Online Supplementary Materials - TO APPEAR ONLINE ONLY

Lemma A1. When at least one strategic type is at y_{j} :
(a) $k_{j} \leq 2$.
(b) $k_{j}=2$ for $j=0, r$.
(c) If $k_{j}=2, L_{j}=R_{j}$.
(d) All strategic candidates who enter, tie and win.

Proof: When all candidates at a given location are strategic, the proofs are identical to Cox (1987, Lemma 1) and Osborne (1993, Lemma 1) where all candidates are strategic (note that Cox does not have part (d) as he studies exogenous entry). In fact, so long as there is at least one strategic type at a given location, their proofs continue to hold, so I do not repeat them.

Proposition 1 (Without idealists). For any unimodel density f, when no idealist candidates enter, no equilibrium with $n>2$ exists.

Proof: This proof uses some of the structure of that of Osborne (1993, Lemma 2), but goes further using the fact that f is assumed unimodal. If $n=3$, then Lemma A 1 (a) and (b) cannot be satisfied, so there is no equilibrium for any F. If $n=4$, then by Lemma A1 (b), $k_{0}=k_{1}=2$, $y_{0}=F^{-1}\left(\frac{1}{4}\right), y_{1}=F^{-1}\left(\frac{3}{4}\right)$ and $L_{0}=R_{0}$. The last condition implies $m_{0}=F^{-1}\left(\frac{1}{2}\right)$. In turn this implies

$$
\begin{equation*}
F^{-1}\left(\frac{1}{n}\right)+F^{-1}\left(\frac{3}{n}\right)=2 F^{-1}\left(\frac{2}{n}\right) . \tag{A1}
\end{equation*}
$$

This is not satisfied for almost any F. Furthermore, because f is unimodal, it can only be satisfied when the maximizer of f is in the interval $\left(F^{-1}\left(\frac{1}{4}\right), F^{-1}\left(\frac{3}{4}\right)\right)$: Suppose not, and without loss of generality that f were increasing throughout this interval. Then, F is convex over this interval and it must be that $F^{-1}\left(\frac{1}{2}\right)-F^{-1}\left(\frac{1}{4}\right)>F^{-1}\left(\frac{3}{4}\right)-F^{-1}\left(\frac{1}{2}\right)$, which contradicts (A1). Given the maximizer of f is in this interval, and this interval contains density of $\frac{1}{2}$, a strategic entrant can profitably enter: When an entrant locates at the maximizer of f, they will reduce the vote share of all the incumbent candidates and will gain a total vote share $>\frac{1}{4}$ (there is
density of $\frac{1}{2}$ in $\left[F^{-1}\left(\frac{1}{4}\right), F^{-1}\left(\frac{3}{4}\right)\right]$ and the entrant's left (right) constituency is greater than the reduced right (left) constituency of their neighbor to the left (right)).

If $n \geq 5$, then by Lemma A 1 (b) $k_{0}=2$. I now show that $k_{1}=1$. Suppose not. By Lemma A1 (a) $k_{1}=2$. If $n=5$ then $k_{2}=1$ which contradicts Lemma A1 (b). If $n>5$, we can follow the proof above for $n=4$ to find that (A1) holds, and therefore that the maximizer for f must be in the interval $\left(F^{-1}\left(\frac{1}{n}\right), F^{-1}\left(\frac{3}{n}\right)\right)$, but then an entrant could enter at the maximizer of f and win outright. Therefore, $k_{1}=1$. Now I show that the maximizer of f must be to the left of y_{1}. Suppose not. Then F is convex in the interval $\left(y_{0}, y_{1}\right)$ which means that $L_{1}>R_{0}=\frac{1}{n}$, but then the candidate at y_{1} wins outright, contradicting Lemma A1 (d). Now I show that $k_{j}=1$ for $j \geq 2$. Take $j=2$ and suppose that instead $k_{2}=2$. Then by Lemma A1 (c) $L_{2}=\frac{1}{n}$. However, because the maximizer of f is to the left of y_{1}, F is concave over $\left(y_{1}, y_{2}\right)$, hence $R_{1}>L_{2}=\frac{1}{n}$, but then the candidate at y_{1} wins outright, contradicting Lemma A1 (d). Similarly, one can show $k_{j}=1$ for $j \geq 3$. However, $k_{r}=1$ contradicts Lemma A1 (b).

