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1 Optimisation Details

The augmented Lagrangian is as follows:
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(1)

where Xj ∈ RN×N is the jth channel of the input tensor (feature) X ∈ RN×N×C
and Wj ∈ RN×N is the jth channel of the filter tensor W ∈ RN×N×C . We
introduce the slack variable,W ′ =W. Y ∈ RN×N denotes the desirable Gaussian-
shape response map (Henriques et al., 2015). Γ is the Lagrangian multiplier of the
same size as W, and µ is the corresponding penalty.
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To optimise the objective (Eqn. 1), we use the alternating direction method
of multipliers (ADMM) (Boyd et al., 2010) to iteratively solve the following sub-
problems: 

W = arg min
W
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)
W ′ = arg min
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) . (2)

1.1 Updating W

To optimise W, we solve the following sub-problem:
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To efficiently solve Eqn. 3, we transfer the objective to the frequency domain by
employing the circulant structure (Gray, 2006):
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Note that the symbol ·̂ stands for the corresponding Fourier representation in
the frequency domain (Henriques et al., 2015). We perform vectorisation of the
variables involved as follows,

A =
[
diag

(
V ec

(
X̂1>

))
,diag

(
V ec

(
X̂2>

))
, . . . , diag

(
V ec

(
X̂C>

))]
∈ CN

2×CN2

,

f =
[
V ec

(
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Ŵj>

)
∈ CN

2

, and V ec
(
Γ̂ j>

)
∈

CN
2

. C is the complex domain of the Fourier representations. V ec (·) is the vec-
torisation operator that flattens the matrix to one dimension. diag (·) returns a
square diagonal matrix with the elements of the vector on its diagonal.

We can rewrite Eqn. (4) as minimising the following function w.r.t. f ,

H (f) = ‖Af − b‖2 + λ2‖f − ft−1‖2 +
µ

2
‖f − f ′ +

r

µ
‖2. (5)
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Setting ∂H/∂f = 0, we can obtain the closed-form solution,

f =
(
AHA + λ2I +

µ

2
I
)−1 (
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2

)
. (6)

·H denotes the Hermitian transpose. Note that the term AHA + λ2I + µ
2 I is of

size CN2 × CN2. Hence, it is impossible to calculate its inverse matrix in a real
time situation. Revisiting Eqn. (5), we find that it can further be decomposed into
the following sub linear system,(
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µ

2
I
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2
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2
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where f [i] ∈ CC denotes the elements across all C channels in the i-th spatial unit,
i = 1, 2, . . . , N2. A similar meaning applies to the notation A[i] ∈ CC , b[i] ∈ C
and r[i] ∈ CC . Based on the Sherman-Morrison-Woodbury formula, we can obtain
the closed-form solution of Eqn. (7) as (Petersen and Pedersen, 2008),
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Transforming the vectorised variables back to Eqn. 4, the closed-form solution of
the sub-problem can be obtained as:
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2 .

1.2 Updating W ′

To optimise W ′, we minimise the following sub-problem (Yuan and Lin, 2006):
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Eqn. 10 can be separated to each channel:
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Setting the derivative of Eqn. (11) to zero, we obtain λ1W
′j

µ‖W′j‖F +W′j = Hj , where

Hj = Wj + Γ j/µ. W′j

‖W′j‖F is the unit representation of W′j . Therefore, W′j and

Hj share the same geometric direction, indicating the exchangeability between
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the unit λ1W
′j

µ‖W′j‖F and λ1H
j

µ‖Hj‖F . The closed-form optimal solution can directly be

derived as Yang et al. (2011):

W′j = max

(
0, 1− λ1

µ ‖Hj‖F

)
Hj . (12)

It is clear that W′j tends to shrink to zero by collaboratively integrating the
constraints imposed by all the N ×N features among the j-th channel.

1.3 Updating other variables

In each iteration, the penalty µ and the multiplier Γ are updated as:

Γ = Γ + µ
(
W −W ′

)
,

µ = min (ρµ, µmax) ,
(13)

where ρ controls the strictness of the penalty in each iteration and µmax is the
maximal penalty value. A parameter K is used to control the maximum number
of iterations. As each sub-problem is convex, the convergence of our optimisation
is guaranteed (Boyd et al., 2010).
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