Adaptive Channel Selection for Robust Visual Object Tracking with Discriminative Correlation Filters
 Supplementary Material

Tianyang Xu • Zhen-Hua Feng •
Xiao-Jun Wu • Josef Kittler

Received: date / Accepted: date

1 Optimisation Details

The augmented Lagrangian is as follows:

$$
\begin{align*}
\mathcal{L}\left(\mathcal{W}, \mathcal{W}^{\prime}, \boldsymbol{\Gamma}, \mu\right) & =\left\|\sum_{j=1}^{C} \mathbf{W}^{j} \circledast \mathbf{X}^{j}-\mathbf{Y}\right\|_{F}^{2}+\lambda_{1} \sum_{j=1}^{C}\left\|\mathbf{W}^{\prime j}\right\|_{F} \tag{1}\\
& +\lambda_{2} \sum_{j=1}^{C}\left\|\mathbf{W}^{j}-\mathbf{W}_{\mathbf{t}-1}^{j}\right\|_{F}^{2}+\frac{\mu}{2} \sum_{j=1}^{C}\left\|\mathbf{W}^{j}-\mathbf{W}^{\prime j}+\frac{\Gamma^{j}}{\mu}\right\|_{F}^{2}
\end{align*}
$$

where $\mathbf{X}^{j} \in \mathbb{R}^{N \times N}$ is the j th channel of the input tensor (feature) $\mathcal{X} \in \mathbb{R}^{N \times N \times C}$ and $\mathbf{W}^{j} \in \mathbb{R}^{N \times N}$ is the j th channel of the filter tensor $\mathcal{W} \in \mathbb{R}^{N \times N \times C}$. We introduce the slack variable, $\mathcal{W}^{\prime}=\mathcal{W} . \mathbf{Y} \in \mathbb{R}^{N \times N}$ denotes the desirable Gaussianshape response map (Henriques et al., 2015). $\boldsymbol{\Gamma}$ is the Lagrangian multiplier of the same size as \mathcal{W}, and μ is the corresponding penalty.

T. Xu

Centre for Vision, Speech and Signal Processing
University of Surrey, Guildford GU2 7XH, UK.
E-mail: tianyang.xu@surrey.ac.uk
Z.H. Feng

Department of Computer Science \&
Centre for Vision, Speech and Signal Processing
University of Surrey, Guildford GU2 7XH, UK.
E-mail: z.feng@surrey.ac.uk
J. Kitter

Centre for Vision, Speech and Signal Processing
University of Surrey, Guildford GU2 7XH, UK.
E-mail: j.kittler@surrey.ac.uk
X.J. Wu

School of Artificial Intelligence and Computer Science
Jiangnan University, Wuxi 214122, China.
E-mail: wu_xiaojun@jiangnan.edu.cn

To optimise the objective (Eqn. 1), we use the alternating direction method of multipliers (ADMM) (Boyd et al., 2010) to iteratively solve the following subproblems:

$$
\left\{\begin{align*}
\mathcal{W} & =\arg \min _{\mathcal{W}} \mathcal{L}\left(\mathcal{W}, \mathcal{W}^{\prime}, \boldsymbol{\Gamma}, \mu\right) \tag{2}\\
\mathcal{W}^{\prime} & =\arg \min _{\mathcal{W}}\left(\mathcal{W}\left(\mathcal{W}, \mathcal{W}^{\prime}, \boldsymbol{\Gamma}, \mu\right)\right. \\
\boldsymbol{\Gamma} & =\arg \min _{\boldsymbol{\Gamma}} \mathcal{L}\left(\mathcal{W}, \mathcal{W}^{\prime}, \boldsymbol{\Gamma}, \mu\right)
\end{align*}\right.
$$

1.1 Updating \mathcal{W}

To optimise \mathcal{W}, we solve the following sub-problem:

$$
\begin{align*}
\mathcal{W}= & \arg \min _{\mathcal{W}}\left\|\sum_{j=1}^{C} \mathbf{W}^{j} \circledast \mathbf{X}^{j}-\mathbf{Y}\right\|_{F}^{2}+\lambda_{2} \sum_{j=1}^{C}\left\|\mathbf{W}^{j}-\mathbf{W}_{\mathrm{t}-1}^{j}\right\|_{F}^{2} \tag{3}\\
& +\frac{\mu}{2} \sum_{j=1}^{C}\left\|\mathbf{W}^{j}-\mathbf{W}^{\prime j}+\frac{\Gamma^{j}}{\mu}\right\|_{F}^{2}
\end{align*}
$$

