APPENDIX A **Project Location Maps** # **APPENDIX B** EPA/ORD Pilot Project (Toyota) Rapid Bioassessment Protocol Field Sheets | STRE | AM NAME: Spur | | | | | | | LOCA | ATION | N: | Wool | per Cı | reek V | Vatersh | ed, ı | near To | oyota | a parts | s facili | ty | |--------------|--------------------------------------|--|--|---|-------------------------------------|---|--|---|--|-------------------------|---|--|--|--|-----------|--------------------------------|------------------------------------|-------------------------|----------------------------|---------------------------------| | STRE | AM WDTH (FT): | | DE | PTH (| FT): | | | F | PERE | NNIA | L | | INTE | RMITTI | ENT | | | EPH | EMEF | RAL | | STAT | ION #: N/A | RIVE | RMILE: | N/A | | | | C | DUNT | Υ: | Boon | е | | | | ; | STA | TE: K | Υ | | | LAT | | LON | IG | | | | | RI | /ER E | BASIN | l : V | Voolpe | er Cre | ek Wate | ersh | ed | | | | | | CLIEN | NT: | | | | | | | PR | OJE | CT NC |). E | PA/O | RD Pi | lot Proje | ect (| i.e. Toy | yota | retrofi | t) | | | INVE | STIGATORS/CREW: RJH | FOF | RM COMPLETED
BY: | | NLK | | DA | TE: | | 12/2 | 21/20 | 13 | | SSESS | | R SUR | ۷E۱ | / : Pre-ı | retro | fit hab | itat | | | | 51. | | | | TIM | ИE: | | | | | | 00000 | | | | | | | | | | | Habitat Parameter | | | | I | | | | Co | nditio | n Cat | egory | 7 | | | | | | | | | | | 0 1 | Optim | | | 40.70 | | ooptin | | | 00.40 | | argina | | _ | | - | Pod | - | | | | Epifaunal Substrate/ Available Cover | favoral
coloniz
mix of
logs, u
or othe
stage t
potenti | er than 70% ble for epifacation and fisnags, sub indercut bailer stable has to allow full ital (i.e., logs tinew fall arent. | aunal
ish cov
mergeonks, co
bitat ar
coloniz
s/snags | er;
d
bble
nd at
zation | well so
potent
mainte
preser
substr | uited for
tial; ad
enance
nce of
rate in
II, but it
onizat | or full of
equate
e of poperaddition
addition
the formation (ma | colonize habit
habit
pulational
m of
prepa | ation
at for
ons; | habita
desira | ıt avail
ıble; sı | ability | ole habit
less thar
e freque
red. | 1 | Less th
lack of
substra | habit | at is o | bvious | ; | | | SCORE: 10 | 20 | 19 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | 6 | 5 | 4 | 3 | 2 | 1 0 | | | 2. Embeddedness | particle
surrou
Layerii | , cobble, ares are 0-25 anded by finding of cobble ty of niches | %
e sedin
e provid | nent. | particl | es are | ole, and
25-50
by fine | % | | particl | es are | 50- 7 | d boulde
5%
Sedime | | Gravel,
particle
surrour | s are | more | than 7 | 5% | | d in S | SCORE: 10 | 20 | 19 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | 6 | 5 | 4 | 3 | 2 | 1 0 | | to be evalua | 3. Velocity/Depth Regime | presen
shallov
fast-sh | r velocity/de
it (slowdeep
v, fastdeep
allow). (Slo
3 m/s, deep | p, slow
,
ow | - | preser
missin | nt (if fa
ig, sco | e 4 regi
est-sha
re lowe
er regin | llow is
er thar | | regime
fastsh
or slo | es pre
allow
w-shal | e 4 hat
sent (if
low
score | • | | Domina
regime | | , | , | | | Parameters | SCORE: 10 | 20 | 19 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | | 6 | 5 | 4 | 3 | 2 | 1 0 | | ш. | 4. Sediment Deposition | islands
than 5° | r no enlarg
s or point ba
% of the bo
d by sedim
tion. | ars and
ottom | | format
sand of
of the | tion, m
or fine
botton | ncrease
ostly fr
sedime
n affect
n pools | rom gr
ent; 5-
ted; sl | avel,
30% | grave
on old
of the
sedim
obstru
and b | l, sand
l and n
bottor
ent de
ictions
ends; i | or fine
new ba
n affect
posits
, const
modera | at
trictions, | ent
)% | | ed ba
)% of
ntly; p
subst | ar deve
the boools a | elopme
ottom o
Imost | ent; more
changing
absent | | | SCORE: 10 | 20 | 19 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 | | | 5. Channel Flow Status | lower b | - | minima
el subst | al
rate | availa
chann | ble cha
el sub | 75% of
annel;
strate i | or <25 | osed. | availa
substr
expos | ble charates a
ed. | re mos | and/or ri | iffle | | | ent as | standi | ng pools. | | | SCORE: 3 | 20 | 19 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 | | | | | | | | | | | | | Cond | | n Cat | | | , | | _ | | | | | | | |--|---|----|--|--|---|--|------------------------------------|--|--|---|---|-----------------|---|---|---|-------------------------------|---------------------------------|---|---|--|--------------------------------|-------------------------------|-------------------|--| | | Habitat Parameter | | | C | ptima | al | | | Sul | ooptim | | | | | largina | ıl | | | | Poo | r | | | | | | 6. Channel Alteration | 1 | absen | nelizati
t or mi
al patte | nimal; | - | - | usually
abutme
channe
(>20 yr | chann
in are
ents; e
elizatio
.) ma
chann | elizatio | n prese
ridge
e of pas
dredgin
sent, b | st
ig,
ut | extens
shoring
both b | nelizat
sive; e
ng stru
panks;
n reac | ion may
mbank
ctures p
and 40 | y be
mer
ores | nts or
sent on | Banks s
cement
reach c
In strea
or remo | ; ove
hanr
m ha | er 80%
nelized
abitat g | of th
and
reatl | e stre
disru | eam
ipted. | | | | SCORE: | 15 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | 7. Frequency of Riffle
(or bends) | es | frequent
betwe
width
(genent
habita
where | en riffl
of the
rally 5
It is ke
riffles
ment o
large, | io of d es divi stream to 7); y. In si are co f bould | istance ided by 1 < 7:1 variety treams ontinue | of sous, | infrequ
riffles c | ent; d
livided | of riffles
istance
d by the
s betwee | betwee
width o | of | bottor
some
betwe
width | n cont
habita
en riff
of the | riffle
or
ours pro
at; dista
les divid
stream
to 25. | ovid
nce
ded | de | Genera
riffles; p
betwee
width of
> 25. | oor
n riffl | habitat
les divi | ; dist
ded | tance | e
e | | | g rea | SCORE: | 15 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | Parameters to be evaluated in sampling reach | 8. Bank Stability (sco
