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Appendix A. South Africa backgrounds 

 

 

Fig. A.1 Geographic map of South Africa districts with district code (2011 map). The district names 
corresponding to the district codes are listed in Table A.1. The colors denote the 9 provinces as in the 
legend. There are 52 districts in South Africa. In this study, district BUF is merged into DC12 to be 
consistent with other time steps, thus there are only 51 districts on the map   
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Table A.1 South Africa provinces and districts code and name (2011). “District code” is used in Fig. 2 and 
the map in Fig. A.1, and the code for “Province.District” is used in Fig. 4 and Fig. G.1  

 

Province code Province name District code District name Province.District 

EC Eastern cape 

DC10 Cacadu EC.DC10 

DC12 Amathole EC.DC12 

DC13 Chris Hani EC.DC13 

DC14 Ukhahlamba EC.DC14 

DC15 O.R.Tambo EC.DC15 

DC44 Alfred Nzo EC.DC44 

NMA Nelson Mandela Bay EC.NMA 

FS Free state 

DC16 Xhariep FS.DC16 

DC18 Lejweleputswa FS.DC18 

DC19 Thabo Mofutsanyane FS.DC19 

DC20 Fezile Dabi FS.DC20 

MAN Mangaung FS.MAN 

GT Gauteng 

DC42 Sedibeng GT.DC42 

DC48 West Rand GT.DC48 

EKU Ekurhuleni GT.EKU 

JHB City of Johannesburg GT.JHB 

TSH City of Tshwane GT.TSH 

KZN Kwazulu-Natal 

DC21 Ugu KZN.DC21 

DC22 UMgungundlovu KZN.DC22 

DC23 Uthukela KZN.DC23 

DC24 Umzinyathi KZN.DC24 

DC25 Amajuba KZN.DC25 

DC26 Zululand KZN.DC26 

DC27 Umkhanyakude KZN.DC27 

DC28 Uthungulu KZN.DC28 

DC29 iLembe KZN.DC29 

DC43 Sisonke KZN.DC43 

ETH eThekwini Metropolitan KZN.ETH 



4 
 

Province code Province name District code District name Province.District 

LIM Limpopo 

DC33 Mopani LIM.DC33 

DC34 Vhembe LIM.DC34 

DC35 Capricorn LIM.DC35 

DC36 Waterberg LIM.DC36 

DC47 Greater Sekhukhune LIM.DC47 

MP Mpumalanga 

DC30 Gert Sibande MP.DC30 

DC31 Nkangala MP.DC31 

DC32 Ehlanzeni MP.DC32 

NC Northern cape 

DC45 John Taolo Gaetsewe NC.DC45 

DC6 Namakwa NC.DC6 

DC7 Pixley ka Seme NC.DC7 

DC8 Siyanda NC.DC8 

DC9 Frances Baard NC.DC9 

NW North west 

DC37 Bojanala NW.DC37 

DC38 Ngaka Modiri Molema NW.DC38 

DC39 Dr Ruth Segomotsi Mompati NW.DC39 

DC40 Dr Kenneth Kaunda NW.DC40 

WC Western cape 

CPT City of Cape Town WC.CPT 

DC1 West Coast WC.DC1 

DC2 Cape Winelands WC.DC2 

DC3 Overberg WC.DC3 

DC4 Eden WC.DC4 

DC5 Central Karoo WC.DC5 
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Appendix B. Network description 

B.1. Network analysis terminology  

In Fig. B.1: 

- Node: the actor, which can be a person, a group of people, or an institution. In a geographic 
network, a node is a geographic location. 

- Edge: the tie between a pair of nodes indicating the relationship or flow between them. For example, 
a friendship tie, or a communication flow. 

- Direct vs. indirect edge:  

Fig. B.1 shows an example of a directed network, in which an edge points from one node to another.  
The edge from A to B and the one from B to A are treated as two different edges. An edge can be indirect 
as well when the connection between two nodes does not have meaningful direction by the characteristics 
of the relationship. For example, in a school network, if a tie is defined between two students when they 
take the same class, then the tie does not have a direction. 

- Weight of an edge: the value on the edge that describes the strength of the tie. An unweighted 
network does not have meaningful values on the ties. For example, in Fig. B.1, we can define a tie from C 
to B if C knows B, which is unweighted. On the other hand, if the tie is defined as the number of emails that 
C has sent to B, the tie is weighted and the network is a weighted network. 

- Dynamic vs. static: the static networks are not supposed to change, while a dynamic network can 
evolve over time. 

 

 

Fig. B.1 Example of a directed network (drawn with Gephi)  
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B.2. Network autocorrelation 

B.2.1.  Common network autocorrelation structures in migration patterns 

Network autocorrelation is defined as the dependencies between the flows for a migration network. The 
first to third-order dependencies correspond to the nodal, dyadic, and triadic properties of the network, 
which we describe in migration settings as follows: 

• First-order:  

- Sender (receiver) heterogeneity: Certain districts send (receive) more migrants than others on 
average due to their unobserved characteristics. It is also called out-degree (in-degree) heterogeneity in 
network analysis. For example, migration patterns in Fig. 2 display sender and receiver heterogeneities 
among the districts. During both time intervals, district JHB (City of Johannesburg) is a big sender and 
receiver of migrants, DC35 (Capricorn) does not receive many migrants, and DC48 (West Rand) does not 
send many of them. These are the second and third-order network autocorrelations among the flows. 

