A Comprehensive Performance Evaluation of Deformable Face Tracking "In-the-Wild"

Grigorios G. Chrysos \cdot Epameinondas Antonakos
* \cdot Patrick Snape* \cdot Akshay Asthana
 \cdot Stefanos Zafeiriou

Received: date / Accepted: date

1 Introduction

In the supplementary material, we have included all the curves as derived per detector/tracker. We follow the same experimental sections as in the main paper and include those additional curves. Since for each method all 4 landmark localisation techniques are provided, there is a single unified legend for all the figures for each landmark localisation method, given in 1.

Fig. 1: The common legend for all the landmark localisation techniques used in the paper.

Additionally we have prepared a video for two indicative experiments, illustrating the visual comparison of the top 5 performing methods in each category. The links are presented in the Table 1.

G. Chrysos \cdot E. Antonakos \cdot P. Snape \cdot S. Zafeiriou

Department of Computing, Imperial College London, 180 Queen's Gate, London SW7 2AZ, UK E-mail: {g.chrysos, e.antonakos}@imperial.ac.uk

{p.snape, s.zafeiriou}@imperial.ac.uk

A. Asthana

Seeing Machines Ltd., Level 1, 11 Lonsdale St, Braddon, ACT, Australia, 2612 E-mail: a.asthana@seeingmachines.com

^{*} E. Antonakos and P. Snape contributed equally and have joint second authorship.

Experiment 1	https://youtu.be/Lx5gHvErqX8
Experiment 3	https://youtu.be/SNr39MH3dh8

_

Table 1: Links for the videos illustrating the outcomes of the top performing methods in indicative experiments.

Each image of a video is composed of the original video frame, plus a cropped result for each of the top 5 methods per category. A black frame signifies a missing detection, Fig. 2.

Fig. 2: Arbitrary frame from the supplementary videos.

Fig. 3: This resembles the first set of curves as produced in the *Experiment 1* of the main paper. $| \omega$ Rows are Category 1, 2 and 3 respectively. Each column is labelled by the figure header representing the work of [Felzenszwalb et al(2010)Felzenszwalb, Girshick, McAllester, and Ramanan], [Hu and Ramanan(2016)], [Zhang et al(2016)Zhang, Zhang, Li, and Qiao] and [Liao et al(2016)Liao, Jain, and Li] respectively.

Fig. 4: This resembles the second set of curves as produced in the *Experiment 1* of the main paper. Rows are Category 1, 2 and 3 respectively. Each column is labelled by the figure header representing the work of [Zhu and Ramanan(2012)], [King(2015)], [Viola and Jones(2004)] and [Kumar et al(2015)Kumar, Namboodiri, and Jawahar] respectively.

Fig. 5: This resembles the full set of curves as produced in the *Experiment 2* of the main paper. Rows \Box are Category 1, 2 and 3 respectively. Each column is labelled by the figure header representing the work of [Felzenszwalb et al(2010)Felzenszwalb, Girshick, McAllester, and Ramanan], [King(2015)], [Zhu and Ramanan(2012)] and [Viola and Jones(2004)] respectively.

Fig. 6: This resembles the first part (out of 7) of the full set of curves as produced in the *Experiment 3* of the main paper. Rows are Category 1, 2 and 3 respectively. Each column is labelled by the figure header representing the work of [Bradski(1998)], [Danelljan et al(2016)Danelljan, Robinson, Khan, and Felsberg], [Nebehay and Pflugfelder(2015)] and [Sevilla-Lara and Learned-Miller(2012)] respectively.

Fig. 7: This resembles the second part (out of 7) of the full set of curves as produced in the Experiment 3 of the main paper. Rows are Category 1, 2 and 3 respectively. Each column is labelled by the figure header representing the work of [Sevilla-Lara and Learned-Miller(2012)], [Ning et al(2016)Ning, Yang, Jiang, Zhang, and Yang], [Danelljan et al(2014)Danelljan, Häger, Khan, and Felsberg] and [Zhang et al(2014c)Zhang, Zhang, and Yang] respectively.

