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Abstract This supplementary text provides details about optimization trajec-
tories of the alternating minimization (AM) solver based on level-set (LS) and
and on the alternating split Bregman (ASB) (section 4), collects the main re-
sults from Banerjee et al. (2005) about the duality between the natural and the
mean parametrization in a one-dimensional regular exponential family (section
1), adapts the proofs from the generalized linear model literature of the photo-
metric estimation results (section 2), and provides explicit formulae for the w1

sub-problem of the ASB for Gaussian, Poisson and, Bernoulli noise models (sec-
tion 3).

1 Duality in the Regular Exponential Family

We collect results about the duality relation in the Regular Exponential Family
(REF) as stated by Banerjee et al. (2005) (cf. their Definition 4, Lemma 1 and,
Theorem 2), but with our notation and for a one dimensional REF. We further
gather required results about the duality relation induced by the Legendre-Fenchel
transform of the cumulant-generating function b of a REF (Banerjee et al. 2005;
Rockafellar 1997). We use the notation int(·) for the interior of a set and dom(ψ)
for the effective domain of the function ψ, namely the set of points in the domain
of definition of ψ for which the function is finite.

Definition 1 Let b be a real-valued function on R. Its conjugate function b? is
defined as:

b?(µ) = sup
θ∈dom(b)

(θµ− b(θ)) .

We can now state the relevant duality results induced by the cumulant-generating
function b between the natural parameter θ and the mean parameter µ of a one-
dimensional REF.
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Lemma 1 Let b be the cumulant-generating function of a REF with natural pa-
rameter space Θ = int(dom(b)). Then b is a proper, closed, and convex function
with int(Θ) = Θ and (Θ, b) is a convex function of Legendre type1 (Rockafellar
1997). Its conjugate function (Θ?, b?) satisfies:

1. (Θ?, b?) is a convex function of Legendre type with Θ? = int(dom(b?)).
2. (Θ, b) and (Θ?, b?) are Legendre duals of each other.
3. The gradient mapping b′ : Θ → Θ? is a one-to-one mapping from the open

convex set Θ onto the open convex set Θ?.
4. The gradient mappings b′ and (b?)′ are continuous and (b?)′ = (b′)−1.

Therefore, two points (θ, µ) ∈ Θ×Θ? in (Legendre) duality are uniquely related
by the Legendre transformations induced by the diffeomorphism b′:

b′(θ) = µ(θ) and (b?)′(µ(θ)) = θ(µ) .

The last result concerns the dual relationship between the Bregman diver-
gences Bb and Bb? induced by b and its conjugate b?. For any two pairs of points
((p, q), (p?, q?)) ∈ Θ2 × (Θ?)2 in duality:

Bb(p ‖ q) = Bb?(q? ‖ p?) .

2 Proofs

We adapt classical proofs from the GLM literature (Nelder and Wedderburn 1972;
McCullagh and Nelder 1989) to our image-processing problem. The results are
not new and only provided here for the convenience of the reader. The only differ-
ences with the statistics literature are the continuous formulation of the results,
requiring basics results about interchanging derivation and integration, and the
sign convention. We recall that ` denotes the anti-log-likelihood function.

Proof (Proof of Result 2)

The proof is classical (McCullagh and Nelder 1989) and amounts to writing
the appropriate chain rule in order to ease the substitutions of the mean function
µ(x) and the variance function V . The only difference is the sign convention.

s(β,x) =
∂`

∂θ

dθ

dµ

dµ

dη

∂η

∂β
(1)

=
∂`

∂θ

(
dµ

dθ

)−1(
dη

dµ

)−1
∂η

∂β
(2)

=
b′(θ)− u0(x)

a(x, φ)

1

b′′(θ)

(
g′(µ(x,β))

)−1
X(x) (3)

=
µ(x,β)− u0(x)

σ2(x,β)g′(µ(x,β))2
g′(µ(x,β))X(x) . (4)

1 A convex function (Θ, f) of Legendre type has a non-empty domain, is strictly convex,
differentiable, and the norm of its gradient is diverging to infinity for sequences in Θ converging
to boundary points.
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We emphasized here the chain rule (1) and the derivatives of interest (2). The fol-
lowing steps use the properties of the GLM: equations (3) and (4) use the definition
of the link function and the properties of the mean and variance functions.

Concerning the whole-image score function s(β), the regularity condition needed
is that `(x,β) is regular enough such that differentiation and integration can be
interchanged:

s(β) =
d

dβ

∫
ΩI

`(x,β) dx =

∫
ΩI

∂

∂β
`(x,β) dx .

