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Lemma A1. When at least one strategic type is at yj:

(a) kj ≤ 2.

(b) kj = 2 for j = 0, r.

(c) If kj = 2, Lj = Rj .

(d) All strategic candidates who enter, tie and win.

Proof: When all candidates at a given location are strategic, the proofs are identical to Cox

(1987, Lemma 1) and Osborne (1993, Lemma 1) where all candidates are strategic (note that

Cox does not have part (d) as he studies exogenous entry). In fact, so long as there is at least

one strategic type at a given location, their proofs continue to hold, so I do not repeat them.

Proposition 1 (Without idealists). For any unimodel density f , when no idealist candidates

enter, no equilibrium with n > 2 exists.

Proof: This proof uses some of the structure of that of Osborne (1993, Lemma 2), but goes fur-

ther using the fact that f is assumed unimodal. If n = 3, then Lemma A1 (a) and (b) cannot be

satisfied, so there is no equilibrium for any F . If n = 4, then by Lemma A1 (b), k0 = k1 = 2,

y0 = F−1
(

1

4

)

, y1 = F−1
(

3

4

)

and L0 = R0. The last condition implies m0 = F−1
(

1

2

)

. In turn

this implies

(A1) F−1
(

1

n

)

+ F−1
(

3

n

)

= 2F−1
(

2

n

)

.

This is not satisfied for almost any F . Furthermore, because f is unimodal, it can only be satis-

fied when the maximizer of f is in the interval
(

F−1
(

1

4

)

, F−1
(

3

4

))

: Suppose not, and without

loss of generality that f were increasing throughout this interval. Then, F is convex over this

interval and it must be that F−1
(

1

2

)

−F−1
(

1

4

)

> F−1
(

3

4

)

−F−1
(

1

2

)

, which contradicts (A1).

Given the maximizer of f is in this interval, and this interval contains density of 1

2
, a strategic

entrant can profitably enter: When an entrant locates at the maximizer of f , they will reduce

the vote share of all the incumbent candidates and will gain a total vote share > 1

4
(there is
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density of 1

2
in

[

F−1
(

1

4

)

, F−1
(

3

4

)]

and the entrant’s left (right) constituency is greater than the

reduced right (left) constituency of their neighbor to the left (right)).

If n ≥ 5, then by Lemma A1 (b) k0 = 2. I now show that k1 = 1. Suppose not. By

Lemma A1 (a) k1 = 2. If n = 5 then k2 = 1 which contradicts Lemma A1 (b). If n > 5, we

can follow the proof above for n = 4 to find that (A1) holds, and therefore that the maximizer

for f must be in the interval
(

F−1
(

1

n

)

, F−1
(

3

n

))

, but then an entrant could enter at the max-

imizer of f and win outright. Therefore, k1 = 1. Now I show that the maximizer of f must

be to the left of y1. Suppose not. Then F is convex in the interval (y0, y1) which means that

L1 > R0 =
1

n
, but then the candidate at y1 wins outright, contradicting Lemma A1 (d). Now I

show that kj = 1 for j ≥ 2. Take j = 2 and suppose that instead k2 = 2. Then by Lemma A1

(c) L2 =
1

n
. However, because the maximizer of f is to the left of y1, F is concave over (y1, y2),

hence R1 > L2 = 1

n
, but then the candidate at y1 wins outright, contradicting Lemma A1 (d).

Similarly, one can show kj = 1 for j ≥ 3. However, kr = 1 contradicts Lemma A1 (b).

Here I describe the special nature of the distributions of voter preferences which are ruled

out of the analysis of this paper. Take B points xb ∈ X where b = 1, . . . , B, denote x =

(x1, . . . , xB) and index them, without loss of generality, such that x1 < · · · < xB. Take also

the parameters βb ∈ R 6=0 for b = 0, . . . , B and denote β = β0, . . . , βB.

Definition A1. Denote the set of continuous unimodal density functions, U. Let Fx,β ⊂ U be

such that if f ∈ Fx,β , its corresponding distribution function F satisfies:

(A2) β0 +
B
∑

b=1

βbF (xb) = 0.

Define F
c
x,β ⊂ U as the complement of Fx,β within U.