Here I describe the special nature of the distributions of voter preferences which are ruled out of the analysis of this paper. Take B points $x_{b} \in X$ where $b=1, \ldots, B$, denote $x=$ $\left(x_{1}, \ldots, x_{B}\right)$ and index them, without loss of generality, such that $x_{1}<\cdots<x_{B}$. Take also the parameters $\beta_{b} \in \mathbb{R}_{\neq 0}$ for $b=0, \ldots, B$ and denote $\beta=\beta_{0}, \ldots, \beta_{B}$.

Definition A1. Denote the set of continuous unimodal density functions, \mathfrak{U}. Let $\mathcal{F}_{x, \beta} \subset \mathfrak{U}$ be such that if $f \in \mathcal{F}_{x, \beta}$, its corresponding distribution function F satisfies:

$$
\begin{equation*}
\beta_{0}+\sum_{b=1}^{B} \beta_{b} F\left(x_{b}\right)=0 \tag{A2}
\end{equation*}
$$

Define $\mathcal{F}_{x, \beta}^{c} \subset \mathcal{U}$ as the complement of $\mathcal{F}_{x, \beta}$ within \mathcal{U}.
Definition A2. Denote $g_{f}^{\epsilon} \subset \mathcal{U}$ such that if $g \in g_{f}^{\epsilon}, g \in \mathcal{U}$, has corresponding cdf G, and $|g(x)-f(x)| \leq \epsilon$ for all $x \in X$ where $\epsilon>0$.

Lemma A2. $\mathcal{F}_{x, \beta}^{c}$ is an open set: for any $f \in \mathcal{F}_{x, \beta}^{c}$, there exists $\epsilon>0$ such that for all $g \in g_{f}^{\epsilon}$, $g \in \mathcal{F}_{x, \beta}^{c}$.

Proof: For $f \in \mathcal{F}_{x, \beta}^{c}$ we have $\beta_{0}+\sum_{b=1}^{B} \beta_{b} F\left(x_{b}\right) \neq 0$. Because F is continuous, there
exist $\bar{\epsilon}_{1}, \ldots, \bar{\epsilon}_{B} \in \mathbb{R}_{\neq 0}$ such that for any $\epsilon_{1} \in\left[0,\left|\bar{\epsilon}_{1}\right|\right], \ldots, \epsilon_{B} \in\left[0,\left|\bar{\epsilon}_{B}\right|\right]$ we have $\beta_{0}+$ $\sum_{b=1}^{B}\left(\beta_{b} F\left(x_{b}\right)+\epsilon_{b}\right) \neq 0$. Define $\epsilon=\min \left\{\left|\bar{\epsilon}_{1}\right|, \ldots,\left|\bar{\epsilon}_{B}\right|\right\}$ and take any $g \in g_{f}^{\epsilon}$. Notice that $\beta_{0}+\sum_{b=1}^{B} \beta_{b} G\left(x_{b}\right) \neq 0$ and hence $g \in \mathcal{F}_{x, \beta}^{c}$.

Lemma A3. $\mathcal{F}_{x, \beta}^{c}$ is dense in \mathcal{U} : for any $f \in \mathcal{U}$ and $\epsilon>0$, there exists $g \in g_{f}^{\epsilon}$ such that $g \neq f$ and $g \in \mathcal{F}_{x, \beta}^{c}$.

Proof: Take $f \in \mathcal{U}$. If $f \in \mathcal{F}_{x, \beta}^{c}$, Lemma A2 completes the proof. If $f \in \mathcal{F}_{x, \beta}$, take $\epsilon>0$ and define g such that $g(x)=f(x)$ for $\left\{x \in X: x \leq x_{B-1}\right\}$, and $g(x)$ for $\left\{x \in X: x>x_{B-1}\right\}$ in any of the (uncountably) many ways such that $G\left(x_{B}\right) \neq F\left(x_{B}\right)$ and $g \in g_{f}^{\epsilon}$. Because $G\left(x_{b}\right)=F\left(x_{b}\right)$ for $b=1, \ldots, B-1$, but $G\left(x_{B}\right) \neq F\left(x_{B}\right)$, we have $g \in \mathcal{F}_{x, \beta}^{c}$.