• Second-order:  

- Sender (receiver) correlation: Outbound (inbound) migration flows of a district may correlate with 
each other.  

- Reciprocity: The tendency of a network to have mutual ties between nodes, such as the ties 
between A and B in Fig. B.1.  

In the weighted migration network, generalized reciprocity describes the phenomenon that the number of 
migrants from place A to place B is proportional to the number flowing from B back to A. Corresponding to 
Fig. 1a in the main text, for established routes of bilateral migration, the aggregated migration flows should 
show the reciprocal patterns as in an equilibrium state, such like the migration flows between Mexico and 
the United States.  

• Third order:  

- Transitivity: In a social network, transitivity describes the triadic dependency that a friend of a friend 
is a friend, such as the triangle formed among nodes B, C, and D in Fig. B.1. 

As illustrated in Fig. 1b in the main text, in a migration setting, generalized transitivity describes a situation 
where the number of migrants moving from place i to j is proportional to those moving from district i to k 
and from k to j. 

Taking international transit migration corridors as an example, if people in country i desire to move to 
country j but not everyone has enough resources to do so, some of them may move to country k first and 
move into country j later when they are able, forming a transitive triangle.  

- Cyclicality: In a social network, cyclicality describes the cyclic relationship, such as the triangle 
formed among nodes D, E, and F in Fig. B.1. 

 
In a migration setting, there may be certain patterns of aggregated circular migration that form over years. 
For example, if some of the transit migrants return home later, the equilibrium state of aggregated migration 
flows forms cyclical triangles.   
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B.2.2.   The formulae for network statistics 

Defining 𝒀 = [𝒚𝒊𝒋] as the sociomatrix of migration flows with rows (i) denoting sending districts and columns 

(j) denoting receiving districts, we can calculate the above-mentioned network statistics (also follow the 
notation in Fig. 1 in the main text) as follows: 

𝑹𝒆𝒄𝒊𝒑𝒓𝒐𝒄𝒊𝒕𝒚 =  
𝟏

|𝑺|
∑ 𝒚𝒊𝒋

′ 𝒚𝒋𝒊
′  , 𝒘𝒉𝒆𝒓𝒆 𝑺 = {(𝒊, 𝒋)|𝒏𝒆𝒊𝒕𝒉𝒆𝒓 𝒚𝒊𝒋 𝒏𝒐𝒓 𝒚𝒋𝒊 𝒊𝒔 𝒏𝒖𝒍𝒍}

𝒊,𝒋∈𝑺

                 (𝑩. 𝟏)  

 

𝑪𝒚𝒄𝒍𝒊𝒄𝒂𝒍𝒊𝒕𝒚 =  
𝟏

|𝑺|
∑ 𝒚𝒊𝒋

′

𝒊,𝒋,𝒌∈𝑺

𝒚𝒋𝒌
′ 𝒚𝒌𝒊

′  , 𝒘𝒉𝒆𝒓𝒆 𝑺 = {(𝒊, 𝒋, 𝒌)|𝒏𝒐𝒏𝒆 𝒐𝒇 𝒚𝒊𝒋, 𝒚𝒋𝒌, 𝒚𝒌𝒊 𝒊𝒔 𝒏𝒖𝒍𝒍}    (𝑩. 𝟐)  

 

𝑻𝒓𝒂𝒏𝒔𝒊𝒕𝒊𝒗𝒊𝒕𝒚 =  
𝟏

|𝑺|
∑ 𝒚𝒊𝒋

′

𝒊,𝒋,𝒌∈𝑺

𝒚𝒌𝒋
′ 𝒚𝒊𝒌

′  , 𝒘𝒉𝒆𝒓𝒆 𝑺 = {(𝒊, 𝒋, 𝒌)|𝒏𝒐𝒏𝒆 𝒐𝒇 𝒚𝒊𝒋, 𝒚𝒌𝒋, 𝒚𝒊𝒌 𝒊𝒔 𝒏𝒖𝒍𝒍}   (𝑩. 𝟑)  

 

𝒚𝒊𝒋
′ =  

𝒚𝒊𝒋 − �̅�𝒊𝒋

𝒔𝒕𝒅(𝒀)
      (𝑩. 𝟒)  

 
The two migration flow networks in Fig. 2 have reciprocity of 0.62 and 0.63, cyclicality of 0.10 and 0.14, 
and transitivity of 0.20 and 0.23, respectively, based on these equations.  
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β coefficients 

B.2.3. Model diagnostics 
 
We can see in Fig. B.2 (top) that the trace plot for the β coefficients are all caterpillar-shaped, which 
indicates that the model is converged. By calculating the three statistics for each simulation iteration and 
comparing their distribution to the reference observations (Fig. B.2 (bottom)), we can see that the model 
simulations capture the transitivity and cyclicality well, but slightly overestimate the reciprocity. 
 