Definition A2. Denote gεf ⊂ U such that if g ∈ gεf , g ∈ U, has corresponding cdf G, and

|g(x)− f(x)| ≤ ε for all x ∈ X where ε > 0.

Lemma A2. Fc
x,β is an open set: for any f ∈ F

c
x,β , there exists ε > 0 such that for all g ∈ gεf ,

g ∈ F
c
x,β .

Proof: For f ∈ F
c
x,β we have β0 +

∑B

b=1
βbF (xb) 6= 0. Because F is continuous, there
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exist ε̄1, . . . , ε̄B ∈ R 6=0 such that for any ε1 ∈ [0, |ε̄1|], . . . , εB ∈ [0, |ε̄B|] we have β0 +
∑B

b=1
(βbF (xb) + εb) 6= 0. Define ε = min{|ε̄1|, . . . , |ε̄B|} and take any g ∈ gεf . Notice

that β0 +
∑B

b=1
βbG(xb) 6= 0 and hence g ∈ F

c
x,β .

Lemma A3. Fc
x,β is dense in U: for any f ∈ U and ε > 0, there exists g ∈ gεf such that g 6= f

and g ∈ F
c
x,β .

Proof: Take f ∈ U. If f ∈ F
c
x,β , Lemma A2 completes the proof. If f ∈ Fx,β , take ε > 0 and

define g such that g(x) = f(x) for {x ∈ X : x ≤ xB−1}, and g(x) for {x ∈ X : x > xB−1}

in any of the (uncountably) many ways such that G(xB) 6= F (xB) and g ∈ gεf . Because

G(xb) = F (xb) for b = 1, . . . , B − 1, but G(xB) 6= F (xB), we have g ∈ F
c
x,β .

Lemma A4. (A2) is a non-generic property on U.

Proof: By Lemmas A2 and A3, Fc
x,β is an open set and is dense in U. Because (A2) holds on

(Fc
x,β)

c ⊂ U = Fx,β , (A2) is a non-generic property on U.

Definition A3. If a result holds for f ∈ F
c
x,β for some finitely many (x, β)-pairs, it holds “for

almost any” f .

Lemma A5. For almost any unimodal density f , not all candidates tie.

Proof: Suppose not. Firstly, consider the case where there are two candidates at an extreme

location and without loss of generality, suppose this is on the left i.e., k0 = 2. I now show that

for any unimodal f , kj = 1 for all j ≥ 1. At least one of the candidates at y0 is strategic hence

by Lemma A1 (c), y0 = F−1
(

1

n+2

)

and m0 = F−1
(

2

n+2

)

. If n = 1, k1 = 1. If n ≥ 2, suppose

k1 = 2. At least one of the candidates at y1 is strategic, hence y1 = F−1
(

3

n+2

)

which implies

F−1
(

1

n+2

)

+F−1
(

3

n+2

)

= 2F−1
(

2

n+2

)

. Following the proof of Proposition 1 (for n ≥ 4 there,

which covers n ≥ 2 here) shows that for any unimodal f , kj = 1 for all j ≥ 1. However,

unlike the proof of Proposition 1, we do not conclude that kr = 1 is a contradiction. Instead,

it must be that yr = z2. For all candidates to tie, mj = F−1
(

j+2

n+2

)

for j = 0, . . . , n − 1.

Solving recursively yields y0 = (−1)nz2 + 2
∑n−1

j=0
(−1)jF−1

(

j+2

n+2

)

. However, we also re-
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quired y0 = F−1
(

1

n+2

)

. These two expressions are not satisfied simultaneously for almost any

unimodal density.

Now consider the case where there is one candidate at each extreme location k0 = kr = 1,

which by Lemma A1 implies y0 = z1 and yr = z2. For all to tie, F (mj) = F (mj−1)+sj for j =

0, . . . , r−1 where sj =
kj
n+2

. Solving recursively yields z1 = (−1)rz2+2
∑r−1

j=0
(−1)jF−1 (Sj),

where Sj =
∑j

i=1
si which is not true for almost any unimodal density.

Proposition 2 (Extreme idealism). For almost any unimodal f : y0 = z1, yr = z2 and

k0 = kr = 1 in equilibrium.

