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A Locally-gated service

In this section, we study batch sojourn-times in a polling system with locally-gated service.
In Sect. A.1 and Sect. A.2 we will study the joint queue-length distribution and the LST of
the batch sojourn-time distribution. Instead of providing a thorough analysis, we present the
differences with the analysis of Sect. 4. Finally, in Sect. A.3 a Mean Value Analysis (MVA) is
presented to calculate the mean batch sojourn-time.

A.1 The joint queue-length distributions

Similar as in Sect. 4.1, we start by defining the laws of motions in case of locally-gated service.
For this we distinguish between customers that are standing behind of the gate and those
who are standing before the gate [1]. Customers that are standing behind the gate will be
served in the current cycle, whereas customers before the gate will only be served in the

next cycle. Let L̃B
(Vi)

(z), L̃B
(Si)

(z), L̃C
(Si)

(z), and L̃C
(Vi)

(z) be the joint queue-length
PGF at visit/switch-over beginnings and completions at Qi, for i = 1, . . . , N , where z =
(z1, . . . , zN , zG) is an N + 1 dimensional vector. The first N elements correspond with the
number of customers that are standing behind gate Qi, i = 1, . . . , N , whereas element N + 1,
zG, is used during visit periods to correspond with the number of customers that are currently
standing before the gate at the queue that is currently being visited.

Then the law of motions for locally-gated service are as follows,

L̃C
(Vi)

(z) =L̃B
(Vi)

(
z1, . . . , zi−1, B̃i (λ− λK (z1, . . . , zi−1, zG, zi+1, . . . , zN )) ,

zi+1, . . . , zN , zG) , (A.1)

L̃B
(Si)

(z) =L̃C
(Vi)

(z1, . . . , zN , zi) , (A.2)
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L̃C
(Si)

(z) =L̃B
(Si)

(z) S̃i

(
λ− λK̃ (z1, . . . , zi−1, zi, zi+1, . . . , zN )

)
, (A.3)

L̃B
(Vi+1)

(z) =L̃C
(Si)

(z) , (A.4)

Equation (A.1) states that the queue-length in Qj , j 6= i at the end of visit period Vi is
composed of the number of customers already atQj at the visit beginning plus all the customers
that arrived in the system during the current visit period. However for Qi, only the customers
that were standing behind the gate are served before the end of the visit completion; customers
that arrived to Qi during this visit period are placed before the gate and will be served during
the next visit to Qi. In (A.2) it can be seen that the PGF of a visit completion corresponds
to the PGF of the next switch-over beginning, except that the customer standing before the
gate in Qi are now placed behind the gate. Finally, the interpretation of (A.3) and (A.4) is
the same as for (4) and (5).

In order to define the PGF of the joint queue-length distribution, Eisenberg’s relationship
(7) is also valid for locally-gated service. However, the joint queue-length distribution at service
beginnings and completions (8) should be modified to,

L̃C
(Bi)

(z) = L̃B
(Bi)

(z)

×
[
B̃i

(
λ− λK̃ (z1, . . . , zi−1, zG, zi+1, . . . , zN )

)
/zi

]
, (A.5)

since during a service period in Qi arriving customers who join Qi are placed before the gate.
A similar modification also applies for the PGF of the joint queue-length distributions at an
arbitrary moment during Vi,

L̃(Vi) (z) = L̃B
(Bi)

(z)
1− B̃i

(
λ− λK̃ (z1, . . . , zi−1, zG, zi+1, . . . , zN )

)
E (Bi)

(
λ− λK̃ (z1, . . . , zi−1, zG, zi+1, . . . , zN )

) . (A.6)

Then, all the other results from Sect. 4.1 can be easily modified for locally-gated service.

A.2 Batch sojourn-time distribution

In the following section we derive the LST of the steady-state batch sojourn-time distribution
for locally-gated service. Assume than an arriving customer batch k enters the system while
the server is currently within visit period Vj−1 or switch-over period Sj−1 such that the last
customer in the batch will be served in Qi. This means ki > 0 and all the other customers
arriving in the same batch should be served before the next visit to Qi; kl ≥ 0, l = j, . . . , i−1,
and kl = 0 elsewhere. Whenever a customer arrives in the same queue that is currently being
visited, then this customer will be placed before the gate. As a consequence, this customer will
be served last in the batch since the server will visit first all the other queues before serving
this customer.