each bank)
Note: determine left o
right side by facing
downstream. | r | Banks
erosio
or min
future
affecte | on or ba
nimal; l
proble | ank fai
ittle po | ilure al
otentia | osent
for | small a | over. | 5-30% | on mos
of bank | tly
c in | of bar | nk in re
on; hig | each ha
h erosid | s ar | 30- 60%
reas of
potential | Unstabl
"raw" ar
straight
obvious
100% o
scars. | eas
sect
ban | freque
tions ar
ik slouç | nt al
nd be
ghine | ong
ends;
g; 60- | | | | e eV | SCORE (LB): | 4 | Le | eft Bar | ık | 10 | 9 | 8 | | 7 | 6 | | 5 | | 4 | | 3 | 2 | | 1 | | (|) | | | to b | SCORE (RB): | 7 | Ri | ght Ba | nk | 10 | 9 | 8 | | 7 | 6 | | 5 | | 4 | T | 3 | 2 | | 1 | | (|) | | | Parameter | 9. Vegetative Protect
(score each bank) | | native
trees,
non- v
vegeta | surface
in zone
veget
under
voody
ative d
ig or m | es and
e cove
ation,
story s
macro
isruptioning
almos | imme
red by
includi
shrubs
phytes
on thro
minim
t all pla | ng
, or
s;
ough
aal or | surface
vegeta
plants i
disrupt
affectir
potenti
more th
one-ha | es covition, the state of s | ne strea
vered by
out one
well- re
vident by
plant gr
any grea
ne poter
ht rema | native
class of
present
ut not
owth
at exten | f
ted;
t; | surfactivegeta
obviou
or clos
comm | ces co
ation;
us; pa
sely co
non; le
otentia | l plant s | y
on
f ba
veg
one | re soil
etation
e-half of | Less the
bank su
vegetat
bank ve
vegetat
5 centin
stubble | irfaci
ion;
egeta
ion h
netei | es cove
disrupti
ation is
nas bee
rs or le | ered
ion c
very
en re | by
of stre
high
move | eam
;
ed to | | | | SCORE (LB): | 5 | Le | eft Bar | ık | 10 | 9 | 8 | | 7 | 6 | | 5 | | 4 | | 3 | 2 | | 1 | | (|) | | | | SCORE (RB): | 6 | , | ght Ba | | 10 | 9 | 8 | | 7 | 6 | | 5 | | 4 | | 3 | 2 | | 1 | | (| | | | | 10. Riparian Vegetati
Zone Width (score ea
bank riparian zone) | ch | Width
meters
parkin
cuts, I
not im | s; hum
ig lots,
awns, | an act
roadb
or cro | tivities
eds, c
ps) ha | (i.e.,
lear- | meters | ; hum | irian zor
an activ
ne only | ities ha | ve | meter | s; hun | arian zo
nan acti
one a gr | ivitie | es have | Width of riparian zone <6 meter | | | | | | | | | SCORE (LB): | 9 | Le | eft Bar | ık | 10 | 9 | 8 | | 7 | 6 | | 5 | | 4 | | 3 | 2 | | 1 | | (|) | | | | SCORE (RB): | 9 | Ri | ght Ba | nk | 10 | 9 | 8 | | 7 | 6 | | 5 | | 4 | 1 | 3 | 2 | | 1 | 1 | C |) | | | TOT | AL SCORE: | | 11 | 3 | : | | | | | | | | | | | | | -, | | | | | | | _ | |--------------------------------|--------------------------|----------|-----------------------------|-----------|---------|-------------------|----------|--------------------|---------|--------|---------|--------------------|----------|----------------------|--------|--------------------|--------|---------|---------|---------------------|----------| | STRE | AM NAME: Spur | | | | | | | LOCA | ATIO | N: | Wool | per Cı | reek V | Vaters | hed, | near T | oyota | a part | s facil | ity | | | STRE | AM WDTH (FT): | | D | EPTH (| (FT): | | | F | PERE | NNIA | L | | INTE | RMIT | TEN | Г | | EPH | IEME | RAL | | | STAT | ION #: N/A | RIVI | ERMILE: | N/A | | | | CC | DUNT | Υ: | Boon | е | | | | | STA | TE: ŀ | Υ | | | | LAT | | LOI | NG | | | | | RIV | VER E | BASIN | 1: V | Voolpe | er Cre | ek Wa | tersh | ned | | | | | | | CLIEN | NT: | | | | | | | PR | OJE | CT NC |). Е | PA/O | RD P | ilot Pro | ject | (i.e. To | yota | retrof | it) | | | | INVE | STIGATORS/CREW: RJH | l | FOF | RM COMPLETED
BY: | | NLK | | DA | TE: | | 7/8 | 8/201 | 9 | | SSESS | | OR SU | RVE | Y: Pos | t-retr | ofit ha | abitat | | | | | - · · · | | | | TII | ME: | | | | | | | | | | | | | | | | | | Habitat Parameter | | | | | | | | | nditio | n Cat | | | | | | | | | | | | | 1. Epifaunal Substrate/ | Great | Option 70° | | octrata | 40.70 | | boptin | | nitat: | 20.40 | | argin | al
ble hab | itat: | Less th | 200 2 | Poc | | ahitat: | | | | Available Cover | favora | ble for epi | faunal | | well s | uited fo | or full c | coloniz | ation | habita | ıt avail | ability | less tha | an | lack of | habit | at is o | bviou | 3; | | | | | | zation and
snags, su | | | | | equate
of po | | | | ıble; sı
bed or | | | ently | substra | ate ur | nstable | e or la | cking. | ſ | | | | logs, ι | indercut ber stable h | anks, co | bble | prese | nce of | | nal | | | | | | | | | | | | ſ | | | | stage | to allow fu | II coloni | zation | newfa | II, but | not yet | prepa | | | | | | | | | | | | | | | | - | ial (i.e., lo
t new fall | - | | for col
high e | | ion (ma
scale). | , | e at | | | | | | | | | | | | | | | transie | ∍nt. | SCORE: 17 | 20 | 19 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 (| _ | | | 2. Embeddedness | | I, cobble, a | | | | | ole, and | | | | | | d bould | | Gravel | | | | | \dashv | | ıch | | particl | es are 0-2
inded by fi | 5% | | particl | es are | 25-50
by fine | % | | particl | es are | 50- 7 | | | particle
surrou | es are | more | than | 75% | | | ıg rea | | Layeri | ng of cobb | ole provi | des | Surrou | mueu | by lifte | Seuiii | ient. | Surrou | mueu | by lifte | Seulli | ent. | Surrou | nueu | ру шк | e seuii | nent. | | | mplir | | divers | ity of niche | space. | | | | | | | | | | | | | | | | | | | be evaluated in sampling reach | SCORE: 14 | 20 | 19 18 | | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 | 1 | | uated | 3. Velocity/Depth Regime | | r velocity/ent (slowde | | | | | e 4 regi
st-sha | | | | of the es pre | | | | Domin-
regime | | | | | | | eval | | shallo | w, fastdee | p, | | missir | ng, sco | re lowe | er thar | | fastsh | | | | | | (| , | | | | | ţ0 | | | nallow). (S
3 m/s, dee | | .5 m.). | missir | ig otne | er regin | nes). | | | w-snai