Fig. 8: This resembles the third part (out of 7) of the full set of curves as produced in the *Experiment 3* of the main paper. Rows are Category 1, 2 and 3 respectively. Each column is labelled by the figure header representing the work of [Ross et al(2008)Ross, Lim, Lin, and Yang], [Henriques et al(2015)Henriques, Caseiro, Martins, and Batista], [Ma et al(2015)Ma, Yang, Zhang, and Yang] and [Zhang et al(2014d)Zhang, Liu, Ahuja, Yang, and Ghanem] respectively.

Fig. 9: This resembles the fourth part (out of 7) of the full set of curves as produced in the *Experiment 3* of the $| \circ main$ paper. Rows are Category 1, 2 and 3 respectively. Each column is labelled by the figure header representing the work of [Nam and Han(2016)], [Zhang et al(2014a)Zhang, Ma, and Sclaroff], [Babenko et al(2011)Babenko, Yang, and Belongie] and [Wu et al(2012)Wu, Shen, and Ling] respectively.

Grigorios G. Chrysos et al.

Fig. 10: This resembles the fifth part (out of 7) of the full set of curves as produced in the *Experiment 3* of the main paper. Rows are Category 1, 2 and 3 respectively. Each column is labelled by the figure header representing the work of [Isard and Blake(1996)], the baseline tracker (denoted as PREV in the main paper), [Li et al(2015)Li, Zhu, and Hoi] and [Bertinetto et al(2016b)Bertinetto, Valmadre, Henriques, Vedaldi, and Torr] respectively.

set of curves as produced in |Fig. 11: This resembles the sixth part (out of 7) of the full Rows are Category 1, 2 and 3 respectively. Each colthe Experiment 3of the main paper. labelled figure header representing the work of [Zhang and van der Maaten(2014)], is by the umn [Yang et al(2014)Yang, Lu, and Yang], [Danelljan et al(2015)Danelljan, Häger, Shahbaz Khan, and Felsberg] and [Bertinetto et al(2016a)Bertinetto, Valmadre, Golodetz, Miksik, and Torr] respectively.

Fig. 12: This resembles the seventh part (out of 7) of the full set of curves as produced in the *Experiment* 3 of the main paper. Rows are Category 1, 2 and 3 respectively. Each column is labelled by the figure header representing the work of [Zhang et al(2014b)Zhang, Zhang, Liu, Zhang, and Yang], [Hare et al(2011)Hare, Saffari, and Torr], [Gao et al(2014)Gao, Ling, Hu, and Xing] and [Kalal et al(2012)Kalal, Mikolajczyk, and Matas] respectively.