Proof: Suppose not. Either k0 = 2 or kr = 2 by Lemma A1 (b). Without loss of generality say

k0 = 2, which implies L0 = R0 by Lemma A1 (c). Denote the equilibrium vote share of the

winning candidates by s.

If n = 1 this imposes F (z1) = F (1
2
(z1 + z2))− F (z1), which is not true for almost any F .

If n = 2, s ≥ 1

4
. If s = 1

4
, all candidates tie, which is ruled out by Lemma A5. If s > 1

4
, then by

Lemma A1 (d), z2 is the sole loser. It must be that the strategic candidate is located at y1 < z2:

if they were located at z2, then they would tie with z2; if they were located right of z2, they could

profitably deviate slightly to the left. If f(m0) > f(m1), then the candidate at y1 can profitably

deviate by moving slightly to the left (they increase their share, and decrease the shares of can-

didates at y0). If f(m0) ≤ f(m1), R0 < L1 because f is unimodal. But L0 = R0 = s, hence

the candidate at y1 must get strictly more than s votes and wins outright, a contradiction.

For n ≥ 3 strategic candidates, y0 = F−1(s) and m0 = F−1(2s). If there is a strategic can-

didate at y1 and k1 = 2, then y1 = F−1(3s) which implies 1

2
(F−1(s) + F−1(3s)) = F−1(2s).

Following the proof of Proposition 1 (there for n ≥ 5) where s ≡ 1

n
shows kj = 1 for each

j ≥ 1 when there are only strategic types at each yj . To deal locations with idealists, denote yl

as the left-most position after y0 where there is an idealist. What I have shown so far is that for

almost any F , kl = 1. Now I consider two cases, both of which end in a contradiction. (Recall

that by Lemma A1 (d) and Lemma A5, z2 must lose for almost any F .)

(i) If there are no strategic candidates to the right of yl, then for the unimodal density f :

if f(ml−2) ≤ f(ml−1), then L1 > s because R0 = s, which contradicts Lemma A1 (d); if
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f(ml−2) > f(ml−1), then the candidate at yl has a profitable deviation slightly to the left (by

increasing their own vote share and decreasing that of the winning candidates).

(ii) If there is a strategic candidate to the right of yl, let the right-most such candidate be at

yj . If f(ml−1) ≤ f(ml), L1 > s. If f(ml−1) > f(ml), I consider two sub-cases: If j = r, then

kr = 2 and Rr = Lr = s < Rr−1. If j < r, then j = r − 1 and there is a lone idealist at yr,

in which case yj can deviate profitably by moving slightly to the left (by increasing their own

vote share and decreasing that of the winning candidates).

Lemma A6. For almost any unimodal f , kj = 1 for all j when n = 2.

Proof: Suppose not. Then by Proposition 2 and Lemma A1 (c), k1 = 2 and L1 = R1. If z1 gets

a strictly lower (higher) vote share than z2, an entrant can locate slightly to the right (left) of the

strategic candidates at y1 and win outright. Thus all candidates tie, contradicting Lemma A5.

Lemma A7. For almost any unimodal f , exactly one idealist must tie with the strategic candi-

dates when n ≥ 2.

Proof: First, I show that it cannot be that both idealists lose. Suppose they do and consider first

n = 2. By Lemma A6, k1 = k2 = 1. If f(m0) < f(m1), the candidate at y1 can move slightly

to the right, increasing their vote-share and decreasing that of the other strategic candidate; if

f(m0) ≥ f(m1) then because f is unimodal, the maximizer of f must lie to the left of m1,

which implies f(m1) > f(m2) and hence that the candidate at y2 can profitably deviate by

moving slightly to the left, increasing their vote-share and decreasing that of the other strategic

candidate.

Now consider n ≥ 3. Denote the equilibrium vote share of strategic candidates as s. If y2

is weakly to the left of the maximizer of f , then k1 = 1 because if k1 = 2, s = R1 < L2, which

contradicts Lemma A1 (d). Because k1 = 1 and z1 loses, the candidate at y1 can profitably

deviate slightly to the right. Now consider the case where y2 is to the right of the maximizer.