To efficiently solve Eqn. 3, we transfer the objective to the frequency domain by employing the circulant structure (Gray, 2006):

$$
\begin{align*}
\hat{\mathcal{W}}= & \arg \min _{\hat{\mathcal{W}}}\left\|\sum_{j=1}^{C} \hat{\mathbf{W}}^{j} \odot \hat{\mathbf{X}}^{j}-\hat{\mathbf{Y}}\right\|_{F}^{2}+\lambda_{2} \sum_{j=1}^{C}\left\|\hat{\mathbf{W}}^{j}-\hat{\mathbf{W}}_{\mathrm{t}-1}^{j}\right\|_{F}^{2} \tag{4}\\
& +\frac{\mu}{2} \sum_{j=1}^{C}\left\|\hat{\mathbf{W}}^{j}-\hat{\mathbf{W}}^{\prime j}+\frac{\hat{\Gamma}^{j}}{\mu}\right\|_{F}^{2} .
\end{align*}
$$

Note that the symbol $\hat{.}$ stands for the corresponding Fourier representation in the frequency domain (Henriques et al., 2015). We perform vectorisation of the variables involved as follows,
$\mathbf{A}=\left[\operatorname{diag}\left(\operatorname{Vec}\left(\hat{\mathbf{X}}^{1 \top}\right)\right), \operatorname{diag}\left(\operatorname{Vec}\left(\hat{\mathbf{X}}^{2 \top}\right)\right), \ldots, \operatorname{diag}\left(\operatorname{Vec}\left(\hat{\mathbf{X}}^{C \top}\right)\right)\right] \in \mathbb{C}^{N^{2} \times C N^{2}}$, $\mathbf{f}=\left[\operatorname{Vec}\left(\hat{\mathbf{W}}^{1 \top}\right), \operatorname{Vec}\left(\hat{\mathbf{W}}^{2 \top}\right), \ldots, \operatorname{Vec}\left(\hat{\mathbf{W}}^{C \top}\right)\right] \in \mathbb{C}^{C N^{2}}$,
$\mathbf{r}=\left[\operatorname{Vec}\left(\hat{\boldsymbol{\Gamma}}^{1 \top}\right), \operatorname{Vec}\left(\hat{\Gamma}^{2 \top}\right), \ldots, \operatorname{Vec}\left(\hat{\boldsymbol{\Gamma}}^{C \top}\right)\right] \in \mathbb{C}^{C N^{2}}$,
$\mathbf{b}=\operatorname{Vec}(\hat{\mathbf{Y}}) \in \mathbb{C}^{N^{2}}$
For each $j=1,2, \ldots, C, \operatorname{Vec}\left(\hat{\mathbf{X}}^{j \top}\right) \in \mathbb{C}^{N^{2}}, \operatorname{Vec}\left(\hat{\mathbf{W}}^{j \top}\right) \in \mathbb{C}^{N^{2}}$, and $\operatorname{Vec}\left(\hat{\boldsymbol{\Gamma}}^{j \top}\right) \in$ $\mathbb{C}^{N^{2}} . \mathbb{C}$ is the complex domain of the Fourier representations. $V e c(\cdot)$ is the vectorisation operator that flattens the matrix to one dimension. diag (\cdot) returns a square diagonal matrix with the elements of the vector on its diagonal.