References

- [Babenko et al(2011)Babenko, Yang, and Belongie] Babenko B, Yang MH, Belongie S (2011) Robust object tracking with online multiple instance learning. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) 33(8):1619–1632, DOI 10.1109/TPAMI.2010.226
- [Bertinetto et al(2016a)Bertinetto, Valmadre, Golodetz, Miksik, and Torr] Bertinetto L, Valmadre J, Golodetz S, Miksik O, Torr PHS (2016a) Staple: Complementary learners for real-time tracking. In: IEEE Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, [Code: https://github.com/bertinetto/ staple, Status: Online; accessed 18-August-2016]
- [Bertinetto et al(2016b)Bertinetto, Valmadre, Henriques, Vedaldi, and Torr] Bertinetto L, Valmadre J, Henriques JF, Vedaldi A, Torr P (2016b) Fully-convolutional siamese networks for object tracking. arXiv preprint arXiv:160609549 [Bradski(1998)] Bradski GR (1998) Computer vision face tracking for use in a perceptual user interface
- [Danelljan et al(2014)Danelljan, Häger, Khan, and Felsberg] Danelljan M, Häger G, Khan FS, Felsberg M (2014) Accurate scale estimation for robust visual tracking. In: Proceedings of British Machine Vision Conference (BMVC)
- [Danelljan et al(2015)Danelljan, Häger, Shahbaz Khan, and Felsberg] Danelljan M, Häger G, Shahbaz Khan F, Felsberg M (2015) Learning spatially regularized correlation filters for visual tracking. In: IEEE Proceedings of International Conference on Computer Vision (ICCV), pp 4310–4318
- [Danelljan et al(2016)Danelljan, Robinson, Khan, and Felsberg] Danelljan M, Robinson A, Khan FS, Felsberg M (2016) Beyond correlation filters: Learning continuous convolution operators for visual tracking. In: Proceedings of European Conference on Computer Vision (ECCV), pp 472-488, [Code:https://github.com/martin-danelljan/Continuous-ConvOp, Status: Online; accessed 22-December-2016]
- [Felzenszwalb et al(2010)Felzenszwalb, Girshick, McAllester, and Ramanan] Felzenszwalb PF, Girshick RB, McAllester D, Ramanan D (2010) Object detection with discriminatively trained part-based models. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) 32(9):1627–1645
- [Gao et al(2014)Gao, Ling, Hu, and Xing] Gao J, Ling H, Hu W, Xing J (2014) Transfer learning based visual tracking with gaussian processes regression. In: Proceedings of European Conference on Computer Vision (ECCV), Springer, pp 188-203, [Code: http://www.dabi.temple.edu/~hbling/code/TGPR.htm, Status: Online; accessed 4-December-2016]
- [Hare et al(2011)Hare, Saffari, and Torr] Hare S, Saffari A, Torr PH (2011) Struck: Structured output tracking with kernels. In: IEEE Proceedings of International Conference on Computer Vision (ICCV), IEEE, pp 263–270
- [Henriques et al(2015)Henriques, Caseiro, Martins, and Batista] Henriques JF, Caseiro R, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) 37(3):583–596
- [Hu and Ramanan(2016)] Hu P, Ramanan D (2016) Finding tiny faces. arXiv preprint arXiv:161204402 [Code: https://www.cs.cmu.edu/~peiyunh/tiny/, Status: Online; accessed 24-December-2016]
- [Isard and Blake(1996)] Isard M, Blake A (1996) Contour tracking by stochastic propagation of conditional density. In: Proceedings of European Conference on Computer Vision (ECCV), pp 343-356, [Code: https://github.com/gnebehay/ SIR-PF, Status: Online; accessed 23-December-2016]
- [Kalal et al(2012)Kalal, Mikolajczyk, and Matas] Kalal Z, Mikolajczyk K, Matas J (2012) Tracking-learning-detection. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) 34(7):1409–1422
- [King(2015)] King DE (2015) Max-margin object detection. arXiv preprint arXiv:150200046
- [Kumar et al(2015)Kumar, Namboodiri, and Jawahar] Kumar V, Namboodiri A, Jawahar C (2015) Visual phrases for exemplar face detection. In: IEEE Proceedings of International Conference on Computer Vision (ICCV), pp 1994– 2002, [Code: http://cvit.iiit.ac.in/projects/exemplar/, Status: Online; accessed 24-December-2016]
- [Li et al(2015)Li, Zhu, and Hoi] Li Y, Zhu J, Hoi SC (2015) Reliable patch trackers: Robust visual tracking by exploiting reliable patches. In: IEEE Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR), pp 353–361
- [Liao et al(2016)Liao, Jain, and Li] Liao S, Jain AK, Li SZ (2016) A fast and accurate unconstrained face detector. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) 38(2):211-223, [Code: http://www.cbsr.ia.ac. cn/users/scliao/projects/npdface/, Status: Online; accessed 24-December-2016]
- [Ma et al(2015)Ma, Yang, Zhang, and Yang] Ma C, Yang X, Zhang C, Yang MH (2015) Long-term correlation tracking. In: IEEE Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp 5388-5396, [Code: https://github.com/chaoma99/lct-tracker, Status: Online; accessed 18-August-2016]
- [Nam and Han(2016)] Nam H, Han B (2016) Learning multi-domain convolutional neural networks for visual tracking. In: IEEE Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, [Code: https://github.com/HyeonseobNam/MDNet, Status: Online; accessed 18-August-2016]
- [Nebehay and Pflugfelder(2015)] Nebehay G, Pflugfelder R (2015) Clustering of Static-Adaptive correspondences for deformable object tracking. In: IEEE Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR), IEEE
- [Ning et al(2016)Ning, Yang, Jiang, Zhang, and Yang] Ning J, Yang J, Jiang S, Zhang L, Yang MH (2016) Object tracking via dual linear structured svm and explicit feature map. In: IEEE Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR), [Code: www4.comp.polyu.edu.hk/~cslzhang/code/DLSSVM_CVPR.zip, Status: Online; accessed 18-August-2016]