There can be no more strategic candidates to the right of y2. If there were, then kj = 1, j > 2

because if kj = 2 for one such j, then Rj−1 > Lj = s. Note now that the candidate at yr−1 has

a profitable deviation to the left because z2 loses. Next I show that it must be that k1 = k2 = 2
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and hence that n = 4. If k2 = 1 and f(m1) > f(m2), the candidate at y2 can profitably deviate

to the left; if k2 = 1 and f(m1) ≤ f(m2), k1 = 1 (else s = R1 < L2) and the candidate at y1

can profitably deviate right. Hence k2 = 2. If k1 = 1 and f(m0) < f(m1), the candidate at y1

can profitably deviate right; if k1 = 1 and f(m0) ≥ f(m1) then f(y1) > f(m1) implying R1 >

L2 = s as k2 = 2. As k1 = k2 = 2, by Lemma A1 (c) and (d), L1 = R1 = L2 = R2. But with

only two free variables (y1 and y2) these three conditions will not be satisfied for almost any F .

Hence, for almost any unimodal distributions at least one idealist must tie, but by Lemma A5,

exactly one idealist must tie.

Lemma A8. For almost any unimodal f , kj = 1 for all j when n ≥ 3.

Proof: By Proposition 2, y0 = z1 and yr = z2 while by Lemma A1 (d) all strategic entrants tie

for the win. This implies F (z1) <
1

n+2
and F (z2) >

n+1

n+2
in any equilibrium. By Lemma A7,

exactly one idealist ties with the strategic types and without loss of generality, let this be z1.

Now consider the following spacing procedure which spaces candidate locations throughout

the distribution F for some arbitrary number of candidates n, where k0 = kr = 2, kj = 1, 2 for

j = 1, . . . , r − 1 and strategic types tie with the idealist z1.

Spacing Procedure:

1. Choose y1 such that s ≡ F (m0) ∈
(

F (z1),
1

n+2

)

.

2. Place the remaining r − 2 candidate locations at yj for j = 2, ..., r − 1 in turn, such that

F (mj−1) = F (mj−2) + kj−1s.

3. Observe whether 1

2
(yr−1 + z2) = mr−1. If yes, stop and denote s as s∗; if mr−1 < (>)

1

2
(yr−1 + z2) return to step 1 and choose a higher (lower) value of s.

Iterating on this procedure, the value of s will converge to s∗. As F is continuous, s∗ exists,

and as F is strictly increasing, s∗ is unique. An example result of the procedure is illustrated be-

low in Figure A1. The points y1, . . . , yr−1 associated with s∗ pin-down the necessary locations

of the strategic candidates in equilibrium.13

13Notice that although s∗ is necessarily the equilibrium share of the vote for the winning
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It is now straightforward to see that for almost any distribution F , ki = 1 for all i. Suppose

instead that kj = 2 for some j = 2, ..., r. By Lemma A1 (c) we must have that Lj = Rj .

However, as is illustrated in Figure A1 for the example of j = 2, this extra condition will not

be satisfied for all except very particular distributions.

Figure A1: An example result of the spacing procedure

z1 y1 y2 y3 z2

s∗ = F (m0)

2s∗ = F (m1)

4s∗ = F (m2)

5s∗ = F (m3)

R2

L2

F (x)

The example shown has n = 4 and r = 4 where ki = 1 for all i except k2 = 2. F

is the standard Normal distribution and z1 = F−1(0.10), z2 = F−1(0.98). Solving

the procedure yields s∗ = 0.19 (2 d.p.) with candidate positions as shown.

Proposition 3 (No platform sharing). For almost any unimodal f , kj = 1 for all j when

n ≥ 2 in equilibrium.

Proof: Immediate from Lemmas A6 and A8.

Lemma A9. For any symmetric, unimodal f , when there is n = 1 strategic entrant, the ideal-

ists’ vote shares are equal.

Proof: Suppose not. Without loss of generality, suppose that the idealist z1 has a higher vote

share than z2 which implies that f(m0) > f(m1). The strategic candidate at y1 can move

candidates, this procedure is not sufficient to define an equilibrium as for example, it may not

be that yj > yj−1 for all j = 1, ..., r − 1.
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slightly to the left, simultaneously increasing their own vote share and reducing the vote share

of z1, giving strictly higher utility.