We can rewrite Eqn. (4) as minimising the following function w.r.t. f,

$$
\begin{equation*}
\mathcal{H}(\mathbf{f})=\|\mathbf{A f}-\mathbf{b}\|^{2}+\lambda_{2}\left\|\mathbf{f}-\mathbf{f}_{t-1}\right\|^{2}+\frac{\mu}{2}\left\|\mathbf{f}-\mathbf{f}^{\prime}+\frac{\mathbf{r}}{\mu}\right\|^{2} . \tag{5}
\end{equation*}
$$

Setting $\partial \mathcal{H} / \partial \mathbf{f}=0$, we can obtain the closed-form solution,

$$
\begin{equation*}
\mathbf{f}=\left(\mathbf{A}^{H} \mathbf{A}+\lambda_{2} \mathbf{I}+\frac{\mu}{2} \mathbf{I}\right)^{-1}\left(\mathbf{A}^{H} \mathbf{b}+\lambda_{2} \mathbf{f}_{t-1}+\frac{\mu}{2} \mathbf{f}^{\prime}-\frac{\mathbf{r}}{2}\right) \tag{6}
\end{equation*}
$$

. ${ }^{H}$ denotes the Hermitian transpose. Note that the term $\mathbf{A}^{H} \mathbf{A}+\lambda_{2} \mathbf{I}+\frac{\mu}{2} \mathbf{I}$ is of size $C N^{2} \times C N^{2}$. Hence, it is impossible to calculate its inverse matrix in a real time situation. Revisiting Eqn. (5), we find that it can further be decomposed into the following sub linear system,

$$
\begin{equation*}
\left(\mathbf{A}[i] \mathbf{A}[i]^{H}+\lambda_{2} \mathbf{I}+\frac{\mu}{2} \mathbf{I}\right) \mathbf{f}[i]=\mathbf{A}[i] \mathbf{b}[i]+\lambda_{2} \mathbf{f}_{t-1}[i]+\frac{\mu}{2} \mathbf{f}^{\prime}[i]-\frac{\mathbf{r}[i]}{2} \tag{7}
\end{equation*}
$$

where $\mathbf{f}[i] \in \mathbb{C}^{C}$ denotes the elements across all C channels in the i-th spatial unit, $i=1,2, \ldots, N^{2}$. A similar meaning applies to the notation $\mathbf{A}[i] \in \mathbb{C}^{C}, \mathbf{b}[i] \in \mathbb{C}$ and $\mathbf{r}[i] \in \mathbb{C}^{C}$. Based on the Sherman-Morrison-Woodbury formula, we can obtain the closed-form solution of Eqn. (7) as (Petersen and Pedersen, 2008),

$$
\begin{align*}
\mathbf{f}[i]= & \frac{1}{\lambda_{2}+\mu}\left(\mathbf{I}-\frac{\mathbf{A}[i] \mathbf{A}[i]^{H}}{\lambda_{2}+\frac{\mu}{2}+\mathbf{A}[i]^{H} \mathbf{A}[i]}\right) \tag{8}\\
& \times\left(\mathbf{A}[i] \mathbf{b}[i]+\lambda_{2} \mathbf{f}[i]_{t-1}+\frac{\mu}{2} \mathbf{f}^{\prime}[i]-\frac{\mathbf{b}[i]}{2}\right)
\end{align*}
$$

Transforming the vectorised variables back to Eqn. 4, the closed-form solution of the sub-problem can be obtained as:

$$
\begin{equation*}
\hat{\mathbf{w}}[m, n]=\frac{1}{\lambda_{2}+\mu}\left(\mathbf{I}-\frac{\hat{\mathbf{x}}[m, n] \hat{\mathbf{x}}[m, n]^{\top}}{\lambda_{2}+\frac{\mu}{2}+\hat{\mathbf{x}}[m, n]^{\top} \hat{\mathbf{x}}[m, n]}\right) \mathbf{g} \tag{9}
\end{equation*}
$$

where vector $\hat{\mathbf{w}}[m, n]=\left[\hat{w}_{m, n}^{1}, \hat{w}_{m, n}^{2}, \ldots, \hat{w}_{m, n}^{C}\right] \in \mathbb{C}^{C}$ denotes the m-th row n th column units of $\hat{\mathcal{W}}$ through all the C channels, and $\mathbf{g}=\hat{\mathbf{x}}[m, n] \hat{y}[m, n]+$ $\frac{\mu}{2} \hat{\mathbf{w}}^{\prime}[m, n]+\lambda_{2} \hat{\mathbf{w}}_{\mathrm{t}-1}[m, n]-\frac{\hat{\gamma}[m, n]}{2}$.