Lemma A4. (A2) is a non-generic property on \mathcal{U}.
Proof: By Lemmas A2 and A3, $\mathcal{F}_{x, \beta}^{c}$ is an open set and is dense in \mathcal{U}. Because (A2) holds on $\left(\mathcal{F}_{x, \beta}^{c}\right)^{c} \subset \mathcal{U}=\mathcal{F}_{x, \beta}$, (A2) is a non-generic property on \mathcal{U}.

Definition A3. If a result holds for $f \in \mathcal{F}_{x, \beta}^{c}$ for some finitely many (x, β)-pairs, it holds "for almost any" f.

Lemma A5. For almost any unimodal density f, not all candidates tie.

Proof: Suppose not. Firstly, consider the case where there are two candidates at an extreme location and without loss of generality, suppose this is on the left i.e., $k_{0}=2$. I now show that for any unimodal $f, k_{j}=1$ for all $j \geq 1$. At least one of the candidates at y_{0} is strategic hence by Lemma A1 (c), $y_{0}=F^{-1}\left(\frac{1}{n+2}\right)$ and $m_{0}=F^{-1}\left(\frac{2}{n+2}\right)$. If $n=1, k_{1}=1$. If $n \geq 2$, suppose $k_{1}=2$. At least one of the candidates at y_{1} is strategic, hence $y_{1}=F^{-1}\left(\frac{3}{n+2}\right)$ which implies $F^{-1}\left(\frac{1}{n+2}\right)+F^{-1}\left(\frac{3}{n+2}\right)=2 F^{-1}\left(\frac{2}{n+2}\right)$. Following the proof of Proposition 1 (for $n \geq 4$ there, which covers $n \geq 2$ here) shows that for any unimodal $f, k_{j}=1$ for all $j \geq 1$. However, unlike the proof of Proposition 1, we do not conclude that $k_{r}=1$ is a contradiction. Instead, it must be that $y_{r}=z_{2}$. For all candidates to tie, $m_{j}=F^{-1}\left(\frac{j+2}{n+2}\right)$ for $j=0, \ldots, n-1$. Solving recursively yields $y_{0}=(-1)^{n} z_{2}+2 \sum_{j=0}^{n-1}(-1)^{j} F^{-1}\left(\frac{j+2}{n+2}\right)$. However, we also re-
quired $y_{0}=F^{-1}\left(\frac{1}{n+2}\right)$. These two expressions are not satisfied simultaneously for almost any unimodal density.

Now consider the case where there is one candidate at each extreme location $k_{0}=k_{r}=1$, which by Lemma A1 implies $y_{0}=z_{1}$ and $y_{r}=z_{2}$. For all to tie, $F\left(m_{j}\right)=F\left(m_{j-1}\right)+s_{j}$ for $j=$ $0, \ldots, r-1$ where $s_{j}=\frac{k_{j}}{n+2}$. Solving recursively yields $z_{1}=(-1)^{r} z_{2}+2 \sum_{j=0}^{r-1}(-1)^{j} F^{-1}\left(S_{j}\right)$, where $S_{j}=\sum_{i=1}^{j} s_{i}$ which is not true for almost any unimodal density.

Proposition 2 (Extreme idealism). For almost any unimodal f : $y_{0}=z_{1}, y_{r}=z_{2}$ and $k_{0}=k_{r}=1$ in equilibrium.

Proof: Suppose not. Either $k_{0}=2$ or $k_{r}=2$ by Lemma A1 (b). Without loss of generality say $k_{0}=2$, which implies $L_{0}=R_{0}$ by Lemma A1 (c). Denote the equilibrium vote share of the winning candidates by s.