 

 

 

 

 

Figure B.2. Example diagnostics figures for the AMEN models: (Top) Values for all the β coefficients in 
equation (1) for every other 1000 iterations after the burn-in period (100,000 iterations for burn-in, 1,000,000 
iterations in total); (Bottom) Distribution of network statistics calculated for each iteration for the two 
migration flow networks in Fig. 2. The red and blue horizontal lines are the reference lines for observed 
values for the two networks respectively (red: 1, blue: 2). Reciprocity, cyclicality, and transitivity are 
calculated using the formulae in Appendix B.2.2. The model is the same as used in Table 1 column 1.  

Reciprocity Cyclicality Transitivity 
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Appendix C. Other social network models for flow modeling and comparison to 
AMEN 

 

We also considered applying previous studies that combine the log-linearized gravity model and Latent 

Space Model (LSM) (Hoff et al. 2002) to study trade flows (Ward et al. 2013). However, according to 

Jensen’s inequality, the expectation of the log of y is not equal to the log of the expectation of y (Santos 

Silva and Tenreyro 2006). Thus, modeling our target, migration flow y, as the log of y with the log-linearized 

models may produce biased results. Instead, we simulate the migration flows in AMEN following a Poisson 

distribution, because the migration flows are count data that usually follows such a distribution.  

 

Weighted exponential random graph models (ERGMs) provide another option for modeling migration flows 

(Desmarais and Cranmer 2012; Krivitsky 2012; Wilson et al. 2017). However, we decide not to use them in 

this study, mainly because of the model requirement of adding sufficient network structure statistics and 

our computational limitation. Directed and weighted ERGMs can model the whole migration network as a 

graph, taking the observed migration flows between all locations as one realization among all the possible 

graphs involving these locations. The generalized exponential random graph models (GERGM) (Desmarais 

and Cranmer 2012; Wilson et al. 2017) and the ERGM for count data (Krivitsky 2012) can be used to model 

migration flows. ERGMs are uniquely suited for studying the network structure effects. For example, if one’s 

objective is to find out how the presence of mutual ties affects the outcome network (e.g., the migration 

flows), then one can add a term for reciprocity and estimate its coefficient. To our knowledge, this cannot 

be done with other network models. AMEN does not explicitly model these effects but allows for their 

existence. 

 

However, there are limitations in applying the ERGMs in the current study. One major challenge is to deal 

with the model degeneracy, as we need to specify and feed in the network statistics, such as the observed 

number of transitive triangles, to account for higher-order flow dependencies. In addition, one also needs 

to add sufficient contributing network statistics terms to avoid estimation biases, which is difficult to 

accomplish (Minhas et al. 2019; Ward et al. 2013). Another challenge is related to ERGM’s high demand 

for computational resources. The number of possible random graphs can be overwhelmingly large as the 

number of location points increases (for a network with n nodes, the possible random graphs will be on the 

order of 2𝑛), thus this model is very computationally heavy for large networks. Besides, we need weighted 

ERGMs to model migration flows, but then much more computing resources and time is needed to achieve 

convergence compared to their binary counterparts.  

 

The AMEN model can address network autocorrelation issues without specifying the network structures 

while running faster than ERGMs by estimating the unknown values with a Markov Chain Monte Carlo 

approach using the Gibbs sampler. For migration studies, which still lack a comprehensive theory of how 

network structures influence migration patterns, we prefer a model that can address the network 

autocorrelation problem with little or no assumption of specific network structures. Additionally, considering 

the scale of the study, we prefer a model with a lower computation burden, which enables efficient estimates 

for multiple experiments in a reasonable timeframe. Moreover, a recent study also demonstrates how 

AMEN notably outperforms ERGMs and LSMs in aspects including out-of-sample predictions (Minhas et 

al. 2019), which shows promise that this model could be a better choice for future projection. 

 



10 
 

Appendix D. Methods – Moran eigenvector spatial filter (MESF) 

 
Previous studies have shown that adding an Eigenvector Spatial Filter (ESF) to the spatial interaction model 

can account for the network autocorrelation (Fischer and Griffith 2008; Griffith 2003) and significantly 

improve the goodness of fit of the models (Chun 2008; Griffith 2007; LeSage and Pace 2008).  This method 

has been applied to modeling several types of network flows, including migration (Chun 2008; Chun and 

Griffith 2011), trade (Krisztin and Fischer 2015; Metulini et al. 2016), commuting (Pace et al. 2013), and 

patent citation flows (Fischer and Griffith 2008).  For comparison purposes in this study, we use the Moran 

Eigenvector Spatial Filter (MESF) to address network autocorrelation (Chun and Griffith 2011). The AMEN 

model has multiple advantages compared to this technique, including accounting for higher-order network 

autocorrelation. Nevertheless, the model comparison shows that taking autocorrelation into account using 

either method improves model performance (see section 3.2 and Appendix E for details). Thus the MESF 

technique is recommended for researchers preferring to preserve the gravity model structure and 

frequentist interpretations. 