issing, | | low). | | | | | | | | | eters | Parameters | SCORE: 10 | 20 | 19 18 | | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 | | | 4 | 4. Sediment Deposition | | or no enlar
s or point l | • | | | | ncreas | | | | | | on of ne
e sedim | | Heavy
increas | | | | naterial
ent; mo | | | | | | % of the b | | | | | sediment | | | | and n | | rs; 30-{ | 50% | than 50 freque | | | | • | • | | | | depos | • | none | | | | n pools | , | igiit | sedim | ent de | posits | at | | due to | subs | | | | | | | | | | | | | | | | | | ıctıons
ends; ı | | trictions
ate | 5, | deposi | tion. | | | | | | | | | | | | | | | | | depos | ition o | f pools | s preva | lent. | SCORE: 15 | 20 | 19 18 | | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 | ı | | | 5. Channel Flow Status | | reaches b
banks, and | | | | | 75% of
annel; | | 5% of | | | | of the and/or | riffle | Very lit
mostly | | | | nel and
ing poo | ls. | | | | | nt of chanr | | | | | strate i | | | substr | ates a | | | | | | | | | | | | | <u> </u> | - | T 4-7 | 40 | 45 | 44 | 40 | 10 | 44 | L. | | c | 7 | | - | 1 | 2 | _ | 4 . | _ | | | SCORE: 7 | 20 | 19 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 | 1 | | | | | | | | | | | | IILL I | | | n Cat | | | | | _ | | | | | | | |--|---|-----|--|---
--|--|--------------------------------------|--|--|---|---|-------------------------|---|--|--|---------------------|---------------------------------|---|-----------------------------------|--|--------------------------------|-------------------------------|-------------------|--| | | Habitat Parameter | | | С | ptima | al | | | Sul | boptim | | | | | ,
largina | al | | | | Poo | r | | | | | | 6. Channel Alteration | 1 | absen | | | - | - | usually
abutme
channe
(>20 y | chanr
/ in are
ents; e
elization
r.) ma
chan | nelizatio
eas of bevidence
on, i.e.,
y be pre
nelizatio | n prese
oridge
e of pa
dredgi
esent, b | ist
ng,
but | extens
shoring
both b | neliza
sive; e
ng stru
panks;
n reac | tion ma
embank
ictures
and 40 | y be
mer
pres | nts or
sent on | Banks s
cement
reach c
In strea
or remo | ; ove
hanr
m ha | er 80%
nelized
abitat g | of th
and
reat | e stre
disru | eam
ipted. | | | | SCORE: | 15 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | 7. Frequency of Riffle
(or bends) | es | frequence between width (genence) habitat where placer | ent; raten rifflof the rally 5 at is ke riffles ment olarge, | of riffletio of dies divides divides to 7); y. In some confident of the co | istance ided by 1 < 7:1 variety treams ontinue | e y of s ous, | infrequ | ient; d
divide | of riffles
listance
d by the
s betwe | betwe
width | of | bottor
some
betwe
width | n cont
habita
en riff
of the | riffle or
dours pr
at; dista
fles divid
stream
to 25. | ovid
nce
ded | de | Genera
riffles; p
betwee
width of
> 25. | oor
n riffl | habitat
les divi | ; dis
ded | tance | e
e | | | g rea | SCORE: | 15 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | Parameters to be evaluated in sampling reach | 8. Bank Stability (scceach bank) Note: determine left oright side by facing downstream. | r | | on or ba
nimal; l
proble | | ilure al
otentia | bsent
I for | small a
healed | areas
I over. | stable; i
of erosi
5-30%
reas of e | on mos | stly
nk in | of bar | nk in ro
on; hig | each ha
h erosi | ıs aı | 30- 60%
reas of
potential | Unstabl
"raw" ar
straight
obvious
100% o
scars. | reas
sect
ban | freque
tions ar
ik slouç | nt al
nd b
ghino | ong
ends;
g; 60- | | | | e eva | SCORE (LB): | 8 | Le | eft Bar | nk | 10 | 9 | 8 | , | 7 | 6 | ; | 5 | | 4 | Ī | 3 | 2 | | 1 | | (|) | | | to b | SCORE (RB): | 8 | Ri | ght Ba | nk | 10 | 9 | 8 | | 7 | 6 | i | 5 | | 4 | T | 3 | 2 | | 1 | | (|) | | | Parameter | 9. Vegetative Protect
(score each bank) | | riparia
native
trees,
non- v
vegeta | surface
in zone
veget
under
voody
ative d
ig or m | es and
e cove
tation,
story s
macro
isrupti
nowing
almos | imme
red by
includi
shrubs
phytes
on thro
minim
t all pla | diate r ing , or s; ough hal or ants | surface
vegeta
plants
disrupt
affectin
potenti
more ti
one-ha | es covation, the state of s | ne stread
vered by
out one
well- re
vident b
plant g
any grea
he pote
ht rema | native
class of
preser
ut not
rowth
at exten | e
of
nted;
nt; | surfactivegeta
obviou
or clos
comm | ces co
ation;
us; pa
sely c
non; le
otentia | l plant | on
f ba
veg | re soil
etation
e-half of | Less thi
bank su
vegetat
bank ve
vegetat
5 centir
stubble | irfaci
ion; e
geta
ion h | es cove
disrupti
ation is
nas bee
rs or le | ered
ion o
very
en re | by
of stre
high
move | eam
;
ed to | | | | SCORE (LB): | 8 | Le | eft Bar | nk | 10 | 9 | 8 | | 7 | 6 | i | 5 | | 4 | | 3 | 2 | | 1 | | (|) | | | | SCORE (RB): | 8 | | ght Ba | | 10 | 9 | 8 | | 7 | 6 | 5 | 5 | | 4 | | 3 | 2 | | 1 | | (|) | | | | 10. Riparian Vegetati
Zone Width (score ea
bank riparian zone) | ich | Width
meters
parkin
cuts, I
not im | s; hum
ig lots,
awns, | nan ac
roadb
or cro | tivities
eds, c
ps) ha | (i.e.,
lear- | meters | ; hum | irian zoi
ian activ
ne only | ities h | ave | meter | s; hun | arian zo
nan act
one a gi | ivitie | es have | Width of riparian zone <6 meter | | | | | | | | | SCORE (LB): | 9 | Le | eft Bar | nk | 10 | 9 | 8 | | 7 | 6 | ; | 5 | | 4 | T | 3 | 2 | | 1 | | (|) | | | | SCORE (RB): | 9 | Ri | ght Ba | nk | 10 | 9 | 8 | | 7 | 6 | i | 5 | T | 4 | 1 | 3 | 2 | | 1 | 1 | (|) | | | TOT | AL SCORE: | | 14 | .3 | STRE | AM NAME: Upst | ream (I | US) reach | | | | | LOC | ATION | N: | Wool | per Cı | reek V | Vaters | shed, | near T | oyot | a parts | s facil | ity | | |---|--|---|--
