Identifying Adaptation Options and Constraints: The role of

agronomist knowledge in catchment management strategy

Water Resources Management

Tom Dolan, David J. Parsons*, Peter Howsam, Mick J. Whelan, Liz Varga

* Corresponding Author: David J. Parsons, School of Applied Sciences, Cranfield University, email: d.parsons@cranfield.ac.uk

Online Resource 3. Results from Stage 3 online survey

This document presents results from the 43 Likert items included in the Stage 3 survey for online consultation with pesticide agronomists (Tables 1–7), and the results from three acquiescence bias tests and two internal consistency tests performed to validate responses to the online consultation with pesticide agronomists (Table 8), as described in Section 2.4

Tables 1–7 each include a count distribution of responses against the Likert response scale ('Strongly disagree' (SD), 'Disagree' (D), 'Neither agree nor disagree' (N), 'Agree' (A), 'Strongly agree' (SA)), a p-value from chi-squared 'goodness of fit' tests, and a conclusion at significance level (α) = 0.05 regarding whether to accept or reject H_n (i.e. that there is no consensus in response to the Likert item).

Table 1. Likert items for propyzamide and carbetamide	2
Table 2. Likert items for metaldehyde	3
Table 3. Likert items for mesosulfuron-methyl (Atlantis)	4
Table 4. Likert items for clopyralid	5
Table 5. Likert items for pendimethalin	6
Table 6. Likert items for chlortoluron	7
Table 7. Likert items for general trends	8
Table 8. Spearman's rank correlation coefficient (ρ) tests for acquiesence bias and internal consistency using Spearman's rank correlation test	10

		Dist	ributio	on (cou	ınt) (n	=94)		Conclusion
Item #	Likert Item	Strongly Disagree	Disagree	Neither	Agree	Strongly Agree	p- value	(Accept Null Hypothesis Hn or alternative hypothesis Ha)
1a	If propyzamide is not available, carbetamide can be used to manage resistant blackgrass in the OSR stage of a combinable rotation	13	26	14	34	7	0.823	Accept Hn: <u>No</u> <u>consensus</u>
1b	There are no pesticide alternatives to propyzamide and carbetamide for resistant blackgrass management in the OSR stage of a combinable rotation	2	5	8	27	51	0.000	Accept Ha: <u>Agree</u>
1c	If propyzamide and carbetamide were banned OSR would continue to be grown in areas where resistant blackgrass is a problem	22	40	12	15	3	0.000	Accept Ha: <u>Disagree</u>
1d	Without propyzamide and carbetamide, no autumn break crops can be grown where resistant blackgrass is a problem	0	19	11	40	22	0.000	Accept Ha: <u>Agree</u>
1e	Without propyzamide and carbetamide, a change to the rotation would be needed where resistant blackgrass is a problem	0	1	4	42	43	0.000	Accept Ha: <u>Agree.</u>
1f	The loss of propyzamide and carbetamide will lead to increased use of spring crops to manage resistant blackgrass in the rotation	2	5	15	48	22	0.000	Accept Ha: <u>Agree</u>

Table 1. Likert items for propyzamide and carbetamide

	Distribution (count) (n=94)							Conclusion
Item #	Likert Item	Strongly Disagree	Disagree	Neither	Agree	Strongly Agree	p- value	(Accept Null Hypothesis Hn or alternative hypothesis Ha)
2a	If you couldn't use metaldehyde, methiocarb could be used for slug management	1	5	6	65	15	0.000	Accept Ha: <u>Agree.</u>
2b	If you couldn't use metaldehyde, ferric phosphate could be used for slug management	1	5	11	61	14	0.000	Accept Ha: <u>Agree</u> .
2c	There are no pesticide alternatives to metaldehyde	23	54	6	6	1	0.000	Accept Ha: <u>Disagree</u> .
2d	Cultural control is not a substitute for metaldehyde slug control	0	14	18	41	15	0.000	Accept Ha: <u>Agree</u> .
2e	In the absence of metaldehyde, pesticide substitutes of equal efficacy are available	0	18	13	48	11	0.000	Accept Ha: <u>Agree</u> .
2f	The loss of metaldehyde would lead to a change to the rotation where OSR and Wheat are grown on heavy soils	5	36	28	20	3	0.024	Accept Ha: <u>Disagree</u> .