Similar as for exhaustive service, let Bj,i i, j = 1, . . . , N , be the service of a tagged customer
in Qj plus all its decedents that will be served before or during the next visit to Qi. Since
during a service period in Qj incoming customers to Qj are placed before the gate, we have

Bj,i =


Bj if i = j,

Bj +

i∑′

l=j+1

Nl(Bj)∑
m=1

Blm,i, otherwise,
(A.7)

where Bj is the service time of the tagged customer in Qj , Nl (Bj) denotes the number of
customers that arrive in Ql during the service time of the tagged customer in Qj , and Blm,i
is a sequence of (independent) of Bl,i’s. Let B̃j,i (.) be the LST which is given by,

B̃j,i (ω) = B̃j

(
ω + λ(1− K̃(Bj+1,i))

)
, (A.8)
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where Bj+1,i is an N -dimensional vector similar defined as (16). We define B∗
j,i as an N + 1-

dimensional vector defined as follows,

(B∗
j,i)l =


B̃i (ω) , if l = i,

1, if l = N + 1,

(Bj,i−1)l, otherwise.

(A.9)

Finally, let BG
j,i, i, j = 1, . . . , N , be an N + 1-dimensional vector defined as for j 6= i,

(BG
j,i)l =

{
(Bj,i)l if l = j, . . . , i,

1, otherwise,
(A.10)

and for j = i,

BG
i,i =

(
B̃1,i−1 (ω) , . . . , B̃i−1,i−1 (ω)

B̃i

(
ω + λ(1− K̃(B̃1,i−1 (ω) , . . . , B̃i (ω) , . . . , B̃N,i−1 (ω)))

)
,

B̃i+1,i−1 (ω) . . . , B̃N,i−1 (ω) , B̃i (ω)
)
, (A.11)

The interpretation of BG
j,i, j 6= i is similar to (16). On the other hand, BG

i,i contains the

service times of a complete cycle starting in Qi. This includes the service times of all the
customers that are standing behind the gate in Qi, the service times of all the customers in
Qi+1, . . . , Qi−1 that were already in the system on the arrival of the customer batch or entered
the system before the next visit to Qi, and when the server reaches Qi again the service times
of all the customers that were standing before the gate when the cycle in Qi started.

We first focus on the batch sojourn-time of a customer batch that arrives during a visit
period Vj−1. The batch sojourn-time of customer batch k that arrives when the server is in
visit period Vj−1 consists of the (i) residual service time in Qj−1, (ii) the service of all the
customers behind the gate in Qj−1, . . . , Qi, (iii) the service of all new customer arrivals that
arrive after customer batch k in Qj , . . . , Qi−1 before the server reaches Qi, (iv) switch-over
times Sj−1, . . . , Si−1, (v) the service of the customers in customer batch k, and (vi) if i = j−1
also the customers before the gate in Qi. Because incoming customers are placed before the
gate when the server is in visit period Vj−1, we have to modify (19) to,

L̃(Vj−1) (z, ω) = L̃B
(Bj−1)

(z)

× B̃PRj−1 (λ− λK (z1, . . . , zj−2, zG, zj , . . . , zN ) , ω) . (A.12)

Then, the LST of batch sojourn-time distribution of batch k given that the server is in
visit period Vj−1 is given in the next proposition.

Proposition A.1 The LST of the batch sojourn-time distribution of batch k conditioned that
the server is in visit period Vj−1 and the last customer in the batch will be served in Qi is
given by,

T̃
(Vj−1)
k (ω) = L̃(Vj−1)

(
BG

j−1,i, ω + λ(1− K̃(Bj,i−1))
)

×
i−1∏′

l=j−1

S̃l,i−1 (ω)
1

(BG
j−1,i)j−1

i∏′

l=j

(B∗
j,i)

kl
l . (A.13)

Proof During visit period Vj−1 incoming customers to Qj−1 are placed before the gate and
will be served in the next visit. Taken this into account, the same steps as in the proof of
Proposition 1 can be used to derive (A.13). ut
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Next, we derive the LST of batch sojourn-time distribution of batch k given that the server is
in switch-over period Sj−1. For this we modify (22) to,

L̃(Sj−1) (z, ω) = L̃B
(Sj−1)

(z)

× S̃PRj−1

(
λ− λK̃ (z1, . . . , zj−2, zj−1, zj , . . . , zN ) , ω

)
. (A.14)