If $n=1$ this imposes $F\left(z_{1}\right)=F\left(\frac{1}{2}\left(z_{1}+z_{2}\right)\right)-F\left(z_{1}\right)$, which is not true for almost any F. If $n=2, s \geq \frac{1}{4}$. If $s=\frac{1}{4}$, all candidates tie, which is ruled out by Lemma A5. If $s>\frac{1}{4}$, then by Lemma A1 (d), z_{2} is the sole loser. It must be that the strategic candidate is located at $y_{1}<z_{2}$: if they were located at z_{2}, then they would tie with z_{2}; if they were located right of z_{2}, they could profitably deviate slightly to the left. If $f\left(m_{0}\right)>f\left(m_{1}\right)$, then the candidate at y_{1} can profitably deviate by moving slightly to the left (they increase their share, and decrease the shares of candidates at y_{0}). If $f\left(m_{0}\right) \leq f\left(m_{1}\right), R_{0}<L_{1}$ because f is unimodal. But $L_{0}=R_{0}=s$, hence the candidate at y_{1} must get strictly more than s votes and wins outright, a contradiction.

For $n \geq 3$ strategic candidates, $y_{0}=F^{-1}(s)$ and $m_{0}=F^{-1}(2 s)$. If there is a strategic candidate at y_{1} and $k_{1}=2$, then $y_{1}=F^{-1}(3 s)$ which implies $\frac{1}{2}\left(F^{-1}(s)+F^{-1}(3 s)\right)=F^{-1}(2 s)$. Following the proof of Proposition 1 (there for $n \geq 5$) where $s \equiv \frac{1}{n}$ shows $k_{j}=1$ for each $j \geq 1$ when there are only strategic types at each y_{j}. To deal locations with idealists, denote y_{l} as the left-most position after y_{0} where there is an idealist. What I have shown so far is that for almost any $F, k_{l}=1$. Now I consider two cases, both of which end in a contradiction. (Recall that by Lemma A1 (d) and Lemma A5, z_{2} must lose for almost any F.)
(i) If there are no strategic candidates to the right of y_{l}, then for the unimodal density f : if $f\left(m_{l-2}\right) \leq f\left(m_{l-1}\right)$, then $L_{1}>s$ because $R_{0}=s$, which contradicts Lemma A1 (d); if
$f\left(m_{l-2}\right)>f\left(m_{l-1}\right)$, then the candidate at y_{l} has a profitable deviation slightly to the left (by increasing their own vote share and decreasing that of the winning candidates).
(ii) If there is a strategic candidate to the right of y_{l}, let the right-most such candidate be at y_{j}. If $f\left(m_{l-1}\right) \leq f\left(m_{l}\right), L_{1}>s$. If $f\left(m_{l-1}\right)>f\left(m_{l}\right)$, I consider two sub-cases: If $j=r$, then $k_{r}=2$ and $R_{r}=L_{r}=s<R_{r-1}$. If $j<r$, then $j=r-1$ and there is a lone idealist at y_{r}, in which case y_{j} can deviate profitably by moving slightly to the left (by increasing their own vote share and decreasing that of the winning candidates).

Lemma A6. For almost any unimodal $f, k_{j}=1$ for all j when $n=2$.

Proof: Suppose not. Then by Proposition 2 and Lemma A1 (c), $k_{1}=2$ and $L_{1}=R_{1}$. If z_{1} gets a strictly lower (higher) vote share than z_{2}, an entrant can locate slightly to the right (left) of the strategic candidates at y_{1} and win outright. Thus all candidates tie, contradicting Lemma A5.

Lemma A7. For almost any unimodal f, exactly one idealist must tie with the strategic candidates when $n \geq 2$.

Proof: First, I show that it cannot be that both idealists lose. Suppose they do and consider first $n=2$. By Lemma A6, $k_{1}=k_{2}=1$. If $f\left(m_{0}\right)<f\left(m_{1}\right)$, the candidate at y_{1} can move slightly to the right, increasing their vote-share and decreasing that of the other strategic candidate; if $f\left(m_{0}\right) \geq f\left(m_{1}\right)$ then because f is unimodal, the maximizer of f must lie to the left of m_{1}, which implies $f\left(m_{1}\right)>f\left(m_{2}\right)$ and hence that the candidate at y_{2} can profitably deviate by moving slightly to the left, increasing their vote-share and decreasing that of the other strategic candidate.