--|---------------------------------------|--|--|---|--------------------------------------|--------------------------|---|---|--|--|-------------|--|----------------------------------|--------------------------------|--------------------------|------------------------|--------------| | STRE | AM WDTH (FT): | | DE | PTH (| (FT): | | | F | PERE | NNIA | L | | INTE | RMIT | TEN | Т | | EPH | EME | RAL | | | STAT | ION #: N/A | RIVE | ERMILE: | N/A | | | | C | DUNT | Υ: | Boon | е | | | | | STA | TE: K | Ϋ́ | | | | LAT | | LON | NG | | | | | RI | VER E | BASIN | l: V | Voolpe | er Cre | ek Wa | atersl | hed | | | | | | | CLIE | NT: | | | | | | | PR | OJE | CT NC |). E | PA/O | RD Pi | lot Pr | oject | (i.e. To | yota | retrofi | t) | | | | INVE | STIGATORS/CREW: RJI | 1 | FOI | RM COMPLETED
BY: | | NLK | | | TE: | | 8/2 | 6/201 | 13 | | REAS(| | OR SU | IRVE | Y: Pre- | retro | ofit hab | oitat | | | | | | | | | | | | | Co | nditio | n Cat | egory | , | | | | | | | | | | | Habitat Parameter | | Optim | | | | | boptir | nal | | | М | argina | | | | | Pod | r | | | | | 1. Epifaunal Substrate/
Available Cover | favoral
coloniz
mix of
logs, u
or othe
stage t | er than 70%
ble for epifa
zation and t
snags, sub
andercut ba
er stable ha
to allow full
ial (i.e., log
t new fall a | aunal
fish cov
mergeonks, co
bitat ar
colonia
s/snags | ver;
d
obble
nd at
zation | well si
poteni
mainto
prese
substr
newfa
for col | uited for
tial; ad
enance
nce of
rate in
II, but
lonizat | of state of full cequate of po addition the for not yet ion (masscale). | colonize habit pulational m of prepa | ration
at for
ons; | habita
desira | % mix
at avail
able; su
bed or | ability
ubstrat | less the | nan | Less the lack of substra | habit | | bviou | 3; | , | | | SCORE: 17 | 20 | 19 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | impling reach | 2. Embeddedness | particle
surrou
Layerii | l, cobble, and es are 0-25 anded by find and footble ity of niche | %
e sedir
e provi | nent. | partic | es are | ole, and
25-50
by fine | % | | partic | el, cobb
les are
unded | 50- 7 | 5% | | Gravel
particle
surrou | es are | more | than | 75% | | | in Sa | SCORE: 18 | 20 | 19 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | eters to be evaluated in sampling reach | 3. Velocity/Depth Regime | preser
shallov
fast-sh | r velocity/dent (slowdee
w, fastdeep
nallow). (Slo
3 m/s, deep | p, slow
,
ow | - | prese
missir
missir | nt (if fa
ng, sco | e 4 reg
ast-sha
are lower
er regin | llow is
er thar | | regim
fastsh
or slo | 2 of the
es pre-
nallow
w-shal
issing, | sent (if
low | f | | Domin
regime | | • | | | h | | Parameters | SCORE: 10 | 20 | 19 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | <u>a</u> | 4. Sediment Deposition | islands
than 5 | or no enlarg
s or point ba
% of the ba
ed by sedim
ition. | ars and
ottom | | forma
sand
of the | tion, m
or fine
bottor | ncreas
nostly fi
sedimi
n affec
n pools | rom gr
ent; 5-
ted; sl | avel,
30% | grave
on old
of the
sedim
obstru
and b | rate de
I, sand
I and n
botton
ent de
uctions
ends; i
sition o | or fine
new ba
n affect
posits
, const
modera | e sedir
rs; 30-
eted;
at
triction
ate | ment
50% | Heavy
increas
than 5
freque
due to
deposi | sed b
0% o
ntly; p
subs | ar deve
f the bo
pools a | elopm
ottom
ilmost | ent; i
chan
abse | more
ging | | | SCORE: 17 | 20 | 19 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 5. Channel Flow Status | lower b | reaches ba
banks, and
of channe
osed. | minima | al | availa | ble ch | 75% of
annel;
strate | or <25 | | availa | rates a | annel, | and/o | | Very li | | | | | | | | SCORE: 12 | 20 | 19 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | | | | | | | IILL I | | | n Cat | | | , | | | | | | | | | |--|--|----|--|---|---|---|--------------------------------------|--|--|--|---|-------------------------|---|--|--|---------------------|---------------------------------|--|-----------------------------------|---|--------------------------------|-------------------------------|-------------------|--| | | Habitat Parameter | | | С | ptima | al | | | Sul | boptim | | | | | ,
largina | al | | | | Poo | r | | | | | | 6. Channel Alteration | 1 | absen | | inimal; | dredgi
strear | - | usually
abutmochanno
(>20 y | chanr
/ in are
ents; e
elization
r.) ma
chan | nelizationeas of bevidence on, i.e., y be pre | n prese
oridge
e of pa
dredgi
esent, b | ist
ng,
but | extens
shoring
both b | neliza
sive; e
ng stru
panks;
n read | tion may
embank
actures p
and 40 | y be
mer
pres | nts or
sent on | Banks s
cement
reach c
In strea
or remo | ; ove
hanr
m ha | r 80%
nelized
abitat g | of th
and
reatl | e stre
disru | eam
ipted. | | | | SCORE: | 15 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | ch | 7. Frequency of Riffle
(or bends) | es | frequence between width (genence) habitat where placer | ent; raten rifflof the rally 5 at is ke riffles ment olarge, | tio of do stream to 7); y. In some or | es rela
istance
ided by
n < 7:1
variety
treams
ontinue
ders on | e y of s ous, | infrequ | ient; d
divide | of riffles
listance
d by the
s betwee | betwe
width | of | bottor
some
betwe
width | n con
habita
en riff
of the | riffle or
tours pr
at; dista
fles divid
stream
to 25. | ovid
nce
ded | le | Genera
riffles; p
betwee
width of
> 25. | oor
n riffl | habitat
es divi | ; dis
ded | tance | e
e | | | g rea | SCORE: | 14 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | Parameters to be evaluated in sampling reach | 8. Bank Stability (scoeach bank)
Note: determine left o right side by facing downstream. | r | Banks
erosio
or min
future
affecte | on or ba
nimal; l
proble | ank fa | ilure al
otentia | bsent
I for | small a | areas
I over. | stable; ii
of erosi
5-30%
reas of e | on mos | stly
nk in | of bar | nk in r
on; hig | | ıs ar | | Unstabl
"raw" an
straight
obvious
100% of
scars. | reas
sect
ban | freque
ions ar
k slouç | nt al
nd be
ghine | ong
ends;