Proposition 4 (Symmetric distributions). For almost any symmetric, unimodal f , a unique

equilibrium exists wherein n = 1 strategic candidate enters at location y1, where y1 solves (1):

(1) F (m0) = 1− F (m1).

Here, m0 = 1

2
(z1 + y1) and m1 = 1

2
(y1 + z2), whenever the positions of the idealists (z1, z2)

satisfy (2) and (3):

(2) not too moderate: m0 < F−1
(

1

3

)

⇐⇒ m1 > F−1
(

2

3

)

(3) not too extreme: if z1 is closer to the maximizer of f than z2 is, F (y1) ≥ 1− 2F (m0)

if z2 is closer to the maximizer of f than z1 is, F (y1) ≤ 2F (m0)

Proof: Firstly I show that n = 1 in equilibrium. Suppose instead n > 1. By Proposition 2

and Lemmas A6 and A8, for almost any unimodal f , the strategic candidates occupy the non-

extreme locations and kj = 1 for all j. As f is symmetric, there must be at least one strategic

candidate on either side of the maximizer of f , else Lemma A1 (d) is violated. I now show this

implies that both idealists tie with the strategic candidates. Suppose not and without loss of

generality that z1 loses. As f is symmetric, this implies f(m0) < f(m1) (if not, z1 gets at least

as many votes as the candidate at y2). The candidate at y1 then can profitably deviate slightly

to the right. But by Lemma A5, not all candidates can tie.

I now characterize the equilibrium. By Lemma A9, the idealists’ vote shares must be equal,

meaning that the strategic candidate’s position y1 must solve (1). To be an equilibrium, the

strategic candidate must win, which implies F (m1)−F (m0) >
1

3
. Using (1), this becomes (2).

In equilibrium, the strategic candidate must not want to deviate to the left of z1 or the right of

z2. Note that (2) implies that z1 < F−1(1
3
) and z2 > F−1(2

3
). As the strategic candidate gets at

least 1

3
of the vote share in order to win, there is no such profitable deviation. The strategic can-

didate would also lose if they deviated to an idealist’s location as the other idealist would win

outright. Finally, the strategic candidate does not have incentive to deviate to another location

in (z1, z2): Without loss of generality, consider such a deviation to the left. By Lemma A9 this
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increases z2’s vote share (and z2 now beats rather than ties with z1). However, as f symmetric,

this deviation also decreases the strategic candidate’s vote share and hence also their plurality.

In equilibrium, inactive strategic candidates must not wish to enter. Notice that an inactive

candidate could only profitably locate in (z1, z2). Assume first that z1 is closer to the maximizer

of f than z2, so that y1 is to the left of the maximizer. Notice that the payoff of the entrant is in-

creasing as their location approaches y1 from the right. Hence, entry is not profitable if the right

constituency of y1 is less than the vote share of the idealists F (m1) − F (y1) ≤ F (m0) which

gives (3). Similarly, the case of z2 being closer to the maximizer gives the second expression

in (3).

Corollary 1. For almost any unimodal f where Mo(f) = Md(f), n = 1.

Proof: Suppose instead n > 1. By Lemma A7 exactly one idealist loses and without loss of

generality assume this is z2. This implies that f(mr−2) ≤ f(mr−1) else the candidate at yr−1

deviates left. This implies that mr−2 is strictly to the left of the maximizer of f . For the can-

didate at yr−2 and z1 to tie (along with any number of others on the left of the maximizer),

there must be strictly more than half the density to the left of the maximizer, contradicting

Mo(f) = Md(f).

Lemma A10. For almost any unimodal f , when n ≥ 2, strategic candidates and one idealist

tie for the win with vote share s∗, where:

If Mo(f) < Md(f), then s∗ solves (A4), locations are given by (A5) and the left extremist loses (A6);

z1 = (−1)n+1z2 − 2

n+1
∑

i=1

(−1)n+iF−1(1− is)(A4)

yj = (−1)n+1−jz2 − 2

n+1−j
∑

i=1

(−1)n−j+iF−1(1− is∗), s.t. z1 < yj < yj+1, j = 1, ..., n(A5)

z1 < 2F−1(s∗)− y1.(A6)

