribution of d1 to f , i.e.,

L(d1,N2,ρ) = N1d1 +N2g(d1,N1,N2;ρ) (C.24a)

Q(d1,N2,ρ) = N1d2
1 +N2g(d1,N1,N2;ρ)2. (C.24b)

We show that for any d1 ∈ [0,g(0,0,N1;ρ)] unequal to g(0,0,N1 +N2,ρ) there is a unique solution d′1
such that

L(d1,N2;ρ) = L(d′1,N2;ρ) (C.25a)

Q(d1,N2;ρ) = Q(d′1,N2;ρ). (C.25b)

Any such d′1 has exactly the same objective value as d1. Plug (C.24) in (C.25), rewrite the first equation to
eliminate g, and plug this in the second equation to get

d′1 =
L(d1,N2;ρ)±

√
N2
N1

(
(N1 +N2)Q(d1,N2;ρ)−L2(d1,N2;ρ)

)
N1 +N2

=
N1d1 +N2g(d1,N1,N2;ρ)±N2(d1−g(d1,N1,N2;ρ))

N1 +N2
. (C.26)

The ‘+’ solution to (C.26) returns d′1 = d1, and the ‘–’ solution returns

d′1 =
(N1−N2)d1 +2N2g(d1,N1,N2,ρ)

N1 +N2
, (C.27)
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and we denote this solution by t(d1;ρ,τ). By construction, it holds that d1 = t(t(d1;ρ,τ);ρ,τ). Be-
cause τ 6= σρ , function f (d1,N2;ρ,τ) is a strictly convex or concave function according to Lemma 1,
so f (d1,N2;ρ,τ) = z for some constant z ∈ R has either 0, 1 or 2 solutions. In particular, d1 = t(d1;ρ,τ)
if and only if d1 equals minimizer g(0,0,N1 +N2;ρ). Hence if there exists a solution d′1 to (C.23) unequal
to d1, then this solution is d′1 = t(d1;ρ,τ).

Second part:

– Suppose d1 /∈W (ρ,τ). We distinguish three cases. Case (i): ‘d1 = g(0,0,N1 +N2;ρ)’. Because this
is the unique minimizer of f , there does not exist a d′1 with equal objective value. Case (ii). ‘d1 >
min{t(0;ρ,τ), g(0,0,N1;ρ)}’. Because d1 ∈ [0,g(0,0,N1;ρ)], this implies d1 > t(0,ρ,τ). As shown
in the first part of the proof, it holds that d1 = t(t(d1;ρ,τ);ρ,τ). Hence, d1 > t(0;ρ,τ) is equivalent to
t(t(d1;ρ,τ),ρ,τ) > t(0;ρ,τ). Because t(d1;ρ,τ) is decreasing in d1, this implies t(d1;ρ,τ) < 0, so
according to (B.1c) it holds that f (t(d1;ρ,τ),N2;ρ,τ) =−∞ and we have a contradiction. Case (iii):
‘d1 < max{0, t(g(0,0,N1;ρ);ρ,τ)}’. Similar to case (ii), one can show that f (t(d1;ρ,τ),N2;ρ,τ) =
−∞.

– Suppose d1 ∈W (ρ,τ). From (C.26) one can see that, because the term d1−g(d1,N1,N2,ρ) is increas-
ing in d1, the function t(d1;ρ,τ) is decreasing in d1. Consequently,

d1 ≤min{t(0;ρ,τ),g(0,0,N1;ρ)}⇔ d′1 ≥max{0, t(g(0,0,N1;ρ);ρ,τ)}. (C.28)

Furthermore, using the same argument,

d1 ≥max{0, t(g(0,0,N1;ρ);ρ,τ)}⇔ d′1 ≤min{t(0;ρ,τ),g(0,0,N1;ρ)}. (C.29)

Therefore, it holds that d′1 ∈W (ρ,τ).

In the following lemma, let I(·|S) denote the indicator function for a set S:

I(x|S) =

{
1 if x ∈ S
0 otherwise.

(C.30)

Lemma 5 For given q ∈ R+ and given d1 ∈ [0,dUB],

q≤ f (d1,N∗2 (d1; ρ̂, τ̂);ρ,τ), ∀(ρ,τ, ρ̂, τ̂) ∈U int
L , (C.31)

holds if τ ≤ p(d1), with

p(d1) = ∑
η∈{Nmin

2 ,...,Nmax
2 }

max
{

f (d1,η ;ρ
int
L ,τL), f (d1,η−1;ρ

int
U ,τL)

}
I(d1|Sη )

+ f (d1,Nmin
2 ;ρ

int
L ,τL)I(d1|Smin)+ f (d1,Nmax

2 ;ρ
int
U ,τL)I(d1|Smax),

(C.32)

where sets Smin, Smax and Sη are defined in (C.37a), (C.37d) and (C.42), respectively, and ρ int
L , ρ int

U are
defined in (C.44).