 
Here we review the MESF method (Chun 2008; Chun et al. 2016; Chun and Griffith 2011) and describe 
how to incorporate the MESF in the gravity model used in this study. The gravity model used in this study 
can include both the push and pull effects of nodal covariates, as well as the directional effects of dyadic 
covariates on migration. 
 
Firstly, we describe a general format for the spatially filtered Poisson regression with a selected set of 𝑘 
eigenvectors 𝑬′ as follows: 
 

𝒀~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(exp(𝝁)) (𝐷. 5) 
𝝁 = 𝑿𝜷 + 𝑬′𝜷𝑬 (𝐷. 6) 

 

where 𝒀 = (𝑦𝑖𝑗) can denote any type of network flows.  

 
There are various methods to select the eigenvectors, including forward stepwise selection, backward 
elimination, and LASSO-based approaches. The selection criterion can be based on p-values, F- or t-tests, 
(adjusted) R-squared, AIC, or BIC. In this study, set 𝑬′ is selected via forward stepwise selection based on 
the significance level of the estimated coefficients (p-values).  
 
To obtain the whole set of eigenvectors 𝑬, MESF utilizes the spectral decomposition of a transformed 

spatial weights matrix, 𝑪. The spectral decomposition of matrix 𝑴𝑪𝑴 (where 𝑴 = (𝑰 − 𝟏𝟏𝑻 )/𝑚 and 𝟏 is a 
vector of ones) produces a set of 𝑚 eigenvalues and their corresponding eigenvectors:  
 

𝑴𝑪𝑴 = 𝑬𝚲𝑬−𝟏 = 𝑬𝚲𝑬𝑻 (𝐷. 7) 
 
where 𝚲 is a diagonal matrix, whose diagonal elements are the 𝑚 eigenvalues 𝜆 =  (𝜆1, 𝜆2, ⋯ , 𝜆𝑚) ordered 

from the largest value to the smallest one; and 𝑬 = (𝒆𝟏, 𝒆𝟐, … , 𝒆𝒎) represents the 𝑚  corresponding 

eigenvectors. In the network flows setting, 𝑚 = 𝑛2 , where 𝑛  is the number of network nodes. Each 
eigenvector represents a distinct symmetric network pattern that has a certain level of spatial 
autocorrelation. The linear combination of the eigenvectors can account for the second-order network 
autocorrelations.  
 
The weighted matrix for the network flows in this study is defined as follows:  
 

First, we let 𝐵𝑆 be the standard binary spatial link matrix among the nodes. Let 𝑩𝑵 be the binary network 
link matrix given by 
 

𝑏𝑖𝑗,𝑘𝑙
𝑁 = {

1     if 𝑖 = 𝑘 and 𝑏𝑗𝑙
𝑆 = 1,   or if 𝑗 = 𝑙 and 𝑏𝑖𝑘

𝑆 = 1

0     otherwise.                                                              
(𝐷. 8) 
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which is an indicator of a neighborhood relation among the network edges such that edge 𝑖𝑗 is a neighbor 
of edge 𝑘𝑙 if either the two share the same origin and have a spatially contiguous destination, or have 
spatially contiguous origins and shared destination. 
 
Next, we define the network link matrix with a variance-stabilizing S-coding scheme (Chun 2008; M. 
Tiefelsdorf et al. 1999; Michael Tiefelsdorf and Griffith 2007) as 
 

𝑺𝑵 =
𝑛2

∑ 𝑎𝑖
𝑞+1𝑛2

𝑖=1

𝑨𝑩𝑵 (𝐷. 9) 

 
Where 𝑎𝑖 is the number of network neighbors for the 𝑖th network flow, 𝑞 = −0.5, and 𝑨 is a diagonal matrix 

with {𝑎1
𝑞

, ⋯ , 𝑎
𝑛2
𝑞

}. 

 
The weight matrix for network flows is then defined as  
 

𝑪 =  
1

2
(𝑺𝑵 + (𝑺𝑵)𝑇). (𝐷. 10) 

 
Other coding schemes can be used by changing the parameter q. For example, setting q = 0, we can obtain 
the globally standardized C-coding scheme, while setting q = -1, we can get the row-sum standardized W-
coding scheme.  
 
We use a forward stepwise selection algorithm to choose eigenvectors to include in the spatial interaction 
model (Chun et al. 2016; Chun and Griffith 2013). 
 
Previous studies used both of the Linear Mixed Model (LMM) and the Generalized Linear Mixed Model 
(GLMM) to model the migration flows incorporating the MESF method (Chun 2008; Chun and Griffith 2011). 
In this work, we directly model the migration flows from Poisson distribution instead of using log-linearized 
models, considering Jensen’s inequality (Santos Silva and Tenreyro 2006), and estimate the model using 
the Poisson Pseudo-maximum likelihood (PPML) method to account for potential dispersion (Burger et al. 
2009). 
 