Proposition A.2 The LST of the batch sojourn-time distribution of batch k conditioned that
the server is in switch-over period Sj−1 and the last customer in the batch will be served in
Qi is given by

T̃
(Sj−1)
k (ω) = L̃(Sj−1)

(
B∗

j,i, ω + λ(1− K̃(Bj,i−1))
)

×
i−j∏′

l=1

S̃j+l−1,i−1 (ω)

i∏′

l=j

(B∗
j,i)

kl
l . (A.15)

Proof Similarly, the same steps as in the proof of Proposition 2 can be used to derive (A.15).
ut

From Proposition A.1 and Proposition A.2, it can be seen that the LST of the batch sojourn-
time distribution of batch k conditioned on a visit/switch-over period can be decomposed into
two terms;

T̃
(Vj−1)
k (ω) =

N∑
i=1

1(k∈Kj,i)
W̃

(Vj−1)
i (ω)

i∏′

l=j

(B∗
j,i)

kl
l , (A.16)

T̃
(Sj−1)
k (ω) =

N∑
i=1

1(k∈Kj,i)
W̃

(Sj−1)
i (ω)

i∏′

l=j

(B∗
j,i)

kl
l , (A.17)

where W̃
(Vj−1)
i (ω) and W̃

(Sj−1)
i (ω) can be considered as the time between the batch arrival

epoch and the service completion of the last customer in Qi that is already in the system,
excluding any arrivals to Qi after the arrival epoch and contribution of the batch.

The LST of the batch sojourn-time distribution of a specific customer batch k can now be
calculated by,

T̃k (ω) =
1

E (C)

N∑
j=1

N∑
i=1

1(k∈Kj,i)

(
E (Vj−1) W̃

(Vj−1)
i (ω)

+ E (Sj−1) W̃
(Sj−1)
i (ω)

) i∏′

l=j

(B∗
j,i)

kl
l . (A.18)

Finally, we focus on the LST of the batch sojourn-time of an arbitrary batch T̃ (.).

Theorem A.1 The LST of the batch sojourn-time distribution of an arbitrary batch T̃ (.), if
this queue receives locally-gated service, is given by:

T̃ (ω) =
∑
k∈K

π (k) T̃k (ω) , (A.19)

where T̃k (ω) is given by (A.18). Alternatively, we can write (A.19) as,

T̃ (ω) =
1

E (C)

N∑
j=1

N∑
i=1

(
E (Vj−1) W̃

(Vj−1)
i (ω) + E (Sj−1) W̃

(Sj−1)
i (ω)

)
× π (Kj,i) K̃

(
B∗

j,i|Kj,i
)
. (A.20)

Proof Using the definition of Kj,i, the proof is almost identical to the one of Theorem 1. ut
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A.3 Mean value analysis

In this section, we will use MVA again to derive the mean batch sojourn-time of a specific

batch and an arbitrary batch. Central in the MVA for locally-gated service is E

(
L̄

(Vj ,Sj)
i

)
,

the mean queue-length at Qi (excluding the potential customer currently in service) at an
arbitrary epoch within visit period Vj and switch-over period Sj . First, for notation purposes
we introduce θj as shorthand for intervisit period (Vj , Sj); the expected duration of this period
E (θj) is given by,

E (θj) = E (Vj) + E (Sj) , j = 1, . . . , N. (A.21)

The big difference with Sect. 4.3 is that we know have to consider the customers that stand

before the gate and those who stand behind. For this we introduce variables E

(
L̃

(θj)
i

)
as

the expected number of customers standing before the gate the gate in Qi during intervisit

period θj and E
(
L̂
(θi)
i

)
as the expected number of customers standing behind the gate the

gate in Qi during intervisit period θi. In MVA customers all incoming customers are placed
before the gate, and only placed behind the gate when a visit period begins. Note this is a
slight difference with Sect. A.1 where only customers arriving to the same queue that is being

visited are placed before the gate. Then the mean queue-length in Qi, E

(
L̄

(θj)
i

)
, given that

the server is not in intervisit period θi, i.e. i 6= j, is equal to the mean number of customers

standing before the gate E

(
L̃

(θj)
i

)
. Otherwise, when i = j the mean queue length in Qi is

the sum of the number of customers standing in front and behind the gate. Thus we can write

E

(
L̄

(θj)
i

)
as,

E

(
L̄

(θj)
i

)
=


E

(
L̃

(θj)
i

)
+ E

(
L̂
(θi)
i

)
, i = j,

E

(
L̃

(θj)
i

)
, otherwise.