g; 60- | | | | e eV | SCORE (LB): | 8 | Le | eft Bar | nk | 10 | 9 | 8 | | 7 | 6 | i | 5 | | 4 | | 3 | 2 | | 1 | | (|) | | | tob | SCORE (RB): | 7 | Ri | ght Ba | nk | 10 | 9 | 8 | | 7 | 6 | i | 5 | | 4 | | 3 | 2 | | 1 | | (|) | | | Parameter | 9. Vegetative Protect
(score each bank) | | riparia
native
trees,
non- v
vegeta | surface
in zone
veget
under
voody
ative d
ig or m | es and
e cove
tation,
story s
macro
isrupti
nowing
almos | imme
red by
includi
shrubs
phytes
on thro
minim
t all pla | diate r ing , or s; ough hal or ants | surface
vegeta
plants
disrupt
affection
potent
more to
one-ha | es covation, the state of s | ne strea
vered by
out one
well- re
vident b
plant gr
any grea
he poter
ht rema | native
class of
preser
ut not
rowth
at exten | e
of
nted;
nt; | surfactivegeta
obviou
or clos
comm | ces co
ation;
us; pa
sely c
non; le
otentia | l plant s | on
f ba
veg | re soil
etation
e-half of | Less th
bank su
vegetat
bank ve
vegetat
5 centir
stubble | irfaci
ion; e
geta
ion h | es cove
disrupt
ition is
las bee
rs or le | ered
ion c
very
en re | by
of stre
high
move | eam
;
ed to | | | | SCORE (LB): | 8 | Le | eft Bar | nk | 10 | 9 | 8 | | 7 | 6 | i | 5 | | 4 | | 3 | 2 | | 1 | | (|) | | | | SCORE (RB): | 7 | | ght Ba | | 10 | 9 | 8 | | 7 | 6 | | 5 | | 4 | | 3 | 2 | | 1 | | (| | | | | 10. Riparian Vegetati
Zone Width (score ea
bank riparian zone) | ch | Width
meters
parkin
cuts, I
not im | s; hum
ig lots,
awns, | nan ac
roadb
or cro | tivities
eds, c
ps) ha | (i.e.,
lear- | meters | ; hum | irian zoi
ian activ
ne only | ities h | ave | meter | s; hur | arian zo
nan acti
one a gr | ivitie | es have | Width of riparian zone <6 meter | | | | | | | | | SCORE (LB): | 9 | Le | eft Bar | nk | 10 | 9 | 8 | | 7 | 6 | ; | 5 | | 4 | | 3 | 2 | | 1 | | (|) | | | | SCORE (RB): | 9 | Ri | ght Ba | nk | 10 | 9 | 8 | | 7 | 6 | i | 5 | | 4 | 1 | 3 | 2 | | 1 | İ | C |) | | | TOT | AL SCORE: | | 15 | 1 | | | | | | | | | | · | | | | | | | • | | | | | LAT LONG RIVER BASIN: Woolper Creek Watershed CLIENT: PROJECT NO. EPA/ORD Pilot Project (i.e. Toyo INVESTIGATORS/CREW: RJH | EPHEMERAL STATE: KY ota retrofit) | |--|--| | LAT LONG RIVER BASIN: Woolper Creek Watershed CLIENT: PROJECT NO. EPA/ORD Pilot Project (i.e. Toyo INVESTIGATORS/CREW: RJH | | | CLIENT: PROJECT NO. EPA/ORD Pilot Project (i.e. Toyo INVESTIGATORS/CREW: RJH | ota retrofit) | | INVESTIGATORS/CREW: RJH | ota retrofit) | | | | | | | | FORM COMPLETED NLK DATE: 7/8/2019 REASON FOR SURVEY: Post-ro | retrofit habitat | | TIME: | | | Condition Category Habitat Parameter | | | Optimal Suboptimal Marginal | Poor | | Available Cover favorable for epifaunal well suited for full colonization habitat availability less than lack of ha | an 20% stable habitat;
nabitat is obvious; | | colonization and fish cover; potential; adequate habitat for desirable; substrate frequently substrate maintenance of populations; disturbed or removed. | e unstable or lacking. | | logs, undercut banks, cobble presence of additional or other stable habitat and at substrate in the form of | | | stage to allow full colonization newfall, but not yet prepared | | | potential (i.e., logs/snags that for colonization (may rate at are not new fall and not high end of scale). | | | transient. | | | | | | 333121 10 20 10 10 11 10 12 11 10 0 0 | 4 3 2 1 0 cobble, and boulder | | particles are 0.25% particles are 50.75% particles are 50.75% particles | are more than 75% | | surrounded by fine sediment. surrounded by fine sediment. Layering of cobble provides | ded by fine sediment. | | diversity of niche space. | | | surrounded by fine sediment. Layering of cobble provides diversity of niche space. SCORE: 16 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 3. Velocity/Depth Regime present (slowdeep, slow-shallow, fastdeep, shallow, fastdeep, shallow, fastdeep, score lower than if | 4 3 2 1 0 | | 3. Velocity/Depth Regime All four velocity/depth regimes Only 3 of the 4 regimes Only 2 of the 4 habitat Dominate | ted by 1 velocity/depth | | present (slowdeep, slow-
shallow, fastdeep, missing, score lower than if fastshallow | (usually slow-deep). | | missing other regimes). or slow-shallow | | | S V.S III/3, deep is v.S III./. | | | SCORE: 10 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 | 4 3 2 1 0 | | 4. Geniment Deposition Little of no entargement of Come new increase in bar information of new increase in bar | leposits of fine material, | | | ed bar development; more
% of the bottom changing | | 1 1 ' ' 1 ' ' ' ' | tly; pools almost absent ubstantial sediment | | obstructions, constrictions, deposition | | | and bends; moderate deposition of pools prevalent. | | | | | | SCORE: 16 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 | 4 3 2 1 0 | | | e water in channel and | | lower banks, and minimal amount of channel substrate amount of channel substrate is exposed. substrates are mostly | | | is exposed. Is exposed. Is exposed. | | | SCORE: 10 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 | 4 3 2 1 0 | | | | | | | | <u></u> | | | | | Condition | | | | | , | _ | | | | | | | | | | |--|---|----|---|---|--|--|------------------------------------|--|--|---|---|---------------------------------------|--|---|---------------------------|-----------------------------------|--
--|---|--------------------------------|------------------------------|-------------------|--|--|--|--| | | Habitat Parameter | | | C | ptima | al | | | Sul | boptim | al | | N | largina | al | | | | Poo | r | | | | | | | | | 6. Channel Alteration | | | t or m | nimal; | dredgii
strear | • | usually
abutmochanno
(>20 y | in are
ents; e
elization
r.) mag
chann | eas of bevidence
on, i.e.,
y be pre | n present,
ridge
e of past
dredging,
esent, but
n is not | extens
shoring
both b | sive; e
ng stru
panks
m read | and 40 | me
pres | nts or
sent on
80% of | cement
reach c