Secondly, to be consistent with a previous study (Mastrorillo et al. 2016), the gravity model without MESF 
is formulated as: 
 

𝒎𝒊𝒋,𝒕 =  𝜅 ∙ 𝑒𝑥𝑝{𝜓𝑖 +  𝜙𝑗  + 𝜏𝑡 +  𝜷𝒁𝒊𝒋 +  𝜽𝒊𝑿𝑖,𝜏(𝑡) +  𝝁𝒊𝑪𝑖,𝜔(𝑡) +  𝜽𝒋𝑿𝑗,𝜏(𝑡) +  𝝁𝒋𝑪𝑗,𝜔(𝑡)}𝜀𝑖𝑗,𝑡 (𝐷. 11) 

 
and the formula incorporating the MESF can be written as follows: 
 

𝒎𝒊𝒋,𝒕 =

 𝜅 ∙ 𝑒𝑥𝑝{𝜓𝑖 +  𝜙𝑗  + 𝜏𝑡 +  𝜷𝒁𝒊𝒋 +  𝜽𝒊𝑿𝑖,𝜏(𝑡) +  𝝁𝒊𝑪𝑖,𝜔(𝑡) +  𝜽𝒋𝑿𝑗,𝜏(𝑡) +  𝝁𝒋𝑪𝑗,𝜔(𝑡) + ∑ (𝐸𝑘)𝑖𝑗Φ𝑘
𝐾
𝑘=1 }𝜀𝑖𝑗,𝑡 (𝐷. 12)

  

 
with the MESF term being  

exp {∑(𝐸𝑘)𝑖𝑗Φ𝑘

𝐾

𝑘=1

} (𝐷. 13) 

 
which accounts for network flow dependence with a linear combination of K selected eigenvectors (𝐸𝑘). 
 
In the formula,  

• 𝒎𝒊𝒋,𝒕 are 5-year accumulated migration flows from i to j district before t = 2001, 2011. The time 

interval is defined as [t-4, t]. 
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• 𝒁𝒊𝒋 is a vector of dyadic variables. Here, we use the log of geographical distance between i and j 

and a contiguity dummy variable. We can also include other dyadic variables, such as the 
temperature difference between district i and district j. 
 

• 𝑿𝒊,𝝉(𝒕) and 𝑿𝒋,𝝉(𝒕)  are the vectors of lagged demographic and socio-economic control variables at 

year 𝜏(𝑡) = 1996, 2007 for the sender (i) and receiver (j) districts, respectively. 𝑪𝒊,𝝎(𝒕) and 𝑪𝒋,𝝎(𝒕) are 

the vectors of climatic variables computed over the 5-year time intervals 𝜔(𝑡) = [1996–2000], 
[2006–2010] for the sender (i) and receiver (j) districts, respectively.  
 

• 𝜓𝑖 𝑎𝑛𝑑 𝜙𝑗 are the unobserved time-invariant individual effects (fixed effects) for the sender (i) and 

receiver (j) districts, respectively; and  𝜏𝑡 is the time fixed effect. 
 

• (𝐸𝑘)𝑖𝑗 is the kth of the total K selected eigenvectors, while Φ𝑘 is its coefficient.  
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Appendix E. Model comparison 

Future prediction 

We also tried to evaluate the model out-of-sample prediction performance by using the models trained on 
the training set of data to predict migration flows in the test set of data (Fig. E.1). In the test set, we 
generated climate variables during 2011-2015, and socioeconomic control variables based on 2011 census 
data, then used these new covariates to predict migration during 2012-2016 and compared them to the 
observed values based on the 2016 community survey. 
 

 
 
Fig. E.1 out-of-sample prediction test set data configuration chart 
 
 
In the future prediction, we see that performance of the AMEN model and the gravity model with MESF, as 
measured by R2 (log), are both better than the gravity model (Fig. E.2). The predicted values, in general, 
overestimate migration flows in all three models, but the overestimation may be attributable to migration 
underestimation problems in the 2016 community survey data. Migration flows based on 2016 community 
survey have a similar pattern to the 2011 census (Fig. E.3), but the values are too small (also see Table 
E.1) and are very likely to be underestimated. The 2016 community survey release report (Statistics South 
Africa 2016) explains, “This decrease may be due to underreporting from respondents or enumerator 
training deficiencies.” Therefore, we should use this data with caution. The gravity model also predicts 
larger values, especially for the smaller ones in the test set. We cannot conclude from this comparison that 
its performance is worse due to the observation data problem, but it tends to overestimate the small values 
even in the in-sample predictions (Fig. 3), which may be a systematical error. In addition, the spread of the 
dots for gravity model results are also much larger, which is also an indication of lower performance. Taken 
together, we conclude that the gravity model performance is the least reliable of these three. However, in 
comparing AMEN and the gravity model with MESF, we cannot distinguish one as superior to the other. 
Future census and community survey data will provide an improved basis for comparison. 
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Fig. E.2 Fitted (y-axis) using (a) AMEN, (b) gravity model with MESF components (“MESF”), and (c) gravity 
model without MESF (“Gravity”), vs. observed (x-axis) migration flows (both in log10 axis). Using models 
for all migrants in Table 5. Each dot in the plots represents one dyad during this time interval (2012-2016). 
The solid black line represents a perfect fit (1:1 line). Note: y-axis scale slight different 
 