Examples of such conditions are: `(x,β) is ΩI -almost everywhere β-differentiable
and |s(x,β)| is ΩI -almost everywhere bounded by an integrable function of x
only. ut

Proof (Proof of Result 3)
We first factor out the deterministic term X(x) from the variance:

V
[
W (x,β)(µ(x,β)− u0(x))g′(µ(x,β))X(x)

]
=

X(x) V
[
W (x,β)(µ(x,β)− u0(x))g′(µ(x,β))

]
XT (x) .

The central term is straightforwardly evaluated as

V
[
W (x,β)(µ(x,β)− u0(x))g′(µ(x,β))

]
=

W (x,β)2σ2(x,β)g′(µ(x,β))2 = W (x,β) ,

where the last equation comes from the definition of W (x,β). This ends the proof
for the Fisher-information matrix of a single pixel.

Concerning the whole-image Fisher information matrix, we use the property
that the Fisher information matrix I(β) is also the expectation of the observed
information matrix:

I(β) = E
[
∇∇T `(β)

]
,

where ∇∇T is the Hessian operator (matrix of second order partial derivatives).
We thus need two conditions: one to interchange integration and differentiation (6),
and one to interchange the order of integration (7):

I(β) = E
[
∇∇T

∫
ΩI

`(x,β) dx

]
(5)

= E
[∫
ΩI

∇∇T `(x,β) dx

]
(6)

=

∫
ΩI

E
[
∇∇T `(x,β)

]
dx (7)

=

∫
ΩI

I(x,β) dx , (8)

where equations (5) and (8) come from the property of the Fisher information
matrix applied to the whole image or to a single pixel. ut



4 Grégory Paul, Janick Cardinale, and Ivo F. Sbalzarini

Proof (Proof of the Fisher scoring iteration, Result 4)
We multiply both sides of the Fisher scoring iteration (equation (14) in the

article) by the Fisher information matrix in order to obtain:

I(βr)βr+1 = I(βr)βr − s(βr) . (9)

The left-hand side of (9) is already the left-hand side of equation (15) of Result 5
in the article. The right-hand side of (9) requires only few groupings of integrals.
First, note that

I(βr)βr =

∫
ΩI

W (x,βr)X(x)XT (x) dx βr

=

∫
ΩI

W (x,βr)X(x) ·XT (x)βr dx

=

∫
ΩI

W (x,βr)X(x)η(x,βr) dx

=

∫
ΩI

W (x,βr)X(x)g(x,βr) dx .

Then,

I(βr)βr−s(βr) =

∫
ΩI

W (x,βr)X(x)
{
g(x,βr)+(u0(x)− µ(x,βr)) g

′(x,βr))
}

dx ,

where we recognized the definition of the adjusted dependent variable in the center
of the integral. This ends the proof for the continuous IRWLS iteration.

In order to recover the classical discrete IRWLS from the statistics literature,
we introduce the set of discrete pixel positions {xi}ni=1 and approximate the inte-
gral by a sum over the pixels:

n∑
i=1

XiWi,rX
T
i βr+1 =

n∑
i=1

XiWi,rZi,r ,

with Xi := X(xi), Wi,r := W (xi,βr), and Zi,r := Z(xi,βr). In matrix notation,
this reads:

[
X1 . . . Xn

] W1,r

. . .

Wn,r


XT

1

. . .

XT
n

 βr+1 =

[
X1 . . . Xn

] W1,r

. . .

Wn,r


Z1

. . .
Zn

 ,

which is the matrix equation stated in the result.
For a two-region segmentation problem we remark that

X(x) =

[
K [M1] (x)
K [M2] (x)

]
,
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from which it is easily seen that the IRWLS equation becomes:[
Kr

11 Kr
12

Kr
12 Kr

22

]
βr+1 =

[
Ur1
Ur2

]
.

If the determinant of the square matrix Kr
11 Kr

22− (Kr
12)2 on the left-hand side is

non-zero, we can invert the matrix system. The Cauchy-Schwarz inequality for the
quantities involved in the determinant is:

(Kr
12)2 ≤ Kr

11 Kr
22 .

Hence, the determinant is non-zero if and only if the previous inequality is strict.
The condition for equality in the Cauchy-Schwarz inequality is that there exist
two positive scalars a, b > 0 such that for almost all x ∈ ΩI ,

aK[M1](x) = bK[M2](x) . (10)

Suppose that two such numbers a, b > 0 exist and assume for simplicity that the
operator K is normalized as K[1] = 1. From the decomposition M1(x)+M2(x) = 1
and the linearity of K, this entails that

K[M1](x) + K[M2](x) = 1 .