In strea | personal part of the stream is a ration t | | | | | | | | | | | SCORE: | 15 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | ıch | 7. Frequency of Riffle
(or bends) | | frequence
between width
(general
habitan
where | ent; raten rifflof the rally 5 at is ke riffles ment olarge, | io of des divistreant to 7); y. In some are confident from the food of foo | es rela
listance
ided by
n < 7:1
variety
treams
ontinuc
ders or | of sous, | infrequ
riffles (| ient; d
divided | d by the | between
width of
en 7 to 15. | bottor
some
betwe
width | n con
habita
en riff
of the | riffle or
tours pr
at; dista
fles divi
stream
to 25. | ovio
nce
ded | de | riffles; p
betwee | ooor l
n riffl | habitat
es divi | ; dist | ance
by th | e
e | | | | | | g rea | SCORE: | 14 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | Parameters to be evaluated in sampling reach | 8. Bank Stability (scoeach bank) Note: determine left oright side by facing downstream. | r | erosio
or min | on or ba
nimal; l
proble | ank fa
ittle po | ence of
ilure all
otential
5% of | osent
for | small a | areas
l over. | of erosi | nfrequent,
on mostly
of bank in
erosion. | of bar | nk in r
on; hig | each ha
h erosi | is a | 30- 60%
reas of
potential | "raw" ai
straight
obvious | reas
t sect
s ban | freque
ions a
k slou | nt alond beginning | ong
ends;
; 60- | | | | | | | e eva | SCORE (LB): | 7 | Le | eft Bar | ık | 10 | 9 | 8 | | 7 | 6 | 5 | | 4 | | 3 | 2 | | 1 | | (|) | | | | | | tob | SCORE (RB): | 4 | Ri | ght Ba | nk | 10 | 9 | 8 | | 7 | 6 | 5 | | 4 | | 3 | 2 | | 1 | | (|) | | | | | | Parameter | 9. Vegetative Protect
(score each bank) | | bank s
riparia
native
trees,
non- v
vegeta
grazin
not ev | surface
in zone
veget
under
voody
ative d
ig or m | es and
e cove
ation,
story s
macro
isrupti
iowing
almos | the str
I imme
red by
includi
shrubs
ophytes
on thro
minim
t all pla
aturally | ng
, or
s;
ough
aal or | surface
vegeta
plants
disrupt
affection
potent
more to
one-ha | es covation, to is not tion even tion even tion even tion and the second tion and the second tion to tion to the second tion tion to the second tion tion tion to the second tion tion tion tion tion tion tion tion | well- re
vident b
plant grant
any grea | r native
class of
presented
ut not
rowth
at extent;
ntial plant | surfactivegeta; obvious or close comm | ces co
ation;
us; pa
sely c
non; le
otentia | ss than | oy
ion
if ba
veg | are soil
getation
e-half of | bank su
vegetat
bank ve
vegetat
5 centir | urface
tion; o
egeta
tion h
meter | es cover
disrupt
ation is
las been
as or le | ered
ion o
very
en re | by
f stre
high
nove | eam
;
ed to | | | | | | | SCORE (LB): | 7 | Le | eft Bar | ık | 10 | 9 | 8 | | 7 | 6 | 5 | | 4 | | 3 | 2 | | 1 | | (|) | | | | | | | SCORE (RB): | 5 | | ght Ba | | 10 | 9 | 8 | | 7 | 6 | 5 | | 4 | | 3 | 2 | | 1 | | |) | | | | | | | 10. Riparian Vegetati
Zone Width (score ea
bank riparian zone) | ch | meter:
parkin | s; hum
ig lots,
awns, | an ac
roadb
or cro | one >1
tivities
peds, c
ps) ha | (i.e.,
lear- | meters | ; hum | an activ | ne 12- 18
rities have
minimally. | meter | s; hur | arian zo
nan act
one a g | iviti | es have | Width of little or to huma | no ri | parian | vege | | | | | | | | | SCORE (LB): | 9 | Le | eft Bar | ık | 10 | 9 | 8 | | 7 | 6 | 5 | | 4 | J | 3 | 2 | | 1 | | (|) | | | | | | | SCORE (RB): | 9 | Ri | ght Ba | nk | 10 | 9 | 8 | | 7 | 6 | 5 | | 4 | 1 | 3 | 2 | | 1 | 1 | (|) | | | | | | TOT | AL SCORE: | | 13 | 7 | | - | | | | | - | | • | | | | • | | | | | | | | | | | STRE | AM NAME: Down | nstrear | n (DS) re | ach | | | | LOCA | ATION | N : | Wool | per Cı | reek V | Vatershe | d, ne | ar To | oyota | a parts | facilit | ty | |--|--|---|--|---|---------------------------------------|--|---|---|--|-------------------------|---|--|--|--|----------------------------|-------------------------|------------------------------------|-------------------|------------------------------|---------------------------------| | STRE | AM WDTH (FT): | | D | EPTH (| (FT): | | | P | PERE | NNIA | L | | INTE | RMITTE | NT | | | EPH | EMER | AL | | STAT | ION #: N/A | RIVE | ERMILE: | N/A | | | | C | DUNT | Υ: | Boon | е | | | | , | STA | TE: K | Y | | | LAT | | LON | NG | | | | | RI | /ER E | BASIN | l: V | Voolpe | er Cre | ek Wate | rshe | t | | | | | | CLIEN | NT: | | | | | | | PR | OJE | CT NC |). Е | PA/O | RD Pi | lot Proje | ct (i.e | . Toy | yota | retrofi | t) | | | INVES | STIGATORS/CREW: RJH | l | FOF | RM COMPLETED
BY: | | NLK | | DA | TE: | | 4/2 | 9/201 | 13 | | SSESS | | OR SUR | /EY: | Pre-r | retro | fit hab | itat | | | | 51. | | | | TII | ME: | | | | | ľ | 00000 | | | | | | | | | | | Habitat Daramatar | | | | | • | | | Co | nditio | n Cat | egory | 1 | | | | | | | | | | Habitat Parameter | | Optii | | | 10 =0 | | ooptin | | | 22.12 | | argina | | | | - | Poo | | | | | 1. Epifaunal Substrate/
Available Cover | favoral
coloniz
mix of
logs, u
or othe
stage t | er than 70°
ble for epi
zation and
snags, su
indercut b
er stable h
to allow fu
ial (i.e., lo
t new fall a | faunal
fish cov
bmerge
anks, co
abitat a
Il colonia
gs/snag | /er;
d
obble
nd at
zation | well so
potent
mainte
preser
substr
newfa | uited for
tial; ad
enance
nce of
rate in
II, but | or full of
equate
e of pop
addition
the for
not yet
ion (ma | colonize habit
habit
pulational
m of
prepa | ation
at for
ons; | habita
desira | t avail
ble; sı | ability | ble habita
less than
e frequer
red. | la | ck of | habit | at is ol | able ha
bvious
or lact | , | | | SCORE: 10 | 20 | 19 18 | | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 (| | 5 | 4 | 3 | 2 | 1 0 | | | 2. Embeddedness |
particle
surrou
Layerii | l, cobble, a
es are 0-2
nded by fi
ng of cobb
ity of niche | 5%
ne sedir
ole provi | ment.