 
 

 
 
Fig. E.3 South Africa internal migration between districts during the 5 years before (left) 2011 and (right) 
2016 
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Table E.1 Descriptive  
 

descriptive statistics migration flows training set migration flows test set 

sample size (n) 5100 2550 

sum 3799167.00 991915.00 

mean 744.93 388.99 

standard deviation 2276.63 1106.60 

minimum 0.00 0.00 

lower quartile 37.00 13.00 

median 131.00 62.00 

upper quartile 492.25 291.75 

maximum 53902.00 18349.00 

interquartile range 455.25 278.75 

 

 
Zero-inflation 
 
As we can see in Fig. 3, the two gravity models tend to overestimate the smaller migration flows and do not 
capture zero flows very well, while the AMEN model seems to perform better than them (the fitted values < 
1 can be considered 0, as migrants are integers). The effect is minor for the “all migrants” runs because 
only about 10% of those observations are zeros. However, the issue appears to be influential when the 
zeros in the data are abundant. In Table 3-5, the columns named “urban” and “non-urban” displaying the 
results for the climate effects on the subgroups of migrants moving to urban and non-urban areas, 

respectively. Comparing them, we can see that the model performance in terms of 𝑹𝟐(log) for “non-urban” 
subgroup are much worse, especially for the gravity models. Part of the reason is that there are much fewer 
people moving towards non-urban areas than urban locations and thus more zero entries in the migration 
matrix.  
 
The zero-inflation issue arises when the migration flow is frequently zero between the locations, like when 
we divide the migrants into two subgroups. In such cases, it would be more appropriate to model the non-
randomly missing migration flows as well to avoid biased estimation. In other words, we need a model that 
allows for both types of zero migration flows, structural (type I zeros) and incidental (type II zeros). Previous 
efforts have dealt with this issue in other related model settings (Krisztin and Fischer 2015; Metulini et al. 
2016; Ward et al. 2013), but we have not done so in this study.  
 

Robustness of the results 
 
Considering their better performance, we compare the β coefficients estimated by the two models that 
accounting for network autocorrelation but under different frameworks (“AMEN” and “MESF” columns in 
Table 3-5). Although the values of the estimates are not directly comparable, as AMEN is a Bayesian model 
and its coefficients have a different interpretation from the ones for the gravity model with MESF using 
frequentist statistics, we can consider the results to be robust if they are qualitatively consistent in both 
models (both significant or both not significant; if significant, have the same sign). For “all” migrants, almost 
all results are robust except for the destination effect of soil moisture and the origin effect of the negative 
SPI. They are significant using the gravity model with MESF but not significant using AMEN. We can see 
these discrepancies also show up for the non-urban-oriented subgroup, but not for the urban-oriented one. 
For urban-oriented migrants, all the effects are consistent, except for the origin effect of positive maximum 
temperature anomalies. It is not significant using the AMEN model but significant using the gravity model 
with MESF. As for the results for migrants moving to non-urban areas, most of them are not consistent 
between the two models. Besides the above-mentioned destination effect of soil moisture and origin effect 
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of the negative SPI, the origin and destination effects of positive SPI are also not significant using the AMEN 
model while being significant using the gravity model with MESF. Additionally, the destination effect of the 
negative SPI is significant using the AMEN model but not significant using the gravity model with MESF.  
 
The large discrepancies for the “non-urban” subgroup may be due to the zero-inflation issue because there 
are much more zero entries in the data of the “non-urban” subgroup. Considering the gravity models (with 
or without MESF) also overestimate the smaller values, we suspect the estimates from them are less 
reliable, as much fewer people moved to non-urban areas than to urban areas. Moreover, in Tables 3-5, 
we can see that AMEN’s estimates of the demographic and socio-economic effects are more consistent 
across the three models using different climate variables for all migrants and each subgroup, respectively. 
Together with the fact that it can account for higher-order of network autocorrelation (AMEN: up to third 
order, MESF: second-order) and its latent factors can control for unknown influential variables, we consider 
the results from AMEN models to be more reliable.  
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Appendix F. Data 

 

 

 

  

Fig. F.1 Variable temporal configuration for the model inputs. The demographic and socio-economic 

covariates for the second time interval for migration (2007-2011) are observed in the first year of the interval, 

but for the first time interval (1997-2001) are observed one year ahead. This is because there is no census 

data in 2006 (usually every 5 years) and we use 2007 community survey data instead  
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Appendix G. Latent factors of the multiplicative terms 

 

In Fig. G.1, which shows the latent positions of the first two pairs of latent factors (𝑢𝑖 , 𝑣𝑗 in Eq. 1) that make 

the largest contribution to the multiplicative term, we note the clustering of districts of KwaZulu-Natal (in the 

green circle). In this figure, the clustering of the sending and receiving districts indicates the closeness 

among them in the latent space, and this horizontal clustering indicates that the first pair of the latent factors 

should be the contributing latent factors.  