Subsequently, the mean queue-length in Qi is given by,

E
(
L̄i
)

=

N∑
j=1

E (θj)

E (C)
E

(
L̃

(θj)
i

)
+
E (θi)

E (C)
E
(
L̂
(θi)
i

)
, i = 1, . . . , N. (A.22)

We denote by E (Bj,i) as the the mean duration a service time Bj and its descendants before
the server starts service in Qi given that the server is currently in Qj . Let E (Bj,j+1) = E (Bj)
be the expectation of Bj and E (Bj,j+2) = E (Bj) (1 + ρj+1) be the sum of the service time
Bj and the service of all the customers that arrive in Qj+1 during this service. In general we
can write E (Bj,i) for i 6= j + 1 as,

E (Bj,i) = E (Bj)

i−1∏′

l=j+1

(1 + ρl) , i = 1, . . . , N, j = 1, . . . , N. (A.23)

Finally, E (Sj,i), E
(
BRj,i

)
, and E

(
SRj,i

)
are given by E (Bj,i) and replacing E (Bj) with

E (Sj), E
(
BRj

)
, and E

(
SRj

)
respectively.

Again, we consider the waiting time E (Wi) of an arbitrary customer and make extensively
use of Little’s Law and the PASTA property. When the customer enters the system at Qi, it
has to wait for the next visit to Qi. Even if the customer enters the system while the server
is in intervisit period θi, the customer is placed before the gate and will only be served when
the server returns to this queue in the next cycle. The average duration of the server returning

to Qi equals E
(
θRi,i−1

)
. Then at Qi, the customer first has to wait for the service of the

average number of customers E
(
L̃i

)
=
∑N
j=1 E (θj) /E (C)E

(
L̃

(θj)
i

)
that are in front of the
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customer when it arrived in the system, as well as, the service of E (Kii) /2E (Ki) customers
that arrived in the same customer batch, but are placed before the arbitrary customer in Qi.
This gives the following expression for the mean waiting time E (Wi),

E (Wi) = E
(
L̃i

)
E (Bi) +

E (Kii)

2E (Ki)
E (Bi) + E

(
θRi,i−1

)
, (A.24)

Applying Little’s law gives,

E
(
L̄i
)

= ρiE
(
L̃i

)
+ ρi

E (Kii)

2E (Ki)
+ λiE

(
θRi,i−1

)
. (A.25)

The next step is to derive the equations is to relate unknowns E
(
θRi,i−1

)
to E

(
L̃

(θj)
i

)
and

E
(
L̂
(θi)
i

)
. Consider E

(
θRj,i

)
the expected residual duration of an intervisit period starting in

θj and ending in θi given that an arbitrary customer batch just entered the system. Then with
probability E (θl) /E (θj,i), the server is during this period in intervisit period θl, l = j, . . . , i,
and the expected residual duration until the intervisit ending of θi, conditioned that the
server is in intervisit period θl, is defined as follows. First, with probability E (Vl) /E (θl) the
customer has to wait for the server serving a customer in Ql and switch-over period Sl and
with probability E (Sl) /E (C) the customer has to wait for a residual switch-over period in

Sl. Also, E

(
L̂

(θj)
l

)
customers are standing behind the gate in Ql that need to be served.

During this period new descendants can arrive in the system that will be served before the
intervisit ending in θj . In addition, for each queue Qn, n = j + 1, . . . , i, the expected number

of customers in the Qn given that the server is in θl, E
(
L̃
(θl)
n

)
, and the expected number of

customers that arrived in Qn in the arbitrary customer batch E (Knl) /E (Kn) will increase the

duration of E
(
θRj,i

)
by E (Bn,i+1). Finally, the switch-over times between Qn to Qn+1 plus

all its descendants that will be served before the end of the period contribute with E (Sn,i+1).
Combining this gives the following expression,

E
(
θRj,i

)
=

i∑′

l=j

E (θl)

E (θj,i)

(
E (Vl)

E (θl)

(
E
(
BRl,i+1

)
+ E

(
Sl,i+1

))
+
E (Sl)