Proof By definition of N∗2 (d1; ρ̂, τ̂) and U int
L , it holds that

q≤ f (d1,N∗2 (d1; ρ̂, τ̂);ρ,τ), ∀(ρ,τ, ρ̂, τ̂) ∈U int
L , (C.33)

is equivalent to

q≤ max
η̃∈{Nmin

2 ,...,Nmax
2 }

min{ f (d1, η̃ ; ρ̂L, τ̂L), f (d1, η̃ ; ρ̂U , τ̂L)}, ∀(ρ̂, τ̂) ∈ Zint
ID ∩{(ρ̂, τ̂) : τ̂ ≤ τL + rτ},

(C.34)

and because function f is increasing in τ , we need to consider only those observations (ρ̂, τ̂) with τ̂L = τL.
For the first part of the proof, we fix the observation (ρ̂, τ̂), plug in τ̂L = τL, and rewrite (C.34) for this
fixed observation.
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Because (ρ̂, τ̂) ∈ Zint
ID , it holds that σρ̂L < τL < σρ̂U . Hence, by Lemma 1, function f (d1,η , ρ̂L,τL) is

convex and f (d1,η , ρ̂U ,τL) is concave in d1 for any η ∈N+. We make use of results of Lemma 2. Define

E− = {η : N1 +η ≥ T,η ≤ T}∩{Nmin
2 , . . . ,Nmax

2 } (C.35a)

E+ = {η : N1 +η ≥ T,N1 ≤ T}∩{Nmin
2 , . . . ,Nmax

2 }, (C.35b)

and let η
−
min, η−max, η

+
min and η+

max, denote the smallest and largest elements of E− and E+, respectively.
If η ∈ E− respectively η ∈ E+, then, according to Lemma 2a, d1 = d−1 (η) respectively d1 = d+

1 (η) is a
nonnegative real root of

f (d1,η ; ρ̂L,τL) = f (d1,η ; ρ̂U ,τL),

and the corresponding objective value equals K. From Lemma 2b we know that

d−1 (Nmax
2 )< .. . < d−1 (Nmin

2 )≤ d+
1 (Nmin

2 )≤ . . .≤ d+
1 (Nmax

2 ). (C.36)

We use this to split the domain [0,dUB] as follows:

Smin =



(d−1 (η−min),d
+
1 (η+

min)) if E− 6= /0,E+ 6= /0
[0,d+

1 (η+
min)) if E− = /0,E+ 6= /0

(d−1 (η−min),dUB] if E− 6= /0,E+ = /0
/0 if N1 +Nmax

2 < T
[0,dUB] otherwise

(C.37a)

S−η =

{
[d−1 (η),d−1 (η−1)] if η

−
min ≤ η−1 < η ≤ η−max

/0 otherwise
∀η ∈ {Nmin

2 +1, . . . ,Nmax
2 } (C.37b)

S+η =

{
[d+

1 (η−1),d+
1 (η)] if η

+
min ≤ η−1 < η ≤ η+

max

/0 otherwise
∀η ∈ {Nmin

2 +1, . . . ,Nmax
2 } (C.37c)

Smax =



[0,d−1 (η−max))∪ (d+
1 (η+

max),dUB] if E− 6= /0,E+ 6= /0
(d+

1 (η+
max),dUB] if E− = /0,E+ 6= /0

[0,d−1 (η−max)) if E− 6= /0,E+ = /0
[0,dUB] if N1 +Nmax

2 < T
/0 otherwise.

(C.37d)

We will reformulate (C.34) on each interval (set) separately, assuming it is nonempty.
1. “Smin”: If d1 ∈ Smin, then f (d1,η ; ρ̂L,τL) < f (d1,η ; ρ̂U ,τL) for all η ∈ {Nmin

2 , . . . ,Nmax
2 } according

to Lemma 3b, so it is optimal to deliver Nmin
2 fractions. Hence, on this interval (C.34) is equivalent to

q≤ f (d1,Nmin
2 ; ρ̂L,τL). (C.38)