If Mo(f) > Md(f), s∗ solves (A7), locations are given by (A8) and the right extremist loses (A9);

z1 = (−1)n+1z2 + 2
n+1
∑

i=1

(−1)n+iF−1(is)(A7)
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yj = (−1)jz1 + 2

j
∑

i=1

(−1)j+iF−1(is∗), s.t. z1 < yj < yj+1, j = 1, ..., n(A8)

z2 > 2F−1(1− s∗)− yn.(A9)

Proof: I first show that if Mo(f) < Md(f) and n > 1, z1 loses: If not, by Lemma A7 z2 loses

and one can then then follow the proof of Corollary 1 to show that there must be strictly more

than half the density to the left of the maximizer, contradicting Mo(f) < Md(f). Given z1

loses, z2 must tie with the strategic candidates by Lemma A7 and kj = 1 for all j by Lemmas

A6 and A8. This implies that r = n + 1 and that F (mj) = F (mj−1) + s for j = 1, . . . , n + 1

where s is the equilibrium vote share and F (mn+1) ≡ 1. Solving recursively yields (A4) which

the equilibrium s, s∗, solves, giving equilibrium locations as (A5) where (A6) is the requirement

for z1 to lose: F (m0) < s∗. Similarly, one finds (A7)-(A9) in the case of Mo(f) > Md(f).

Proposition 5 (Asymmetric distributions). For almost any asymmetric, unimodal f satisfying

(4) - (6) where Mo(f) 6= Md(f), an equilibrium exists with n > 1 strategic candidates where

locations and vote-shares are given by Lemma A10.

If Mo(f) < Md(f) If Mo(f) > Md(f)

f(m0) ∈ [f(m1), 2f(m1)] f(mn) ∈ [f(mn−1), 2f(mn−1)](4)

f(mj−1) ≤ 2f(mj) j = 2, . . . , n f(mj) ≤ 2f(mj−1) j = 1, . . . , n− 1(5)

f(m0) ≤ max{f(y1), f(z1)} f(mn) ≤ max{f(yn), f(z2)}(6)

Proof: I show that conditions (4) - (6) are sufficient for an equilibrium by considering all pos-

sible deviations in the case of Mo(f) < Md(f); those for Mo(f) > Md(f) follow similarly.

Consider deviations of the candidate at y1 within (z1, y2) (the candidate at y1 is the only

strategic candidate who could have a constituency boundary to the left of the maximizer of f )

(i) to the left: the candidate at y2 then becomes the candidate with the highest vote-share of

all other candidates, hence if f(m0) ≤ 2f(m1) there is no profitable deviation within (z1, y1);

(ii) to the right: for a small move, z1 remains a loser and the candidate at y2 becomes a loser.

It must be that f(m0) ≥ f(m1) else the candidate at y1 could profit from such a move. This

implies that any deviation within (y1, y2) reduces this candidate’s vote share, hence there is no
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such profitable deviation. This gives (4).

Next consider deviations for the candidate at yj , j > 1 within (yj−1, yj+1) (i) to the left:

their vote share would increase, but so will that of the candidate at yj+1 who then becomes the

candidate with the highest share of all the others, but the plurality of the deviating candidate

decreases if f(mj−1) ≤ 2f(mj) which gives (5); (ii) to the right: their own vote share would

decrease while increasing that of the candidate at yj−1.

Next consider an inactive candidate entering (i) at an occupied location: this is not prof-

itable as it results in an outright loss; (ii) left of z1 or right of z2: this results in an outright loss;

(iii) between two strategic candidates yj and yj+1, j > 1: such an interval does not contain

the maximizer of f , hence the optimal such deviation is as close as possible to the candidate

whose position is has higher density, yj . But this cannot be profitable because the maximum

vote share is bounded from above by max{Lj, Rj} < s∗; (iv) between z1 and y1, which con-

tains the maximizer of f : under (6), the optimal such deviation is to locate arbitrarily close

to z1 or y1 (whichever has the higher density), but as in case (iii) this is unprofitable because

max{R0, L1} < s∗.

Finally, for deviations of the candidate at yj to locations outside the interval (yj−1, yj+1),

j = 1, . . . , n, it suffices to follow the steps above relating to an inactive candidate.


