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Supplementary Information

1 Properties of the SWAN System Derived by
Geometrical Optics

With the ABCD matrices for lenses and beam propagation as well as the function F
for axicons
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it can be derived why the general configuration of the optical elements belonging to
the SWAN system (cf. Supplementary Fig. 1) has to be adjusted as indicated in Fig. 1
in the main text in order to get a collimated ring intensity out of the system.
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Fig. 1 Sketch of the SWAN setup’s elements without presumptions on how to adjust the elements.

As a starting point, according to the function F , an axicon adds an angle ±α(n−1)
to the incident beam depending on if it hits the axicon above or below the cone’s tip.
If the beam (
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incident on the first axicon Ax1 propagates such that y2, defined by(
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changes its sign with respect to y1, then the second axicon Ax2 is going to remove
the added angle introduced by the first axicon. In this special case, the beam directly
behind Ax2 is given by(
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The validity of assuming the sign change in y can be estimated via an equation for
the distance L at which an incident collimated beam at height y crosses the optical
axis (Wang et al (2017)):

L = y tan γ − y tanα where γ =
π

2
− β + α, sinβ = n sinα (4)

Inserting exemplary values of α = 10◦, n = 1.46 into equation (4) shows that for
having L ≤ 10 cm, the incident beam radius should not exceed 8.3mm so that the beam
may be expanded, but not fill the whole aperture of e.g. 2.54 cm. This demonstrates
that the assumption that y has to change its sign requires some attention in the
experimental design, but can be fulfilled with reasonable effort.
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The complete SWAN system is represented by(
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Equation (5) describes a collimated beam if the angle-related term disappears inde-
pendent of the incidence height yin. For checking the possibility to create collimated
beams, equations (1) to (3) are inserted into equation (5). The full dependence of the
output angle θout is thus written as
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The first term of equation (6) disappears for a distance d2 = f2 between the first
two axicons whereas the second term disappears if the two lenses are adjusted to a 4f
configuration. The last term does not disappear for all incidence angles θin. If θin = 0,
though, θout will also vanish.

Having derived these requirements for adjustment, the output radius r of the
collimated beam can be calculated as
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This means that besides collimation, the SWAN system behaves like a telescope as it
diminishes the output ring radius by a factor of −f2/f1.

2 Calculation of Strongly Focused Fields

The theory of how to calculate focused fields has been thoroughly developed before
(Foreman and Török (2011); Novotny and Hecht (2012)) so that here we will mostly
only mention the equations we used for predicting the field distributions. As in this
study, the influence of azimuthal modulation upon interference patterns was of interest,
however, we will present an approximation for ϕ-dependent fields which is usually not
considered.

If an arbitrarily polarized field

E⃗inc = Einc(Θ,Φ)

Ẽx

Ẽy

0

 (8)
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with Ẽx, Ẽy being the Jones vector components falls onto a focusing lens, the field is
projected onto a Gaussian reference sphere. This case has been discussed by Foreman
and Török (2011). For a transition from a medium with refractive index n1 in front
of the lens to a medium with n2 behind the lens, the projected field e⃗ reads

e⃗(Θ,Φ) =
(
ts(E⃗inc · n⃗Φ)n⃗Φ + tp(E⃗inc · n⃗ρ)n⃗Θ

)√n1

n2
cos(Θ) (9)

where ts, tp are the transmission coefficients for perpendicular and parallel polarized
light, respectively, and n⃗ρ,Θ,Φ the normal vectors for spherical coordinates. Inserting
equation (8) into equation (9) results in

e⃗(Θ,Φ) =
1

2

√
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Ẽx(cos(Θ)− 1) sin(2Φ) + Ẽy[(1 + cos(Θ))− (cos(Θ)− 1) cos(2Φ)]

−2 sin(Θ)(Ẽx cos(Φ) + Ẽy sin(Φ))

 .

(10)

With the help of the angular spectrum representation and the method of stationary
phase, the analytic expression for the focal field E⃗ is

E⃗(ρ, ϕ, z) =
ikfe−ikf

2π

Θmax∫
0

2π∫
0

e⃗(Θ,Φ)eikz cos(Θ)eikρ sin(Θ) cos(Φ−ϕ) sin(Θ)dΦdΘ (11)

where f is the focusing lens’ focal length, k the wave number and z the axial distance
from the lens’ focal plane.

2.1 Radially Symmetric Fields

Numerically, equation (11) can be solved via integration for arbitrary incident fields.
Due to two integrals being present and small angular step widths being necessary
to resolve the complex phases, this is not time-efficient, though. If the incident field
E⃗inc(Θ,Φ) = E⃗inc(Θ) is radially symmetric, the azimuthal integral in equation (11)
can be solved using the relations

2π∫
0

cos(nΦ)eix cos(Φ−ϕ)dΦ = 2π(in)Jn(x) cos(nϕ)

2π∫
0

sin(nΦ)eix cos(Φ−ϕ)dΦ = 2π(in)Jn(x) sin(nϕ)

(12)

In this case, only the integrals over Θ remain and the solution can be written down in
terms of these (Foreman and Török (2011); Novotny and Hecht (2012)). The intensity
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pattern shown in Figure 2c) in the main text has been calculated like this and by

taking |E⃗(ρ, ϕ, 0)|2 as the expected intensity.