We can also see from Fig. G.1 that the Gauteng districts acting as senders (in the red circle) are distributed 

at the bottom and lie far from the Gauteng districts acting as receivers (in the blue circle) at the top. The 

vertical separation in Fig. G.1 suggests that the second pair of latent factors are contributing to the division 

of Gauteng districts as senders and receivers.  

 
 

Fig. G.1 Latent position of the first two pairs of latent factors (𝒖𝒊,  𝒗𝒋) in Eq. 1, using the first model for all 

migrants in Table 2. The red letters denote the sender districts, blue letters denote the receiver districts, 

and grey lines link district dyads, which have migration flows. As in Fig. 4, the sender and receiver codes 

are in the format: province.district (see Table A.1 for the corresponding district and province names and 

Fig. A.1 for the geographic map). The clustering in the green circle indicates the closeness among the 

sending and receiving districts in the latent space. It appears that these sending and receiving districts are 

mostly in the province of KwaZulu-Natal (KZN). The red circle highlights the latent positions of the Gauteng 

(GT) districts as senders and the blue circle the latent positions of them as receivers   
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Appendix H. Multiplicative effects before and after adding the prior migration 
terms  

 
We compare the results from model 2 and 4 in Table 7, and display the changes in their multiplicative 

effects before and after adding the migrant network variables in the models in Fig. H.1. Comparing the 

figures to the right (added migrant network variables) to the ones to the left (same models without these 

variables), we can see that adding the migrant network variables somewhat reduces the magnitude of the 

values of the multiplicative effects and almost wipes out the cluster involving GT province, which means 

these variables are especially important predictors of migration moving between GT districts. For the urban-

oriented migrants, the values in the rows and columns extending from the GT cluster are also largely 

reduced, implying these variables are also important in predicting migration between GT districts and 

districts in other provinces in South Africa (Fig. H.1d). As for KZN province, values still show a clear cluster, 

especially for migration to non-urban areas (Fig. H.1f). Based on this pattern, we suspect that the prior 

migrant network is associated with the second pair of latent factors. By calculating the correlations of the 

proxies (1900-1996 migration flow and counterflow), with each pair of the latent factors, we found that their 

correlations with the second pair of latent factors are indeed the largest (with negative values) among all 

the latent factors. The remaining multiplicative effects shown in the subplots in the right column of Fig. H.1 

indicate that there are still other factors we have not accounted for, which leaves space for future theory 

development. Nevertheless, we reiterate that specifying the network variables or other unobserved factors 

is not required in our model setting, which is a major advantage of this model framework. 
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Fig. H.1 Same as Fig. 4 except (a), (c), and (e) use models in Table 7 model 2: (a) all, (c) to urban, (e) to 

non-urban; (b), (d), and (f) use models in Table 7 model 4, which include migrant networks variables: (b) 

all, (d) to urban, (f) to non-urban  
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Appendix I. Robustness test of the migrant network effects 

 

We cut the 1900-1996 periods to different intervals to test the sensitivity of our modeling to the 

prior migrant network proxies using migration flows during different periods. Here we show the 

results based on the cutting that divides the period into two periods with the different political 

environments, 1948-1990 (apartheid) and 1990-1996 (abolishment of apartheid). The migration 

flows are mostly zeros before 1950, as they are measured in the 1996 census (Fig. I.1). We 

excluded 1948 and 1990 to generate the period 1949-1989, to make sure the interval is totally 

within apartheid. The comparison results show that the coefficients for the variables are basically 

consistent even using migration proxies during such different periods (Tables I.1-I.3). 

 

Fig. I.1 Total migrants moved during 1900-1996, provided in 1996 census. The green dashed lines 

denotes the two cut-off years for the sensitivity test, based on the apartheid of South Africa starting from 

1948  
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Table I.1. Comparison of the results in Table 6 Model 3, which uses past migration flow during 1900-

1996, with the results using past migration flow during other periods (1990-1996, 1949-1989, and 1948-

1996).  

 

Model 3 1900-1996 1990-1996 1949-1989 1949-1996 

(O) population 0.652 ** 0.655 ** 0.719 ** 0.653 ** 

(O) unemployed -1.434 ** -1.429 ** -1.408 ** -1.435 ** 

(O) Primary -1.181  -1.226  -1.311 † -1.183  

(O) white -2.232  -2.386 † -1.578  -2.246  

(D) population 0.578 ** 0.586 ** 0.651 ** 0.579 ** 

(D) unemployed -0.681 * -0.663 * -0.641 * -0.68 * 

(D) Primary -1.63 * -1.678 ** -1.777 ** -1.626 * 

(D) white 4.108 ** 3.988 ** 4.886 ** 4.111 ** 

(Dyad) mij.past 0.17 ** 0.161 ** 0.125 ** 0.17 ** 

(Dyad) mji.past 0.115 ** 0.121 ** 0.101 ** 0.116 ** 

(Dyad) distance -0.605 ** -0.625 ** -0.688 ** -0.603 ** 

(Dyad) contiguity 0.453 ** 0.455 ** 0.483 ** 0.452 ** 

R2(log) 0.8331 0.833 0.8332 0.8331 

DIC 1.6e+10 1.68e+10 1.86e+10 1.51e+10 

†  p < 0.10 
*  p < 0.05 
** p < 0.01 
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Table I.2. Comparison of the results in Table 6 Model 4, which uses past migration flow during 1900-

1996, with the results using past migration flow during other periods (1990-1996, 1949-1989, and 1948-

1996). 