Table 2. Likert items for metaldehyde

		Dist	ributio	on (cou	ınt) (n	=94)		Conclusion
Item #	Likert Item	Strongly Disagree	Disagree	Neither	Agree	Strongly Agree	p- value	(Accept Null Hypothesis Hn or alternative hypothesis Ha)
3a	There are no pesticide alternatives to Atlantis for blackgrass management at the post-emergence stage in wheat	4	39	9	29	12	0.827	Accept Hn: <u>No</u> <u>consensus</u>
3b	Where the efficacy of Atlantis is reduced, there will be an increase in the use of residual chemistry at pre- emergence timing in wheat	0	4	6	40	43	0.000	Accept Ha: <u>Agree</u> .
3с	Cultural control can replace the loss of Atlantis	16	49	14	12	2	0.000	Accept Ha: <u>Disagree.</u>
3d	In high pressure resistant blackgrass areas, a reduction in the efficacy of Atlantis will reduce wheat yields	1	1	9	46	36	0.000	Accept Ha: <u>Agree</u> .
3e	In high pressure resistant blackgrass areas, a reduction in the efficacy of Atlantis will prompt a change to the rotation	1	15	16	49	12	0.000	Accept Ha: <u>Agree</u> .

Table 3. Likert items for mesosulfuron-methyl (Atlantis)

Table 4. Likert items for clopyralid

		Dist	ributio	on (cou	unt) (n	=94)		Conclusion
Item #	Likert Item	Strongty Disagree	Disagree	Neither	Agree	Strongly Agree	p- value	(Accept Null Hypothesis Hn or alternative hypothesis Ha)
4a	Clopyralid is the only available pesticide for thistle management in OSR	0	14	12	53	14	0.000	Accept Ha: <u>Agree</u> .
4b	There are available pesticide alternatives to replace clopyralid for thistle management	8	48	20	18	0	0.000	Accept Ha: <u>Disagree</u> .
4c	Cultural control interventions can substitute for clopyralid control of thistles in OSR	17	55	16	4	2	0.000	Accept Ha: <u>Disagree</u> .
4d	In the absence of clopyralid, thistles will reduce OSR yields	0	11	24	49	10	0.000	Accept Ha: <u>Agree</u> .
4e	In the absence of clopyralid, thistles can be managed without a change to the rotation	6	44	25	18	1	0.000	Accept Ha: <u>Disagree</u> .

Table 5.	Likert	items	for	pendimethalin
----------	--------	-------	-----	---------------

	Distribution (count) (n=94)							Conclusion
Item #	Likert Item	Disagree	Disagree	Neither	Agree	Strongly Agree	p- value	(Accept Null Hypothesis Hn or alternative hypothesis Ha)
5a	The loss of pendimethalin will lead to increased stacking of other pre- emergence residual herbicides to manage grassweeds in cereal crops	0	1	9	45	39	0.000	Accept Ha: <u>Agree</u> .
5b	If pendimethalin were the only active substance lost, it would be possible to maintain cereal yields using alternative herbicides	5	13	18	52	6	0.000	Accept Ha: <u>Agree</u> .
5c	Pendimethalin is one of many modes of action used as part of a resistance management strategy for Blackgrass	0	1	4	52	37	0.000	Accept Ha: <u>Agree</u> .
5d	The loss of pendimethalin would trigger a change to the combinable rotation	9	33	34	15	3	0.002	Accept Ha: <u>Disagree</u> .