Now consider $n \geq 3$. Denote the equilibrium vote share of strategic candidates as s. If y_{2} is weakly to the left of the maximizer of f, then $k_{1}=1$ because if $k_{1}=2$, $s=R_{1}<L_{2}$, which contradicts Lemma A1 (d). Because $k_{1}=1$ and z_{1} loses, the candidate at y_{1} can profitably deviate slightly to the right. Now consider the case where y_{2} is to the right of the maximizer. There can be no more strategic candidates to the right of y_{2}. If there were, then $k_{j}=1, j>2$ because if $k_{j}=2$ for one such j, then $R_{j-1}>L_{j}=s$. Note now that the candidate at y_{r-1} has a profitable deviation to the left because z_{2} loses. Next I show that it must be that $k_{1}=k_{2}=2$
and hence that $n=4$. If $k_{2}=1$ and $f\left(m_{1}\right)>f\left(m_{2}\right)$, the candidate at y_{2} can profitably deviate to the left; if $k_{2}=1$ and $f\left(m_{1}\right) \leq f\left(m_{2}\right), k_{1}=1$ (else $s=R_{1}<L_{2}$) and the candidate at y_{1} can profitably deviate right. Hence $k_{2}=2$. If $k_{1}=1$ and $f\left(m_{0}\right)<f\left(m_{1}\right)$, the candidate at y_{1} can profitably deviate right; if $k_{1}=1$ and $f\left(m_{0}\right) \geq f\left(m_{1}\right)$ then $f\left(y_{1}\right)>f\left(m_{1}\right)$ implying $R_{1}>$ $L_{2}=s$ as $k_{2}=2$. As $k_{1}=k_{2}=2$, by Lemma A1 (c) and (d), $L_{1}=R_{1}=L_{2}=R_{2}$. But with only two free variables (y_{1} and y_{2}) these three conditions will not be satisfied for almost any F.

Hence, for almost any unimodal distributions at least one idealist must tie, but by Lemma A5, exactly one idealist must tie.

Lemma A8. For almost any unimodal $f, k_{j}=1$ for all j when $n \geq 3$.
Proof: By Proposition 2, $y_{0}=z_{1}$ and $y_{r}=z_{2}$ while by Lemma A1 (d) all strategic entrants tie for the win. This implies $F\left(z_{1}\right)<\frac{1}{n+2}$ and $F\left(z_{2}\right)>\frac{n+1}{n+2}$ in any equilibrium. By Lemma A7, exactly one idealist ties with the strategic types and without loss of generality, let this be z_{1}. Now consider the following spacing procedure which spaces candidate locations throughout the distribution F for some arbitrary number of candidates n, where $k_{0}=k_{r}=2, k_{j}=1,2$ for $j=1, \ldots, r-1$ and strategic types tie with the idealist z_{1}.

Spacing Procedure:

1. Choose y_{1} such that $s \equiv F\left(m_{0}\right) \in\left(F\left(z_{1}\right), \frac{1}{n+2}\right)$.
2. Place the remaining $r-2$ candidate locations at y_{j} for $j=2, \ldots, r-1$ in turn, such that

$$
F\left(m_{j-1}\right)=F\left(m_{j-2}\right)+k_{j-1} s .
$$

3. Observe whether $\frac{1}{2}\left(y_{r-1}+z_{2}\right)=m_{r-1}$. If yes, stop and denote s as s^{*}; if $m_{r-1}<(>)$ $\frac{1}{2}\left(y_{r-1}+z_{2}\right)$ return to step 1 and choose a higher (lower) value of s.

Iterating on this procedure, the value of s will converge to s^{*}. As F is continuous, s^{*} exists, and as F is strictly increasing, s^{*} is unique. An example result of the procedure is illustrated below in Figure A1. The points y_{1}, \ldots, y_{r-1} associated with s^{*} pin-down the necessary locations of the strategic candidates in equilibrium. ${ }^{13}$

[^0]It is now straightforward to see that for almost any distribution $F, k_{i}=1$ for all i. Suppose instead that $k_{j}=2$ for some $j=2, \ldots, r$. By Lemma A1 (c) we must have that $L_{j}=R_{j}$. However, as is illustrated in Figure A1 for the example of $j=2$, this extra condition will not be satisfied for all except very particular distributions.