E (θl)
E
(
SRl,i+1

)
+ E

(
L̂
(θl)
l

)
E
(
Bl,i+1

)
+

i−l∑′

n=1

(
E
(
Kl+n,l

)
E (Kl+n)

+ E
(
L̃
(θl)
l+n

))
E
(
Bl+n,i+1

)
+ E

(
Sl+n,i+1

))
. (A.26)

It is now possible to set up a set of N (N + 1) linear equations in terms of unknowns E

(
L̃

(θj)
i

)
and E

(
L̂
(θi)
i

)
. First, the number of customers in Qi before the gate given an arbitrary moment

in an intervisit period starting in θi and ending in θj equals the number of Poisson arrivals
during the age of this period. Since the age is in distribution equal to the residual time, the
following equation holds, i = 1, . . . , N, j = 1, . . . , N ,

j∑′

l=i

E (θl)

E (θi,j)
E
(
L̃
(θl)
i

)
= λiE

(
θRi,j

)
. (A.27)

Second, by (A.24) and using Little’s Law λiE (Wi) = E
(
L̄i
)

into (A.25) gives, for i =
1, 2 . . . , N ,

(1− ρi)
N∑
j=1

E (θj)

E (C)
E

(
L̃

(θj)
i

)
+
E (θi)

E (C)
E
(
L̂
(θi)
i

)
− ρi

E (Kii)

2E (Ki)

= λiE
(
θRi,i−1

)
. (A.28)
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With (A.27) and (A.28) a set of N (N + 1) linear equations are now defined. Solving the set
of linear equations and by (A.25) and (A.24) will give the expected queue-lengths and waiting
times.

It is now possible to derive the mean batch time E (Tk) of customer batch k using

(39). For this we need to calculate E

(
T

(θj−1)
k

)
. When customer batch k enters the sys-

tem and the server is in intervisit period θj−1, then with probability E (Vj−1) /E (θj−1) and
E (Sj−1) /E (θj−1) the arriving customer batch has to wait for the residual service and a
switch-over or a residual switch-over time during in which new customer can arrive that will
be served before the visit completion in Qi−1. Then each customer already in the system and
in batch k in Ql, l = j − 1, . . . , i and their descendants will increase the batch sojourn-time.
Finally, the batch also has to wait for all the switch-over times between Qj to Qi−1 and all
their descendants that will be served before the server reaches Qi. This gives the following
expression,

E

(
T

(θj−1)
k

)
=
E (Vj−1)

E (θj−1)

(
E
(
BRj−1,i

)
+ E (Sj−1,i)

)
+
E (Sj−1)

E (θj−1)
E
(
SRj−1,i

)
+ E

(
L̂

(θj−1)
j−1

)
E (Bj−1,i)

+

i−j∑′

l=1

(
E

(
L̃

(θj−1)
j+l−1

)
+ kj+l−1

)
E
(
Bj+l−1,i

)
+ E

(
Sj+l−1,i

)
+

((
L̃

(θj−1)
i

)
+ ki

)
E (Bi) , (A.29)

Notice that the same decomposition as (24) and (25) also holds for the expected batch sojourn-
time,

E

(
T

(θj−1)
k

)
= E

(
W

(θj−1)
i

)
+

i−j∑′

l=1

kj+l−1E
(
Bj+l−1,i

)
+ kiE (Bi) , (A.30)

where E

(
W

(θj−1)
i

)
is the expected time between the batch arrival epoch and the service

completion of the last customer in Qi that is already in the system, excluding any arrivals to
Qi after the arrival epoch.

Finally, the expected batch sojourn-time of an arbitrary customer batch is given by (41).
Similarly, we can rewrite (41) by taking the expectation of Kj,i and using (A.30),

E (T ) =
1

E (C)

N∑
j=1

N∑
i=1

E (θj)π (Kj,i) (E

(
W

(θj−1)
i

)

+

i−j∑′

l=1

E
(
Kj+l−1|Kj,i

)
E
(
Bj+l−1,i

)
+ E (Ki|Kj,i)E (Bi)).

B Globally-gated service

In this section the batch sojourn distribution under globally-gated service is studied in Sect. B.1,
and the mean batch sojourn-times in Sect. B.2.

B.1 Batch sojourn distribution

Under the globally-gated service discipline all the customers that were present at the visit
beginning of reference queue Q1 will be served during the coming cycle. Meanwhile, customers
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that arrive in the system during this cycle have to wait and will be served in the next cycle.
The advantage of the globally-gated service discipline is that closed-form expressions can be
easily be derived for the delay distribution compared to exhaustive and locally-gated [2].