2. “S−η ”: From Lemma 2a we know that f (d1,η , ρ̂L,τL) = f (d1,η , ρ̂U ,τL) if d1 = d−1 (η) or d1 =

d+
1 (η). In this case, the objective value equals K. Furthermore, function f (d1,η , ρ̂L,τL) is convex

and f (d1,η , ρ̂U ,τL) is concave in d1. Consider the interval [d−1 (η),d−1 (η−1)]. It holds that

f (d1,η ; ρ̂L,τL)≤ K ≤ f (d1,η−1; ρ̂L,τL) (C.39a)

f (d1,η−1; ρ̂U ,τL)≤ K ≤ f (d1,η ; ρ̂U ,τL). (C.39b)

This implies that if d1 ∈ [d−1 (η),d−1 (η − 1)], it is optimal to deliver either η or η − 1 fractions. If
we deliver η fractions, the restricting worst-case scenario is (ρ̂L,τL) and the value f is above K for
the scenario (ρ̂U ,τL). If we deliver η ′ > η fractions, the value for the scenario (ρ̂L,τL) decreases,
while the value for the scenario (ρ̂U ,τL) increases even further. Hence, delivering η ′ > η fractions
cannot be optimal. Similarly, delivering less than η − 1 fractions cannot be optimal. Therefore, if
d1 ∈ [d−1 (η),d−1 (η − 1)] it is optimal to deliver either η or η − 1 fractions. This implies that on the
interval S−η constraint (C.34) is equivalent to

q≤max{ f (d1,η ; ρ̂L,τL), f (d1,η−1; ρ̂U ,τL)}. (C.40)

Note that this result does not depend on the values ρ̂L and ρ̂U , we only use that ρ̂L < τL
σ

< ρ̂U .
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3. “S+η ”: Similar to the case for S+η , one can show that for d1 ∈ S+η constraint (C.34) is equivalent to
(C.40).

4. “Smax”: If d1 ∈ Smax, then f (d1,η ; ρ̂L,τL) > f (d1,η ; ρ̂U ,τL) for all η ∈ {Nmin
2 , . . . ,Nmax

2 } according
to Lemma 3b, so it is optimal to deliver Nmax

2 fractions. Hence, on this interval (C.34) is equivalent to

q≤ f (d1,Nmax
2 ; ρ̂U ,τL). (C.41)

For sets S−η and S+η the reformulation is the same. Therefore, define

Sη = S−η ∪S+η . (C.42)

Putting everything together, for d1 ∈ [0,dUB] the constraint (C.34) is equivalent to

q≤ ∑
η∈{Nmin

2 ,...,Nmax
2 }

max{ f (d1,η ; ρ̂L,τL), f (d1,η−1; ρ̂U ,τL)}I(d1|Sη )

+ f (d1,Nmin
2 ; ρ̂L,τL)I(d1|Smin)+ f (d1,Nmax

2 ; ρ̂U ,τL)I(d1|Smax), ∀(ρ̂, τ̂) ∈ Zint
ID ∩{(ρ̂, τ̂) : τ̂ ≤ τL + rτ}.

(C.43)

In order to find a tractable conservative robust counterpart of (C.43), denote

ρ
int
L = max{ρL,

τL

σ
−2rρ} (C.44a)

ρ
int
U = min{ρU ,

τL

σ
+2rρ}, (C.44b)

and note that ρ int
L ≤ ρ̂L < τL

σ
< ρ̂U ≤ ρ int

U . Only if d1 ∈ Sη , the robust counterpart is conservative. By
Lemma 3b, it holds that function f is strictly decreasing, constant or strictly increasing in ρ for fixed d1,
so

f (d1,η ; ρ̂L,τL)≥min{ f (d1,η ;ρ
int
L ,τL), f (d1,η ;

τL

σ
,τL)}= min{ f (d1,η ;ρ

int
L ,τL),K}= f (d1,η ;ρ

int
L ,τL),

where the second equality follows from (C.39). A similar result holds for f (d1,η−1; ρ̂U ,τL). Furthermore,
as shown before, f is increasing in ρ on Smin and decreasing in ρ on Smax. Therefore, a conservative
approximation of (C.31) is given by

q≤ ∑
η∈{Nmin

2 ,...,Nmax
2 }

max{ f (d1,η ;ρ
int
L ,τL), f (d1,η−1;ρ

int
U ,τL)}I(d1|Sη )

+ f (d1,Nmin
2 ;ρ

int
L ,τL)I(d1|Smin)+ f (d1,Nmax

2 ;ρ
int
U ,τL)I(d1|Smax),

(C.45)

and the RHS is p(d1).

Function p(d1) is a piece-wise function. On intervals defined by Smin and Smax it is convex and concave,
respectively. On any interval Sη function p(d1) is the maximum of a concave and convex function.
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