des | particl | es are | ole, and
25-50
by fine | % | | particl | es are | 50- 7 | d boulder
5%
Sedimer | pa | article | s are | more | d bould
than 7
sedim | 5% | | l in s | SCORE: 11 | 20 | 19 18 | | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 (| | 5 | 4 | 3 | 2 | 1 0 | | Parameters to be evaluated in sampling reach | 3. Velocity/Depth Regime | preser
shallov
fast-sh | r velocity/ont (slowder
w, fastdee
nallow). (S
3 m/s, dee | ep, slow
p,
low | - | preser | nt (if fa
ig, sco | st-sha
re low | llow is
er thar | | regime
fastsh | es pre
allow
w-shal | | f | | | | , | elocity/o
ow-dee | | | aram | SCORE: 10 | 20 | 19 18 | | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 (| | 5 | 4 | 3 | 2 | 1 0 | | ď | 4. Sediment Deposition | islands
than 5 | or no enlar
s or point l
% of the b
ed by sedin
ition. | oars and
ottom | | Some
formal
sand of
of the
depos | tion, m
or fine
botton | sedime
n affect | rom gr
ent; 5-
ted; sl | avel,
30% | gravel
on old
of the
sedim
obstru
and be | l, sand
l and n
bottor
ent de
ictions
ends; i | or fine
new ba
n affect
posits
, const
modera | at
trictions, | nt in
% th
fre
du | creas
an 50
equen | ed ba
1% of
ntly; p
subst | ar deve
the bo | ottom c | ent; more
changing
absent | | | SCORE: 11 | 20 | 19 18 | | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 (| 3 | 5 | 4 | 3 | 2 | 1 0 | | | 5. Channel Flow Status | lower b | reaches boanks, and of chanrosed. | d minim | al | availa | ble cha | 75% of
annel;
strate i | or <25 | | | ble charates a | annel, | of the
and/or rif
stly | | • | | | channe
standir | | | | SCORE: 9 | 20 | 19 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 (| 6 | 5 | 4 | 3 | 2 | 1 0 | | | | | | | | | | | | | Conditio | | | | | , | | | | | | | | | | | |--|---|------|---|---|--|--|------------------------------------|--|--|---|--|--|---|--|--------------------|-----------------------------------|--|--|--|---------------------------------|------------------------------|-------------------|--|--|--|--| | | Habitat Parameter | | | С | ptima | al | | | Sul | ooptim | | | | /largina | al | | | | Pod | r | | | | | | | | | 6. Channel Alteration | 1 | absen | | nimal; | dredgii
strear | • | usually
abutmochanno
(>20 y | in are
ents; e
elization
r.) mag
chann | eas of bevidence
on, i.e.,
y be pre | n present,
ridge
e of past
dredging,
esent, but
n is not | extens
shorin
both b | sive; e
g stru
anks;
n read | tion may
embank
uctures (
; and 40
ch chan | me
pres | nts or
sent on
80% of | cement
reach c
In strea | nerally all flat water or shes; poor habitat; distance ween riffles divided by the lith of the stream is a ratio 5. 5 | | | | | | | | | | | SCORE: | 15 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | ch | 7. Frequency of Riffle
(or bends) | es | frequence between width (genence) habitat where placer | ent; rate
en riffl
of the
rally 5
at is ke
e riffles
ment o
large, | io of des divistreant to 7); y. In some are confident from the food of foo | es rela
istance
ided by
n < 7:1
variety
treams
ontinuc
ders or | of sous, | infrequ
riffles (| ient; d
divided | d by the | between
width of
en 7 to 15. | botton
some
betwe
width | n con
habita
en riff
of the | riffle or
tours pr
at; dista
fles divid
stream
to 25. | ovio
nce
ded | de [°] | riffles; p
betwee | ooor l
n riffl | habita
es div | ; dist
ded l | ance
by th | e
e | | | | | | g rea | SCORE: | 14 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | | | Parameters to be evaluated in sampling reach | 8. Bank Stability (scceach bank) Note: determine left oright side by facing downstream. | | erosio
or min | on or banimal; I
proble | ank fa
ittle po | ence of
ilure all
otential
5% of | osent
for | small a | areas
l over. | of erosio | nfrequent,
on mostly
of bank in
erosion. | of ban | k in r
n; hig | each ha
gh erosid | ıs a | | "raw" a
straight
obvious | reas
t sect
s ban | freque
ions a
k slou | nt ald
nd be
ghing | ong
ends;
; 60- | | | | | | | e eva | SCORE (LB): | 3 | Le | eft Bar | ık | 10 | 9 | 8 | | 7 | 6 | 5 | | 4 | | 3 | | | 1 | | (|) | | | | | | to b | SCORE (RB): | 2 | Rig | ght Ba | nk | 10 | 9 | 8 | | 7 | 6 | 5 | 1 | 4 | | 3 | 2 | | 1 | | (|) | | | | | | Parameter | 9. Vegetative Protect
(score each bank) | tion | bank s
riparia
native
trees,
non- v
vegeta
grazin
not ev | surface
an zone
veget
under
woody
ative d
ag or m | es and
e cove
ation,
story s
macro
isrupti
iowing
almos | the str
imme
red by
includi
shrubs
ophytes
on thro
minim
t all pla
aturally | ng
, or
s;
ough
aal or | surface
vegeta
plants
disrupt
affection
potent
more to
one-ha | es covation, to is not tion even tion even tion even tion and the second tion and the second tion to tion to the second tion tion to the second tion tion tion to the second tion tion tion tion tion tion tion tion | well- re
vident bo
plant go
any grea | native
class of
presented
ut not
owth
at extent;
ntial plant | surfact
vegeta
obviou
or clos
comm | es co
ation;
is; pa
sely c
on; le
tentia | al plant s | on
f ba
veg | are soil
getation
e-half of | bank su
vegetat
bank ve
vegetat
5 centir | urface
tion; o
egeta
tion h
meter | es cov
disrupt
ition is
las beens or le | ered
ion o
very
en rei | by
f stre
high
nove | eam
;
ed to | | | | | | | SCORE (LB): | 3 | Le | eft Bar | ık | 10 | 9 | 8 | | 7 | 6 | 5 | | 4 | | 3 | 2 | | 1 | | (|) | | | | | | | SCORE (RB): | 3 | | ght Ba | | 10 | 9 | 8 | | 7 | 6 | 5 | | 4 | | 3 | 2 | | 1 | | |) | | | | | | | 10. Riparian Vegetati
Zone Width (score ea
bank riparian zone) | | meter:
parkin
cuts, I | s;
hum
ng lots, | an ac
roadb
or cro | one >1
tivities
eds, c
ps) ha | (i.e.,
lear- | meters | ; hum | an activ | ne 12- 18
ities have
minimally. | meters | s; hur | arian zo
man acti
one a gr | iviti | es have | Width of little or to huma | no ri | parian | vege | | | | | | | | | SCORE (LB): | 9 | Le | eft Bar | ık | 10 | 9 | 8 | | 7 | 6 | 5 | | 4 | | 3 | 2 | | 1 | | (|) | | | | | | | SCORE (RB): | 9 | Ri | ght Ba | nk | 10 | 9 | 8 | | 7 | 6 | 5 | | 4 | | 3 | 2 | | 1 | | (|) | | | | | | TOT | AL SCORE: | | 10 | 9 | STRE | EAM NAME: Dow | nstrea | m (DS | s) rea | ich | | | | LOC | ATION | N: | Wool | per C | reek V | Vaters | shed, | near To | oyot | a parts | s facil | ity | | |---|--------------------------|---|--|---|---|---------------------------------------|---|---|--|---|-------------------------|---|---|--|------------------------------------|-------------------|---|---------------------------------|-------------------------------|--------------------------|---------------------|---------------| | STRE | EAM WDTH (FT): | | | DE | PTH (| (FT): | | | F | PERE | NNIA | L | | INTE | RMIT | TEN | Т | | EPH | EME | RAL | | | STAT | TION #: N/A | RIV | ERMII | LE: | N/A | | | | C | TNUC | Υ: | Boon | е | | | | ; | STA | TE: k | Υ | | | | LAT | | LO | NG | | | | | | RI | VER E | BASIN | 1 : V | Voolp | er Cre | ek Wa | atersl | hed | | | | | | | CLIE | NT: | | | | | | | | PR | OJE | CT NO |). E | PA/O | RD P | ilot Pro | oject | (i.e. To | yota | retrofi | t) | | | | INVE | STIGATORS/CREW: RJI | ł | FO | RM COMPLETED
BY: | | NLK | | | | ME: | | 7/8 | 8/201 | 9 | 1 | REAS(| | OR SU | IRVE | Y: Post | -retr | ofit ha | bitat | | | | | Habitat Parameter | | | | | | Ī | | | | nditio | n Cat | | | | | 1 | | | | | | | | 1. Epifaunal Substrate/ | Great | | ptim | of sub | octrata | 40.70 | | boptir
of stat | | nitat: | 20.40 | | argin | al
ble hal | nitat: | Less th | on 2 | Poc | | hita | 4. | | | Available Cover | favora
coloni
mix of
logs,
or oth
stage
poten | able for
zation
f snags
underc
er stab
to allo
tial (i.e
ot new | epifa
and f
s, sub
ut bai
ole ha
w full
., logs | aunal
ish cov
merge
nks, co
bitat ai
colonia
s/snag | ver;
d
obble
nd at
zation | well s
poten
mainto
prese
substo
newfa
for co | uited for tial; and enance of rate in all, but lonizate | or full of ful | colonize habit
pulational
m of
t prepa | ation
at for
ons; | habita
desira | at avail | ability
ubstrat | less the | ian | | habi | tat is o | bvious | s; | , | | | SCORE: 15 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | ampling reach | 2. Embeddedness | partic
surrou
Layer | les are
unded
ing of o | 0-25
by fin | nd boul
%
e sedir
e provi
space. | nent.