2.2 Infinitesimally Thin Fields with Azimuthal Dependence

The Bessel beam (BB) of 1st kind and 0th order has got a central core surrounded by
theoretically an infinite number of side lobes. The first side lobes can be significantly
reduced by interfering two BBs with different k-vectors which at the same time intro-
duces axial interference. For this reason, this approach has been baptised ”droplet
beams” (Antonacci et al (2017)). If this axial interference shall be avoided, another
option for destructive interference has been theoretically proposed in the context of
STED microscopy (Zhang et al (2014)): from Debye diffraction theory, it has been
derived that the superposition of a J0 and a J2 BB leads to destructively interfering
side lobes in one lateral direction.

For similar considerations in the vectorial theory sketched above, we assume now
that the incident field has got the form

E⃗inc(Θ,Φ) = δ(Θ−Θ0)E(f, f sin(Θ),Φ)

Ẽx

Ẽy

0

 (13)

which corresponds to an infinitesimally thin annular field with azimuthal depen-
dence. The δ-distribution appearing in equation (13) projects equation (11) onto the
integral over Φ which can be solved numerically. This means that the exponential
exp(ikz cos(Θ)) is drawn out of the integral and that the intensity |E⃗|2 does not have
any axial dependence any more. This is expected as an infinitesimally thin incident
annular field corresponds to a non-diffracting field.

3 Cancellation of Bessel Beam Side Lobes without
Tuneable Parameters

The combination of the SWAN system and a Michelson interferometer allows for
interferometric cancellation of BB side lobes and choosing the effective numerical
aperture (NA) that determines the lateral dimensions of the BB. For some applications,
a single well-defined effective NA is sufficient so that a simplified optical system can
be used.

In the following, we theoretically discuss the generation of interfering BBs with the
help of a Michelson interferometer that is illuminated with a Gaussian input beam.
Generally, also other interferometer types as a Mach-Zehnder interferometer are the-
oretically suited to generate destructive interference of BB side lobes in one direction.
For the case of a Mach-Zehnder interferometer, suitable phase plates could be intro-
duced to manipulate the fields accordingly. We restrict the discussion to the Michelson
interferometer, though, because this is the interferometer we also used experimentally.
Simplifying the generation of BB, the idea is to convert the interfered field by a single
axicon as sketched in Fig. 2a).

5



BS

Ax1L1 L2

a) b) c)

Fig. 2 a) Simplified optical system consisting of a Michelson interferometer, lenses and a single
axicon. Behind the beam splitter (BS), two lenses L1, L2 are used to image the mirror planes onto
the back of axicon Ax1. The apex angle of Ax1 determines the BB’s size so that e.g. b) an angle of
α = 1◦ will generate a larger BB than c) an angle of α = 2◦.

For the numerical calculation of the expected field, the vectorial description pre-
sented in section 2 is not suited because it assumes the projection on a reference
sphere, i.e. focusing by a lens. The setup sketched in Fig. 2 a) generates the BB with
a single axicon so that we calculated the field as a scalar field U in terms of Fourier
optics. The calculation method is described in detail by Goodman (2017).

For calculating the interfering field U = U1 + U2 in the observation plane (black
line in Fig. 2 a)), we assumed a Gaussian input field as described in chapter 4.6.1
of Goodman (2017). For demonstration, we choose an expanded Gaussian beam with
w0 = 3.5mm, a divergence angle θ0 = 1.2mrad and wavelength λ = 561 nm. These
parameters correspond to values that would be expected in our experiments. We set
z1 = z2 = 10 cm.

It is necessary to image the interferometer’s mirror planes onto the back aperture
of the axicon in order to convert a tilt of one mirror into a change of the incident
angle on the axicon without displacing the beam. We assume that in front of the
axicon, U1,in stays a Gaussian field without change whereas U2,in gathers a phase
factor exp(iπ sin(ϕ)) corresponding to a slight tilt of the mirror. The field Uout directly
behind the axicon is given by

Uout =
(
U1,in + U2,ine

iπ sin(ϕ)
)
e−ik(n−1)ρα (14)

where the phase factor introduced by the axicon (Wang et al, 2017) is dependent on
the wave number k, the refractive index n, the apex angle α and the polar radius ρ.
Here, we assumed a refractive index n = 1.46.

In Fourier optics, the propagation of the field is calculated by applying a Fourier
transformation F to the field and multiplying a transfer function H(fX , fY ) where
fX , fY are spatial frequencies. The propagated field in real space is finally obtained
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by inverse Fourier transformation F−1:

U = F−1

F (Uout) · eikze−iπλzprop(f
2
X+f2

Y )︸ ︷︷ ︸
H(fX ,fY )

 (15)

Using these equations, we calculated U for two different apex angles α = 1◦, 2◦ and
present the BBs expected after a propagation length of zprop = 12 cm in Fig. 2 b) and
c). Qualitatively, two observations are important: Firstly, the numerical calculation
suggests that the uni-axial cancellation of BB side lobes is expected in this simpler
optical setup. Secondly, the fields generated by the two different apex angles illustrate
that a higher apex angle α corresponds to smaller lateral parameters of the BB.
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