Let random variables n1, . . . nN denote the number of customers in the queues at the

beginning of an arbitrary cycle C and let C̃ (ω) = E
(
e−ωC

)
be its LST. Then, the length of

the current cycle will equal the sum of all switch-over times and the total sum of all the service
times of the customers present at the beginning of the cycle. Combining this gives,

E
(
e−ωC |n1, . . . , nN

)
= S̃ (ω)

N∏
j=1

B̃
nj

j (ω) , (B.1)

where S̃ (ω) =
∏N
j=1 S̃j (ω). On the other hand, the length of a cycle determines the joint

queue-length distribution at the beginning of the next cycle [2],

E
(
zn1
1 · · · z

nN
N

)
= E

(
E
(
zn1
1 · · · z

nN
N |C = t

))
= E

(
exp

(
−
(
λ− λK̃ (z)

)
t
))

= C̃
(
λ− λK̃ (z)

)
. (B.2)

With use of (B.1) and (B.2), we have

C̃ (ω) = S̃ (ω)E
(
B̃n1

1 (ω) · · · B̃nN
N (ω)

)
= S̃ (ω) C̃

(
λ− λK

(
B̃1 (ω) , . . . , B̃N (ω)

))
. (B.3)

Let CP and CR be the past and residual time, respectively, of a cycle. We can write the LST
of the joint distribution of CP and CR as [3],

C̃PR (ωP , ωR) =
C̃ (ωR)− C̃ (ωP )

E (C) (ωP − ωR)
, (B.4)

and

C̃P (ωR) = C̃R (ωP ) =
1− C̃ (ω)

ωE (C)
. (B.5)

Finally, let Bj,i be an N -dimensional vector with the LST of the service times of Ql on elements
l = j, . . . , i,

Bj,i =
(

1, . . . , B̃j (ω) , B̃j+1 (ω) , . . . , B̃i (ω) , 1, . . . , 1
)
.

With the previous results, we can now derive the LST of the batch sojourn distribution of
specific batch of customers.

Proposition B.1 The LST of the batch sojourn-time distribution of batch k is given by,

T̃k (ω) =
1

E (C)

 C̃
(
λ− λK̃

(
B1,i

))
− C̃

(
λ− λK̃

(
B1,i−1

)
+ ω

)
ω − λ

(
1− K̃

(
Bi,i

))
 i−1∏
j=1

S̃j (ω)

×
i∏

j=1

kiB̃j (ω) . (B.6)

Proof Assume an arbitrary customer batch k where the number of customer arrivals per
queue is k1 ≥ 0, . . . , ki > 0 and ki+1 = 0, . . . , kN . Due to the globally-gated service discipline,
any arriving customer batch will be totally served in the next cycle, which implies that the
customer batch will be fully served after its last customer in Qi is served. Then, the batch
sojourn-time of customer batch k is composed of; (i) the residual cycle time CR, (ii) the service
times of all customers who arrive at Q1, . . . , Qi−1 during the cycle in which the new customer
batch arrives, (iii) the switch-over times of the server between Q1, . . . , Qi−1, (iv) the service
times of all the customers who arrive at Qi during the past part CP of the cycle in which
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the customer batch arrives, and (v) the service times of all the customers in the batch at
Q1, . . . , Qi. Combining this gives,

Tk = CR +

i−1∑
j=1

Nj(CP+CR)∑
m=1

Bjm +

i−1∑
j=1

Sj +

Ni(CP )∑
m=1

Bim +
i∑

j=1

kj∑
m=1

Bjm , (B.7)

where Nj
(
CP + CR

)
denotes number of arrivals in Qj during the past and residual time of

the current cycle and Ni
(
CP
)

denotes the number of arriving customers in Qi during CP .
Note that the cycle in which the customer batch arrives is not equal to E (C), but is atypical
of size E

(
CP
)

+ E
(
CR
)

[2]. By taking the LST of (B.7) we obtain,

T̃k (ω) =

i−1∏
j=1

S̃j (ω)

∫ ∞
tP=0

∫ ∞
tR=0

e−ωtRe−(λ−λK(B1,i−1))(tP+tR)

× e−(λ−λK̃(Bi,i))tP dPr
(
CP < tP , C

R < tR

) i∏
j=1

kjB̃j (ω)

=

i−1∏
j=1

S̃j (ω)E

(
exp

(
−
(
λ− λK̃

(
B1,i

))
CP

−
(
λ− λK̃

(
B1,i−1

)
+ ω

)
CR
)) i∏

j=1

kjB̃j (ω) ,

Using the LST of the joint distribution of CP and CR of (B.4), we obtain (B.6). ut

We can now find the LST of the batch sojourn-time distribution of an arbitrary batch.