des | partic | les are | ole, and
25-50
by fine | % | | partic | les are | 50-7 | d boul
5%
Sedir | | Gravel,
particle
surrour | s are | e more | than | 75% | | | l in S | SCORE: 15 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | eters to be evaluated in sampling reach | 3. Velocity/Depth Regime | prese
shallo
fast-s | nt (slov
w, fast
hallow) | wdeep
deep
). (Slo | | - | prese
missir
missir | nt (if fa | e 4 reg
ast-sha
are lower
er regin | llow is
er thar | | regim
fastsh
or slo | 2 of the
es pre
nallow
w-shal
issing, | sent (i
low | f | | Domina
regime | | | | | th | | Parameters | SCORE: 10 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | <u>a</u> | 4. Sediment Deposition | island
than 5 | s or po
5% of t
ed by s | oint ba | | | forma
sand
of the | tion, m
or fine
bottor | ncreas
nostly fi
sedimen
n affec
n pools | rom gr
ent; 5-
ted; sl | avel,
30% | grave
on old
of the
sedim
obstru
and b | I, sand
d and r
bottor
nent de
uctions
ends; | or find
new bath
n affect
posits
, cons
moder | rs; 30-
cted;
at
triction | ment
50%
s, | Heavy
increas
than 50
frequer
due to
deposit | ed b
)% o
ntly;
subs | ar dev
f the bo
pools a | elopm
ottom
ilmost | ent;
char
abs | more
nging | | | SCORE: 17 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | 5. Channel Flow Status | lower
amou | banks | , and | ise of b
minima
el subs | al | availa | ble ch | 75% of
annel;
strate | or <25 | | | ible ch
rates a | annel, | | | Very lit
mostly | | | | | | | | SCORE: 12 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | | | | ••• | <u> </u> | 11 /10 | OLO | /IVILIA | | LD DA | 17.0 | | Condition | | | | 110, | TAGE | | | | | | | | | |--|---|------|---|---|--|--|-------------------------------------|--|---|--|---|--------------------------------------|--|--|----------------------------|---------------------------------|--|----------------------------------|---|-----------------------------|--|--|--|--| | | Habitat Parameter | | | C | ptima | al | | | Sul | ooptim | | | | ,
largina | al | | | | Poor | r | | | | | | | 6. Channel Alteration | 1 | absen | nelizat | ion or
inimal; | dredgi
strear | • | usually
abutme
channe
(>20 yı | chann
in are
ents; e
elization
r.) may
chann | elization
eas of b
evidence
on, i.e.,
y be pre | n present, | extens
shorin
both b | neliza
sive; e
g stru
anks;
n read | tion may
embank
actures p
and 40 | y be
men
pres | its or
ent on
30% of | reach cl | ; ove
hann
m ha | r 80% d
nelized a
abitat gr | of th
and
eatl | on or
e stream
disrupted.
y altered | | | | | | SCORE: | 15 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 | | | | | ch | 7. Frequency
of Riffle
(or bends) | es | frequence betwee width (general habitat where placer | ent; raten rifflof the rally 5 at is ken riffles ment olarge, | tio of dies divistreant to 7); y. In search of bould | variety
treams
ontinuo
ders or | tively
e
y
of
ous, | infrequ
riffles o | ent; d
divided | d by the | between
width of
en 7 to 15. | botton
some
betwe
width | n con
habita
en riff
of the | riffle or
tours pr
at; dista
fles divid
stream
to 25. | ovid
nce
ded | е | riffles; p
betweer | oor I
n riffl | habitat;
es divid | dist
ded | | | | | | y rea | SCORE: | 14 | 20 | 19 | 18 | 17 | 16 | 15 | 14 | 13 | 12 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 0 | | | | | Parameters to be evaluated in sampling reach | 8. Bank Stability (scoeach bank) Note: determine left oright side by facing downstream. | | erosio
or min | on or ba
nimal; l
proble | ank fa
ittle po | ence of
ilure all
otential
5% of | bsent
I for | small a
healed | over. | of erosio | nfrequent,
on mostly
of bank in
erosion. | of ban | ık in r
n; hig | unstabl
each ha
h erosid
ls. | is ar | eas of | 6 Unstable; many eroded areas;
"raw" areas frequent along | | | | | | | | | e eV | SCORE (LB): | 7 | Le | eft Bar | nk | 10 | 9 | 8 | | 7 | 6 | 5 | | 4 | | 3 | 2 | | 1 | | 0 | | | | | to b | SCORE (RB): | 8 | Ri | ght Ba | nk | 10 | 9 | 8 | | 7 | 6 | 5 | | 4 | | 3 | 2 | | 1 | | 0 | | | | | Parameter | 9. Vegetative Protect
(score each bank) | tion | bank s
riparia
native
trees,
non- v
vegeta
grazin | surface
in zone
veget
under
voody
ative d
ig or m | es and
e cove
ation,
story s
macro
isrupti
nowing
almos | the str
imme
red by
includi
shrubs
ophytes
on thro
minim
t all pla
aturally | diate ing , or s; ough hal or ants | surface
vegeta
plants
disrupt
affectir
potenti
more tl
one-ha | es covition, bis not cion eving full fall to a han | well- re
vident bu
plant gr
any grea | native
class of
presented;
ut not
owth
ut extent;
ntial plant | surfactivegeta obvious or close comm | es co
ation;
us; pa
sely c
on; le | l plant s | on
f bai
vege
one | re soil
etation
e-half of | bank su
vegetati
bank ve
vegetati | rface
ion; o
geta
ion h | es cove
disruption
ition is v
as been
rs or les | red
on o
very
n re | by
f stream | | | | | | SCORE (LB): | 7 | Le | eft Bar | nk | 10 | 9 | 8 | | 7 | 6 | 5 | | 4 | | 3 | 2 | | 1 | | 0 | | | | | | SCORE (RB): | 10 | 9 | 8 | | 7 | 6 | 5 | | 4 | | 3 | 2 | | 1 | | 0 | | | | | | | | | | 10. Riparian Vegetati
Zone Width (score ea
bank riparian zone) | | • | s; hum
ig lots,
awns, | nan ac
roadb
or cro | tivities
eds, c
ps) ha | (i.e.,
lear- | meters | ; hum | an activ | ne 12- 18
ities have
minimally. | meter | s; hur | arian zo
nan acti
one a gr | ivitie | s have | Width of riparian zone <6 meters
little or no riparian vegetation due
to human activities. | | | | | | | | | | SCORE (LB): | 9 | Le | eft Bar | nk | 10 | 9 | 8 | | 7 | 6 | 5 | | 4 | T | 3 | 2 | | 1 | | 0 | | | | | | SCORE (RB): | 9 | Ri | ght Ba | nk | 10 | 9 | 8 | | 7 | 6 | 5 | | 4 | J | 3 | 2 | | 1 | j | 0 | | | | | TOT | AL SCORE: | | 14 | 6 | | | | | | | _ | | | | | | | | | | | | | |