 

Model 4 1900-1996 1990-1996 1949-1989 1949-1996 

(O) population 0.654 ** 0.655 ** 0.717 ** 0.653 ** 

(O) unemployed -0.984 ** -0.987 ** -0.981 ** -0.986 ** 

(O) Primary -0.682  -0.73  -0.783  -0.68  

(O) white -1.231  -1.4  -0.538  -1.249  

(O) posTmax 0.229 * 0.22 * 0.239 ** 0.227 * 

(O) negPrec -0.499 ** -0.495 ** -0.481 ** -0.499 ** 

(D) population 0.586 ** 0.592 ** 0.655 ** 0.585 ** 

(D) unemployed -1.135 ** -1.125 ** -1.113 ** -1.134 ** 

(D) Primary -1.89 ** -1.941 ** -2.033 ** -1.891 ** 

(D) white 3.425 ** 3.303 ** 4.219 ** 3.434 ** 

(D) posTmax 0.009  0.002  0.022  0.009  

(D) negPrec 0.571 ** 0.574 ** 0.592 ** 0.571 ** 

(Dyad) mij.past 0.167 ** 0.158 ** 0.123 ** 0.168 ** 

(Dyad) mji.past 0.114 ** 0.12 ** 0.1 ** 0.115 ** 

(Dyad) distance -0.618 ** -0.642 ** -0.707 ** -0.617 ** 

(Dyad) contiguity 0.452 ** 0.452 ** 0.479 ** 0.449 ** 

R2(log) 0.8348 0.8346 0.8349 0.8347 

DIC 1.48e+10 1.57e+10 1.9e+10 1.64e+10 

†  p < 0.10 
*  p < 0.05 
** p < 0.01 
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Table I.3. Comparison of the results in Table 6 Model 5, which uses past migration flow during 1900-

1996, with the results using past migration flow during other periods (1990-1996, 1949-1989, and 1948-

1996). 

 

Model 5 1900-1996 1990-1996 1949-1989 1949-1996 

(O) population 0.69 ** 0.694 ** 0.754 ** 0.689 ** 

(O) unemployed -0.847 ** -0.858 ** -0.96 ** -0.845 ** 

(O) Primary -0.345  -0.43  -0.507  -0.345  

(O) white -1.272  -1.463  -0.47  -1.28  

(O) posTmax 0.209  0.243  0.221 † 0.209  

(O) negPrec -0.885 ** -0.811 ** -0.699 ** -0.883 ** 

(D) population 0.593 ** 0.602 ** 0.674 ** 0.592 ** 

(D) unemployed -1.029 ** -1.031 ** -1.179 ** -1.033 ** 

(D) Primary -1.619 * -1.693 * -1.818 ** -1.613 * 

(D) white 3.499 ** 3.406 ** 4.262 ** 3.497 ** 

(D) posTmax -0.256 † -0.234  -0.064  -0.255 † 

(D) negPrec 0.08  0.153  0.323 * 0.08  

(Dyad) mij.past 0.179 ** 0.168 ** 0.128 ** 0.18 ** 

(Dyad) mji.past 0.132 ** 0.135 ** 0.11 ** 0.132 ** 

(Dyad) posTmax.i x mij.past -0.052 † -0.046  -0.035  -0.052 † 

(Dyad) posTmax.i x mji.past 0.05  0.035  0.034  0.049  

(Dyad) posTmax.j x mij.past 0.08 * 0.065 * 0.04  0.079 * 

(Dyad) posTmax.j x mji.past -0.029  -0.014  -0.019  -0.029  

(Dyad) negPrec.i x mij.past 0.054  0.05  0.067 † 0.053  

(Dyad) negPrec.i x mji.past 0.03  0.028  0.002  0.031  

(Dyad) negPrec.j x mij.past 0.029  0.024  -0.012  0.028  

(Dyad) negPrec.j x mji.past 0.075 * 0.075 * 0.093 * 0.076 * 

(Dyad) distance -0.615 ** -0.648 ** -0.74 ** -0.614 ** 

(Dyad) contiguity 0.446 ** 0.447 ** 0.478 ** 0.445 ** 

R2(log) 0.8368 0.8366 0.8365 0.837 

DIC 1.67e+10 1.57e+10 1.75e+10 1.6e+10 

†  p < 0.10 

*  p < 0.05 
** p < 0.01 
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