Combining this equality with condition (10) implies that K[M2](x) is constant
x-almost everywhere, hence:

K[M2](x) =
b

a+ b
,

which is a contradiction. Therefore, the inequality in the Cauchy-Schwarz inequal-
ity is strict and the determinant is not zero.

The variance-covariance matrix of β̂MLE is the inverse Fisher information ma-
trix evaluated at the MLE. This is a standard result in maximum-likelihood theory
and is hence not reproduced here. ut

The following proof shows that our general result for GLM data-fitting energies
includes the classical result of Chan and Vese (2001) about photometric estimation.
We also recover the result for a Chan-Vese model with deconvolution, as derived
by Jung et al. (2009).

Proof (Proof of the identification of the photometric estimation for the Chan-Vese
model.) Write the continuous IRWLS equation for the extended Chan-Vese model.
In this case, the variance function is σ2(x,β) = 1 and the link function g is the
identity. Therefore, W (x,β) = 1 and the adjusted dependent variable Z = u0. As
a consequence, the continuous IRWLS becomes∫

ΩI

X(x)XT (x) dx βr+1 =

∫
ΩI

X(x)u0(x) dx , (11)

which is linear in β and independent of r. Note that

XXT =

[
X1(x)2 X1(x)X2(x)

X1(x)X2(x) X2(x)2

]
,
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with Xi(x) = (K ∗Mi)(x). Equation (11) then becomes[
K11 K12

K12 K22

]
β̂MLE =

[
U1

U2

]
. (12)

In the proof of the general Fisher scoring iteration we have shown that the matrix
left-multiplying the vector β̂MLE can be inverted. We obtain the MLE estimate

β̂MLE by inverting equation (12), recovering the result of Jung et al. (2009).
For an identity kernel K = Id, we have for i ∈ 1, 2: K ∗Mi = Mi. As a conse-

quence,

Kij =

∫
ΩI

Mi(x)Mj(x) dx =


0 if i 6= j

|Ω1| if i = j = 1

|Ω2| if i = j = 2 ,

where |Ω| denotes the area of the domain Ω and for i ∈ {1, 2}:

Ui =

∫
ΩI

u0(x)M1(x) dx =

∫
Ωi

u0(x) dx .

The MLE estimate then is:

1

K11 K22−K2
12

[
K22 −K12

−K12 K11

] [
U1

U2

]
=

1

|Ω1| |Ω2|

[
|Ω2| 0

0 |Ω1|

] [∫
Ω1
u0(x) dx∫

Ω2
u0(x) dx

]
,

which recovers the result of Chan and Vese (2001).

3 Solutions to the w1-subproblem

We provide analytic solutions to the w1-subproblem of our ASB algorithm for
three convex noise models: Gaussian, Poisson, and Bernoulli, coupled using the
identity link function. The Euler-Lagrange equation, re-rewritten is terms of µ =
∆β w1 + β1, reads:

a(µ− u0) + (µ− b)V (µ) = 0 ,

with a := γ(∆β)2wd and b := β1 + ∆β
(
bk1 + K[Mk+1]

)
. The variance function

V (µ) is polynomial for all three cases: V = 1 for Gaussian noise, V = µ for Pois-
son noise, and V = µ(1− µ) for Bernoulli noise, leading to polynomial equations
of degree 1, 2, and 3, respectively. Nevertheless, the range of admissible values
for µ in the Poisson case (µ > 0) and the Bernoulli case (µ ∈ ]0 , 1[) allows us
to determine a unique solution. We do not show the derivation, but provide the
solutions in terms of µ. The solution of interest in w1 is obtained by the conversion
w1 = (µ− β1)/∆β.

Gaussian noise:

µ =
au0 + b

a+ 1
.

Poisson noise:

µ =
1

2

(
b− a+

√
(b− a)2 + 4au0

)
.



Supplementary text 7
E

ne
rg

y
(a

.u
.)