- [Ross et al(2008)Ross, Lim, Lin, and Yang] Ross DA, Lim J, Lin RS, Yang MH (2008) Incremental learning for robust visual tracking. International Journal of Computer Vision (IJCV) 77(1-3):125–141
- [Sevilla-Lara and Learned-Miller(2012)] Sevilla-Lara L, Learned-Miller E (2012) Distribution fields for tracking. In: IEEE Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp 1910–1917
- [Viola and Jones(2004)] Viola P, Jones MJ (2004) Robust real-time face detection. International Journal of Computer Vision (IJCV) 57(2):137–154
- [Wu et al(2012)Wu, Shen, and Ling] Wu Y, Shen B, Ling H (2012) Online robust image alignment via iterative convex optimization. In: IEEE Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp 1808–1814
- [Yang et al(2014)Yang, Lu, and Yang] Yang F, Lu H, Yang MH (2014) Robust superpixel tracking. IEEE Transactions in Image Processing (TIP) 23(4):1639-1651, [Code: http://www.umiacs.umd.edu/~fyang/spt.html, Status: Online; accessed 18-August-2016]
- [Zhang et al(2014a)Zhang, Ma, and Sclaroff] Zhang J, Ma S, Sclaroff S (2014a) Meem: robust tracking via multiple experts using entropy minimization. In: Proceedings of European Conference on Computer Vision (ECCV), pp 188–203, [Code: http://cs-people.bu.edu/jmzhang/MEEM/MEEM.html, Status: Online; accessed 18-August-2016]
- [Zhang et al(2014b)Zhang, Zhang, Liu, Zhang, and Yang] Zhang K, Zhang L, Liu Q, Zhang D, Yang MH (2014b) Fast visual tracking via dense spatio-temporal context learning. In: Proceedings of European Conference on Computer Vision (ECCV), pp 127-141, [Code: http://www4.comp.polyu.edu.hk/~cslzhang/STC/STC.htm, Status: Online; accessed 18-August-2016]
- [Zhang et al(2014c)Zhang, Zhang, and Yang] Zhang K, Zhang L, Yang MH (2014c) Fast compressive tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) 36(10):2002–2015
- [Zhang et al(2016)Zhang, Zhang, Li, and Qiao] Zhang K, Zhang Z, Li Z, Qiao Y (2016) Joint face detection and alignment using multi-task cascaded convolutional networks 23(10):1499-1503, [Code: https://github.com/kpzhang93/MTCNN_ face_detection_alignment, Status: Online; accessed 24-December-2016]
- [Zhang and van der Maaten(2014)] Zhang L, van der Maaten L (2014) Preserving structure in model-free tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence (T-PAMI) 36(4):756–769
- [Zhang et al(2014d)Zhang, Liu, Ahuja, Yang, and Ghanem] Zhang T, Liu S, Ahuja N, Yang MH, Ghanem B (2014d) Robust visual tracking via consistent low-rank sparse learning. International Journal of Computer Vision (IJCV) 111(2):171–190
- [Zhu and Ramanan(2012)] Zhu X, Ramanan D (2012) Face detection, pose estimation, and landmark localization in the wild. In: IEEE Proceedings of International Conference on Computer Vision and Pattern Recognition (CVPR), IEEE, pp 2879–2886