Table 6. Likert items for chlortoluron

		Dist	tributi	on (cou	unt) (n	=94)		Conclusion
Item							р-	(Accept Null
#	Likert Item	Dise	Disa	Nei	Ag	Stro Ag	value	Hypothesis Hn
π		lgre	thei agre		ŗree	ngly		or alternative
		e	e			y		hypothesis Ha)
	The loss of chlortoluron will lead to							
6	increased use of other herbicides at the	2	7	10	(0)	12	0.000	Accept Ha:
0a	pre-emergence stage for blackgrass	5	/	10	00	15	0.000	Agree.
	control in the combinable rotation							
	If chlortoluron were the only active							
a	substance lost, it would be possible to	2	5	17	(0)	0	0.000	Accept Ha:
do	maintain cereal yields using alternative	3	5	17	60	8	0.000	<u>Agree</u> .
	herbicides							
	Chlortoluron is one of many modes of							A agent Hay
6c	action used as part of a resistance	1	1	12	56	23	0.000	Ассері па:
	management strategy for Blackgrass							<u>Agree</u> .

Table 7. Likert items for	general trends
---------------------------	----------------

		Dist	ributio	on (cou	ınt) (n	=94)		Conclusion
Item #	Likert Item	Strongly Disagree	Disagree	Neither	Agree	Strongly Agree	p- value	(Accept Null Hypothesis Hn or alternative hypothesis Ha)
GS1a	No new herbicides for blackgrass will be available in the next 5 years	2	7	10	40	34	0.000	Accept Ha: <u>Agree</u> .
GS1b	When one active substance is lost (for whatever reason) other active substance(s) will be used to manage the weed, pest or disease issue	1	9	9	56	18	0.000	Accept Ha: <u>Agree</u> .
GS1c	In the absence of effective pesticide control, weed and pest pressures will increase over time	0	1	2	39	50	0.000	Accept Ha: <u>Agree</u> .
GS1d	The agronomic impact of losing an active substance depends upon what active substances remain available	0	1	1	52	38	0.000	Accept Ha: <u>Agree</u> .
GS1e	Cultural control is a complement to, not a direct substitute for pesticides	0	0	2	38	52	0.000	Accept Ha: <u>Agree</u> .
GS1f	Effective resistance management requires as many different modes of action as possible	0	0	1	22	69	0.000	Accept Ha: <u>Agree</u> .
GS1g	When an active substance is lost, alternative active substances will be tried in preference to non pesticide interventions	0	7	14	52	18	0.000	Accept Ha: <u>Agree</u> .
GS2a	Where alternative pesticides cannot prevent severe gross margin losses, spring cropping will increase	1	5	13	64	9	0.000	Accept Ha: <u>Agree</u> .
GS2b	A change to the rotation is the intervention of last resort	3	17	8	49	15	0.000	Accept Ha: <u>Agree</u> .
GS2c	In general, direct substitutes do not exist for any active substance	1	15	14	51	10	0.000	Accept Ha: <u>Agree</u> .

GS2d	If the withdrawal of an active substance is announced 5 years in advance, alternative active substances will be available by the time of withdrawal	24	38	19	10	2	0.000	Accept Ha: <u>Disagree</u> .
GS2e	The adoption of wide OSR rows and inter row spraying will reduce current dependency on propyzamide and carbetamide	9	25	36	21	2	0.145	Accept Hn: <u>No</u> <u>consensus</u>
GS2f	If approved for use, RoundUp Ready OSR would reduce current dependency on propyzamide and carbetamide	4	2	14	47	26	0.000	Accept Ha: <u>Agree</u> .
GS2g	If the future of one active substance is uncertain, alternative active substances will come to the market	17	47	17	11	0	0.000	Accept Ha: <u>Disagree</u> .

Table 8. Spearman's rank correlation coefficient (ρ) tests for acquiesence bias and internal consistency using Spearman's rank correlation test

Test	Test pair	ρ	Conclusion
Acquiescence bias	4a + 4b	0.548	Accept H _n **
Acquiescence bias	1c + 1e	0.333	Accept H _n **
Acquiescence bias	2e + 2c	0.589	Accept H _n **
Internal consistency	3d + 3e	0.245	Accept H _n *
Internal consistency	GS12d + GS2g	0.63	Accept H _n **

* Accept at significance level (α) = 0.05, ** Accept at α = 0.05 and α = 0.01