Figure A1: An example result of the spacing procedure

The example shown has $n=4$ and $r=4$ where $k_{i}=1$ for all i except $k_{2}=2$. F is the standard Normal distribution and $z_{1}=F^{-1}(0.10), z_{2}=F^{-1}(0.98)$. Solving the procedure yields $s^{*}=0.19$ (2 d.p.) with candidate positions as shown.

Proposition 3 (No platform sharing). For almost any unimodal $f, k_{j}=1$ for all j when $n \geq 2$ in equilibrium.

Proof: Immediate from Lemmas A6 and A8.

Lemma A9. For any symmetric, unimodal f, when there is $n=1$ strategic entrant, the idealists' vote shares are equal.

Proof: Suppose not. Without loss of generality, suppose that the idealist z_{1} has a higher vote share than z_{2} which implies that $f\left(m_{0}\right)>f\left(m_{1}\right)$. The strategic candidate at y_{1} can move candidates, this procedure is not sufficient to define an equilibrium as for example, it may not be that $y_{j}>y_{j-1}$ for all $j=1, \ldots, r-1$.
slightly to the left, simultaneously increasing their own vote share and reducing the vote share of z_{1}, giving strictly higher utility.

Proposition 4 (Symmetric distributions). For almost any symmetric, unimodal f, a unique equilibrium exists wherein $n=1$ strategic candidate enters at location y_{1}, where y_{1} solves (1):

$$
\begin{equation*}
F\left(m_{0}\right)=1-F\left(m_{1}\right) . \tag{1}
\end{equation*}
$$

Here, $m_{0}=\frac{1}{2}\left(z_{1}+y_{1}\right)$ and $m_{1}=\frac{1}{2}\left(y_{1}+z_{2}\right)$, whenever the positions of the idealists $\left(z_{1}, z_{2}\right)$ satisfy (2) and (3):
(2) not too moderate: $m_{0}<F^{-1}\left(\frac{1}{3}\right) \Longleftrightarrow m_{1}>F^{-1}\left(\frac{2}{3}\right)$
(3) not too extreme: if z_{1} is closer to the maximizer of f than z_{2} is, $F\left(y_{1}\right) \geq 1-2 F\left(m_{0}\right)$

$$
\text { if } z_{2} \text { is closer to the maximizer of } f \text { than } z_{1} \text { is, } F\left(y_{1}\right) \leq 2 F\left(m_{0}\right)
$$

Proof: Firstly I show that $n=1$ in equilibrium. Suppose instead $n>1$. By Proposition 2 and Lemmas A6 and A8, for almost any unimodal f, the strategic candidates occupy the nonextreme locations and $k_{j}=1$ for all j. As f is symmetric, there must be at least one strategic candidate on either side of the maximizer of f, else Lemma A1 (d) is violated. I now show this implies that both idealists tie with the strategic candidates. Suppose not and without loss of generality that z_{1} loses. As f is symmetric, this implies $f\left(m_{0}\right)<f\left(m_{1}\right)$ (if not, z_{1} gets at least as many votes as the candidate at y_{2}). The candidate at y_{1} then can profitably deviate slightly to the right. But by Lemma A5, not all candidates can tie.

I now characterize the equilibrium. By Lemma A9, the idealists' vote shares must be equal, meaning that the strategic candidate's position y_{1} must solve (1). To be an equilibrium, the strategic candidate must win, which implies $F\left(m_{1}\right)-F\left(m_{0}\right)>\frac{1}{3}$. Using (1), this becomes (2).

In equilibrium, the strategic candidate must not want to deviate to the left of z_{1} or the right of z_{2}. Note that (2) implies that $z_{1}<F^{-1}\left(\frac{1}{3}\right)$ and $z_{2}>F^{-1}\left(\frac{2}{3}\right)$. As the strategic candidate gets at least $\frac{1}{3}$ of the vote share in order to win, there is no such profitable deviation. The strategic candidate would also lose if they deviated to an idealist's location as the other idealist would win outright. Finally, the strategic candidate does not have incentive to deviate to another location in $\left(z_{1}, z_{2}\right)$: Without loss of generality, consider such a deviation to the left. By Lemma A9 this
increases z_{2} 's vote share (and z_{2} now beats rather than ties with z_{1}). However, as f symmetric, this deviation also decreases the strategic candidate's vote share and hence also their plurality.