0

2500

2000

1500

1000

1000

150 300 450 600 750 900 1050

β̂
M

L
E

0 150 300 450 600 750 900 1050

14

13

12

11

10

9

8

7

Iterations Iterations

a (k = 0) b (k = 150) c (k = 284) d (k = 434) e (k = 434)

f (k = 0) g (k = 150) h (k = 284) i (k = 434) j (k = 1050)

A
SB

S
L
SS

k l

a,f

b

c

d,e
j

g
h i

Fig. 1 Optimization trajectories for segmentation coupled with Gaussian denois-
ing and TV-inpainting. Trajectories of the ASBS (a–e) and the LSS (f–j) AM corresponding
to (a, 6) and (a, 5) in Fig. 1 of the main text are shown. (a,f) The initialization is the same
for both algorithms, an array of circles represented as a labeling function for ASBS (a) or as
the zero level-set (in red) for LSS (f). (b–d) Soft membership functions just after photometric
re-estimation. In (c,d) we observe that the photometric re-estimation took place before the im-
posed re-estimation period of 150 iterations because the relative energy dropped below 10−6

(g–i) Zero level-set after each re-estimation of the ASBS. (e) Misclassified pixels in the final
segmentation. (j) Final zero level-set at convergence. (k) Energy trace of the ASBS (red solid
curve) and the LSS (black solid curve). Letter labels refer to the figures above. The horizontal

blue line is the ground-truth energy. (i) Trace of β̂MLE for the ASBS (red solid curve) and the
LSS (black solid curve). The horizontal blue lines are the ground-truth β values.

Bernoulli noise: For Bernoulli noise, the solution depends on the value of the
data u0 ∈ {0, 1}:

u0 = 0 : µ =
1

2

(
1 + b−

√
(1− b)2 + 4a

)
u0 = 1 : µ =

1

2

(
b+

√
b2 + 4a

)
.

4 Optimization trajectories

We detail optimization trajectories for cases (a,5–6) and (a,11–12) of figure 1 in the
main text. Each figure is organized in a similar manner. The first two rows illustrate
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Fig. 2 Optimization trajectories for segmentation coupled with Gaussian denois-
ing, deconvolution, and TV-inpainting. The legend is similar to the one of Fig. 1

the nature of the object used to encode the geometric optimization problem. The
ASB solver (ASBS, first row) evolves a soft membership function from a binary
mask (subfigure a) until convergence (Fig. 1d and Fig. 2e). The LS solver (LSS,
second row) evolves an active contour (in red) from an initial contour (Fig. 1f
and Fig. 2g) until convergence (Fig. 1j and Fig. 2l). The intermediate images
show the state of the geometric solver at intermediate steps (Fig. 1b–c, and g–i
and Fig. 2b–e and h–k) when the ASBS-based AM re-estimates the photometric
constants. We observe that the ASBS reaches the relative convergence threshold
of 10−6 prematurely (iteration numbers at photometric re-estimation are not all a
multiple of 150). After the first photometric re-estimation the ASBS has already
detected the four shapes (Fig. 1b and Fig. 2b ), whereas the LSS has not (Fig. 1g
and Fig. 2h). After an additional re-estimation, the ASBS is already very close in
geometry to the ground truth (Fig. 1c and Fig. 2c), whereas the LSS has still not
converged (Fig. 1h and Fig. 2i). Figures 1e and 2f show the misclassified pixels of
the resulting segmentation after thresholding the final mask (which is shown in
Fig. 1d and Fig. 2e, respectively), using the a posteriori upper bound.

The bottom-left plot shows the energy trajectories (in arbitrary units) for both
the LSS (black line) and the ASBS (red line). The blue line indicates the ground
truth energy. The letters in this plot correspond to the images above (see Fig. 1k
and Fig. 2m). The bottom-right plot shows the evolution of the photometric pa-
rameters in the LSS (black solid line) and the ASBS (red solid line). The blue
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lines correspond to the ground-truth values of the fore- and background, respec-
tively. For both examples, we observe that the LSS converges to a sub-optimal
state. We can easily identify reasons for such a sub-optimal result. For example,
the cluster of missing data atop the upper-right corner of the square shape seems
to prevent the active contour from moving further and hence from separating the
square from the ring. The missing data inside the concavity of the U-shape seem
to have a similar effect.

The ASBS converges closer to ground truth both in energy and in photometry.
Without deconvolution, the solutions before and after thresholding are indistin-
guishable, as the soft mask is already almost binary (see Fig. 1d) and close to
the ground-truth binary solution. This is because the convex relaxation is exact
in this case. With deconvolution, the final mask M? is clearly not binary (see
Fig. 2e). The energy and the photometric constants of M? at convergence hence
differ from the ground-truth values (see Fig. 2m, label e and Fig. 2n). Neverthe-
less, after thresholding the final soft mask with the threshold t? minimizing the
a posteriori error upper-bound, the final result is very close to ground truth (see
the red dots in Fig. 2m, label f and Fig. 2n). The convex relaxation is not exact
when K is not the identity. In figure 2m, the difference in energy between points e
and f illustrates the a posteriori upper bound on the difference in energy between
the global solution of the original non-convex problem and the proposed solution.
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