1.2 Updating \mathcal{W}^{\prime}

To optimise \mathcal{W}^{\prime}, we minimise the following sub-problem (Yuan and Lin, 2006):

$$
\begin{equation*}
\mathcal{W}^{\prime}=\arg \min _{\mathcal{W}^{\prime}} \lambda_{1} \sum_{j=1}^{C}\left\|\mathbf{W}^{\prime j}\right\|_{F}+\frac{\mu}{2} \sum_{j=1}^{C}\left\|\mathbf{W}^{j}-\mathbf{W}^{\prime j}+\frac{\boldsymbol{\Gamma}^{j}}{\mu}\right\|_{F}^{2} \tag{10}
\end{equation*}
$$

Eqn. 10 can be separated to each channel:

$$
\begin{equation*}
\mathbf{W}^{\prime j}=\arg \min _{\mathbf{W}^{\prime j}} \lambda_{1}\left\|\mathbf{W}^{\prime j}\right\|_{F}+\frac{\mu}{2}\left\|\mathbf{W}^{j}-\mathbf{W}^{\prime j}+\frac{\Gamma^{j}}{\mu}\right\|_{F}^{2} \tag{11}
\end{equation*}
$$

Setting the derivative of Eqn. (11) to zero, we obtain $\frac{\lambda_{1} \mathbf{W}^{\prime j}}{\mu\left\|\mathbf{W}^{\prime}\right\|_{F}}+\mathbf{W}^{\prime j}=\mathbf{H}^{j}$, where $\mathbf{H}^{j}=\mathbf{W}^{j}+\Gamma^{j} / \mu \cdot \frac{\mathbf{W}^{\prime j}}{\left\|\mathbf{W}^{\prime j}\right\|_{F}}$ is the unit representation of $\mathbf{W}^{\prime j}$. Therefore, $\mathbf{W}^{\prime j}$ and \mathbf{H}^{j} share the same geometric direction, indicating the exchangeability between
the unit $\frac{\lambda_{1} \mathbf{W}^{\prime j}}{\mu\left\|\mathbf{W}^{\prime j}\right\|_{F}}$ and $\frac{\lambda_{1} \mathbf{H}^{j}}{\mu\left\|\mathbf{H}^{j}\right\|_{F}}$. The closed-form optimal solution can directly be derived as Yang et al. (2011):

$$
\begin{equation*}
\mathbf{W}^{\prime j}=\max \left(0,1-\frac{\lambda_{1}}{\mu\left\|\mathbf{H}^{j}\right\|_{F}}\right) \mathbf{H}^{j} . \tag{12}
\end{equation*}
$$

It is clear that $\mathbf{W}^{\prime j}$ tends to shrink to zero by collaboratively integrating the constraints imposed by all the $N \times N$ features among the j-th channel.

1.3 Updating other variables

In each iteration, the penalty μ and the multiplier Γ are updated as:

$$
\begin{align*}
\boldsymbol{\Gamma} & =\boldsymbol{\Gamma}+\mu\left(\mathcal{W}-\mathcal{W}^{\prime}\right) \tag{13}\\
\mu & =\min \left(\rho \mu, \mu_{\max }\right)
\end{align*}
$$

where ρ controls the strictness of the penalty in each iteration and $\mu_{\max }$ is the maximal penalty value. A parameter K is used to control the maximum number of iterations. As each sub-problem is convex, the convergence of our optimisation is guaranteed (Boyd et al., 2010).

References

Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2010) Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3(1):1-122
Gray RM (2006) Toeplitz and circulant matrices : a review. Foundations and Trends in Communications and Information Theory 2(3):155-239
Henriques JF, Rui C, Martins P, Batista J (2015) High-speed tracking with kernelized correlation filters. IEEE Transactions on Pattern Analysis and Machine Intelligence 37(3):583-596
Petersen K, Pedersen M (2008) The matrix cookbook. technical university of denmark. Technical Manual
Yang Y, Shen HT, Ma Z, Huang Z, Zhou X (2011) 12, 1-norm regularized discriminative feature selection for unsupervised learning. In: Proceedings-international joint conference on artificial intelligence, pp 1589-1594
Yuan M, Lin Y (2006) Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68(1):49-67