In equilibrium, inactive strategic candidates must not wish to enter. Notice that an inactive candidate could only profitably locate in $\left(z_{1}, z_{2}\right)$. Assume first that z_{1} is closer to the maximizer of f than z_{2}, so that y_{1} is to the left of the maximizer. Notice that the payoff of the entrant is increasing as their location approaches y_{1} from the right. Hence, entry is not profitable if the right constituency of y_{1} is less than the vote share of the idealists $F\left(m_{1}\right)-F\left(y_{1}\right) \leq F\left(m_{0}\right)$ which gives (3). Similarly, the case of z_{2} being closer to the maximizer gives the second expression in (3).

Corollary 1. For almost any unimodal f where $\operatorname{Mo}(f)=\operatorname{Md}(f), n=1$.

Proof: Suppose instead $n>1$. By Lemma A7 exactly one idealist loses and without loss of generality assume this is z_{2}. This implies that $f\left(m_{r-2}\right) \leq f\left(m_{r-1}\right)$ else the candidate at y_{r-1} deviates left. This implies that m_{r-2} is strictly to the left of the maximizer of f. For the candidate at y_{r-2} and z_{1} to tie (along with any number of others on the left of the maximizer), there must be strictly more than half the density to the left of the maximizer, contradicting $\operatorname{Mo}(f)=\operatorname{Md}(f)$.

Lemma A10. For almost any unimodal f, when $n \geq 2$, strategic candidates and one idealist tie for the win with vote share s^{*}, where:

If $M o(f)<M d(f)$, then s^{*} solves (A4), locations are given by (A5) and the left extremist loses (A6);
(A4) $\quad z_{1}=(-1)^{n+1} z_{2}-2 \sum_{i=1}^{n+1}(-1)^{n+i} F^{-1}(1-i s)$
(A5) $y_{j}=(-1)^{n+1-j} z_{2}-2 \sum_{i=1}^{n+1-j}(-1)^{n-j+i} F^{-1}\left(1-i s^{*}\right), \quad$ s.t. $z_{1}<y_{j}<y_{j+1}, \quad j=1, \ldots, n$
(A6) $\quad z_{1}<2 F^{-1}\left(s^{*}\right)-y_{1}$.

If $M o(f)>M d(f), s^{*}$ solves (A7), locations are given by (A8) and the right extremist loses (A9);
(A7) $\quad z_{1}=(-1)^{n+1} z_{2}+2 \sum_{i=1}^{n+1}(-1)^{n+i} F^{-1}(i s)$

$$
\begin{align*}
& y_{j}=(-1)^{j} z_{1}+2 \sum_{i=1}^{j}(-1)^{j+i} F^{-1}\left(i s^{*}\right), \text { s.t. } z_{1}<y_{j}<y_{j+1}, \quad j=1, \ldots, n \tag{A8}\\
& z_{2}>2 F^{-1}\left(1-s^{*}\right)-y_{n} .
\end{align*}
$$

Proof: I first show that if $\operatorname{Mo}(f)<\operatorname{Md}(f)$ and $n>1, z_{1}$ loses: If not, by Lemma $\mathrm{A} 7 z_{2}$ loses and one can then then follow the proof of Corollary 1 to show that there must be strictly more than half the density to the left of the maximizer, contradicting $\operatorname{Mo}(f)<\operatorname{Md}(f)$. Given z_{1} loses, z_{2} must tie with the strategic candidates by Lemma A7 and $k_{j}=1$ for all j by Lemmas A6 and A8. This implies that $r=n+1$ and that $F\left(m_{j}\right)=F\left(m_{j-1}\right)+s$ for $j=1, \ldots, n+1$ where s is the equilibrium vote share and $F\left(m_{n+1}\right) \equiv 1$. Solving recursively yields (A4) which the equilibrium s, s^{*}, solves, giving equilibrium locations as (A5) where (A6) is the requirement for z_{1} to lose: $F\left(m_{0}\right)<s^{*}$. Similarly, one finds (A7)-(A9) in the case of $\operatorname{Mo}(f)>\operatorname{Md}(f)$.

