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1 Optimisation Details

The augmented Lagrangian is as follows:
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where X7 € RV*¥ is the jth channel of the input tensor (feature) X € RN*N*¢
and W7 € RVXVN ig the jth channel of the filter tensor W € RVXNXC We
introduce the slack variable, W' = W.Y € RV *¥ denotes the desirable Gaussian-
shape response map ( , ). I is the Lagrangian multiplier of the
same size as W, and p is the corresponding penalty.
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To optimise the objective (Eqn. 1), we use the alternating direction method
of multipliers (ADMM) ( , ) to iteratively solve the following sub-
problems:

W = argnll/an L'(W,W',I‘7u)
W = arg min LW,W T, p) . (2)
p— 3 /
I = argn}lnﬁ(W,W,F,u)

1.1 Updating W

To optimise W, we solve the following sub-problem:
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To efficiently solve Eqn. 3, we transfer the objective to the frequency domain by

employing the circulant structure ( , ):
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Note that the symbol * stands for the corresponding Fourier representation in
the frequency domain ( , ). We perform vectorisation of the
variables involved as follows,

A= [diag (Vec <X1T)) ,diag (Vec (X2T)) ,...,diag (Vec (XCT))} € CN2X0N2,
f= [Vec <W1T> ,Vec <W2T> ,...,Vec (VAVCT)} € (CCNZ,

r= [Vec (flT) ,Vec (f2T> ,...,Vec (IZ'CT)} € (CCNz,

b:Vec(Y) ec™

Foreachj=1,2,...,C,Vec (XjT) € (CN2, Vec (WjT) € (CNQ, and Vec (f‘jT) c

CcN*. C is the complex domain of the Fourier representations. Vec (-) is the vec-
torisation operator that flattens the matrix to one dimension. diag(-) returns a
square diagonal matrix with the elements of the vector on its diagonal.

We can rewrite Eqn. (4) as minimising the following function w.r.t. f,

H(E) = |Af = b|* + Aollf — o |* + D1 — £+ £||2. (5)
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Setting OH/0f = 0, we can obtain the closed-form solution,

-1
£=(A"A+ T+ gI) (A"b+ dafis + e - %) . (6)
H denotes the Hermitian transpose. Note that the term AFA 4+ I+ %I is of
size CN? x C'N?. Hence, it is impossible to calculate its inverse matrix in a real
time situation. Revisiting Eqn. (5), we find that it can further be decomposed into
the following sub linear system,

(ABALI + 2T+ £1) £ = ALl + hoteali] + 220 - "0 (7

where f[i] € C® denotes the elements across all C' channels in the i-th spatial unit,
i=1,2,...,N2. A similar meaning applies to the notation A[i] € C%, b[i] € C
and r[i] € C°. Based on the Sherman-Morrison-Woodbury formula, we can obtain

the closed-form solution of Eqn. (7) as ( , )
. G H
1] = 1 (I A[z]A[z] )
A2+ A2+ 5 + Afi|HAfi

; (8)
X (A[i}b[i] + Aof[i]s—1 + 5f/[i] - %)

Transforming the vectorised variables back to Eqn. 4, the closed-form solution of
the sub-problem can be obtained as:

. 1 %x[m,n]%[m,n]"
W[m’”]_AQJru(I_ X ]TA[m,n])g )

X+ 5 +x[m,n] %
where vector W [m, n] = [u?}n n,d}?n ny e DS n] € C¢ denotes the m-th row n-
th column units of ¥ through all the C channels, and g = %x[m,n]g§[m,n] +
Ew' [m,n] + AaWi1 [m,n] — M
1.2 Updating W'
To optimise W', we minimise the following sub-problem ( , ):
/ . ! /
S (2 L
W arg min 1; 2 Z + e (10)
Eqn. 10 can be separated to each channel:
) : . . Ak
W' = argmin\; HW”H Ny HWJ - W7 — (11)
Wi F 2 F
Setting the derivative of Eqn. (11) to zero, we obtain W + W' = H’, where

H/ =W/ +17/p. % is the unit representation of W', Therefore, W/j and

H’ share the same geometric direction, indicating the exchangeability between
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the unit MH\%NW,J-IGF and uﬁ\ltll;lﬂp The closed-form optimal solution can directly be
derived as :
. A )
W' = max (0, 1— 71) H. (12)
[ HI ||

It is clear that W'/ tends to shrink to zero by collaboratively integrating the
constraints imposed by all the N x N features among the j-th channel.

1.3 Updating other variables

In each iteration, the penalty p and the multiplier I' are updated as:

r=r+upW-w,

. (13)
p = min (pp, fimax) ,

where p controls the strictness of the penalty in each iteration and pimax is the
maximal penalty value. A parameter K is used to control the maximum number
of iterations. As each sub-problem is convex, the convergence of our optimisation
is guaranteed ( , )-
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