Theorem B.1 The LST of the batch sojourn-time distribution of an arbitrary batch T̃ (.), if
this queue receives globally-gated service, is given by:

T̃ (ω) =
∑
k∈K

π (k) T̃k (ω) , (B.8)

where T̃k (ω) is given by (13). Alternatively, we can write (B.6) as,

T̃ (ω) =
1

E (C)

N∑
i=1

 C̃
(
λ− λK̃

(
B1,i

))
− C̃

(
λ− λK̃

(
B1,i−1

)
+ ω

)
ω − λ

(
1− K̃

(
Bi,i

))


i−1∏
j=1

S̃j (ω)π (K1,i) K̃
(
B1,i|K1,i

)
. (B.9)

Proof In case of locally-gated an incoming customer batch can only be served in the next
cycle. Therefore, independently on the location of the server the last customer in the batch to
be served is located in the queue that is the farthest loacted from the reference queue. Thus,
we can write

T̃ (ω) =
∑
k∈K

N∑
i=1

1(k∈K1,i)
π (k) T̃k (ω) .

Finally, by inserting (B.6) and (1) we obtain (B.9). ut

B.2 Mean batch sojourn-time

In this section we determine E (Tk), the expected batch sojourn-time for a specific customer
batch k. Instead of using MVA, as was the case for exhaustive and locally-gated, we can directly
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calculate E (Tk) similar as for the mean waiting time [2]. Taking the expectation of (B.7) gives
the following expression,

E (Tk) = E
(
CR
)

+

i−1∑
j=1

λjE (Bj)
(
E
(
CP
)

+ E
(
CR
))

+

i−1∑
j=1

E (Sj)

+ ρiE
(
CP
)

+

i∑
j=1

kjE (Bj) . (B.10)

What is left is to derive the mean past and residual time of the cycle time, E (CP ) and E (CR).
Differentiating (B.3) once and twice yields closed-form expressions for the first two moment of
the cycle time,

E (C) =
E (S)

(1− ρ)
, (B.11)

E
(
C2
)

=
1

(1− ρ2)

E (S2
)

+ 2ρE (S)E (C) +

N∑
j=1

λjE
(
B2
j

)
E (C)

+

N∑
i=1

N∑
j=1

λE (Kij)E (Bi)E (Bj)E (C)

 . (B.12)

and the expected past and residual cycle time is given by

E
(
CP
)

= E
(
CR
)

=
E
(
C2
)

2E (C)
=

1

(1 + ρ)

[
E
(
S2
)

2E (S)
+
ρE (S)

(1− ρ)

+

∑N
j=1 λjE

(
B2
j

)
+
∑N
i=1

∑N
j=1 λE (Kij)E (Bi)E (Bj)

2 (1− ρ)

 . (B.13)

Using (B.13), we can rewrite (B.10) as follows,

E (Tk) =

1 + 2

i−1∑
j=1

ρj + ρi

 E (C2
)

2E (C)
+

i−1∑
j=1

E (Sj) +

i∑
j=1

kjE (Bj) . (B.14)

Finally, we can derive E (T ) the expected batch sojourn-time of an arbitrary customer batch.
Multiplying E (Tk) with all possible realizations of k and using K1,i gives,

E (T ) =
N∑
i=1

∑
k∈K1,i

π (k)E (Tk)

=

N∑
i=1

π (K1,i)

[1 + 2

i−1∑
l=1

ρl + ρi

]
E
(
C2
)

2E (C)
+

i−1∑
j=1

E (Sj)


+

N∑
j=1

E (Kj)E (Bj)

=
E
(
C2
)

2E (C)
+

N∑
i=1

(
ρi
E
(
C2
)

E (C)
+ E (Si)

)
·

1−
i∑

j=1

π (K1,j)


+ ρi

E
(
C2
)

2E (C)
π (K1,i) + E (Ki)E (Bi) .
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