Proposition 5 (Asymmetric distributions). For almost any asymmetric, unimodal fatisfying

 (4) - (6) where $\operatorname{Mo}(f) \neq M d(f)$, an equilibrium exists with $n>1$ strategic candidates where locations and vote-shares are given by Lemma A10.$$
\begin{array}{ll}
\text { If } \operatorname{Mo}(f)<\operatorname{Md}(f) & \text { If } \operatorname{Mo}(f)>\operatorname{Md}(f) \\
f\left(m_{0}\right) \in\left[f\left(m_{1}\right), 2 f\left(m_{1}\right)\right] & f\left(m_{n}\right) \in\left[f\left(m_{n-1}\right), 2 f\left(m_{n-1}\right)\right] \\
f\left(m_{j-1}\right) \leq 2 f\left(m_{j}\right) \quad j=2, \ldots, n & f\left(m_{j}\right) \leq 2 f\left(m_{j-1}\right) \quad j=1, \ldots, n-1 \\
f\left(m_{0}\right) \leq \max \left\{f\left(y_{1}\right), f\left(z_{1}\right)\right\} & f\left(m_{n}\right) \leq \max \left\{f\left(y_{n}\right), f\left(z_{2}\right)\right\} \tag{6}
\end{array}
$$

Proof: I show that conditions (4) - (6) are sufficient for an equilibrium by considering all possible deviations in the case of $\operatorname{Mo}(f)<\operatorname{Md}(f)$; those for $\operatorname{Mo}(f)>\operatorname{Md}(f)$ follow similarly.

Consider deviations of the candidate at y_{1} within $\left(z_{1}, y_{2}\right)$ (the candidate at y_{1} is the only strategic candidate who could have a constituency boundary to the left of the maximizer of f) (i) to the left: the candidate at y_{2} then becomes the candidate with the highest vote-share of all other candidates, hence if $f\left(m_{0}\right) \leq 2 f\left(m_{1}\right)$ there is no profitable deviation within $\left(z_{1}, y_{1}\right)$; (ii) to the right: for a small move, z_{1} remains a loser and the candidate at y_{2} becomes a loser. It must be that $f\left(m_{0}\right) \geq f\left(m_{1}\right)$ else the candidate at y_{1} could profit from such a move. This implies that any deviation within $\left(y_{1}, y_{2}\right)$ reduces this candidate's vote share, hence there is no
such profitable deviation. This gives (4).
Next consider deviations for the candidate at $y_{j}, j>1$ within $\left(y_{j-1}, y_{j+1}\right)$ (i) to the left: their vote share would increase, but so will that of the candidate at y_{j+1} who then becomes the candidate with the highest share of all the others, but the plurality of the deviating candidate decreases if $f\left(m_{j-1}\right) \leq 2 f\left(m_{j}\right)$ which gives (5); (ii) to the right: their own vote share would decrease while increasing that of the candidate at y_{j-1}.

Next consider an inactive candidate entering (i) at an occupied location: this is not profitable as it results in an outright loss; (ii) left of z_{1} or right of z_{2} : this results in an outright loss; (iii) between two strategic candidates y_{j} and $y_{j+1}, j>1$: such an interval does not contain the maximizer of f, hence the optimal such deviation is as close as possible to the candidate whose position is has higher density, y_{j}. But this cannot be profitable because the maximum vote share is bounded from above by $\max \left\{L_{j}, R_{j}\right\}<s^{*}$; (iv) between z_{1} and y_{1}, which contains the maximizer of $f:$ under (6), the optimal such deviation is to locate arbitrarily close to z_{1} or y_{1} (whichever has the higher density), but as in case (iii) this is unprofitable because $\max \left\{R_{0}, L_{1}\right\}<s^{*}$.

Finally, for deviations of the candidate at y_{j} to locations outside the interval $\left(y_{j-1}, y_{j+1}\right)$, $j=1, \ldots, n$, it suffices to follow the steps above relating to an inactive candidate.

[^0]: ${ }^{13}$ Notice that although s^{*} is necessarily the equilibrium share of the vote for the winning

