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Summary This document serves as electronic supplementary to the article: Feature-based Groundwater
Hydrograph Clustering using unsupervised Self-Organizing-Map-Ensembles. It summarizes additional
information on several topics. Text S1 describes and discusses influences on groundwater dynamics
with a special regard to the study area. All abbreviations refer to Figure 1b of the main text. Text
S2 gives information on calculation formulas and additional explanations on all self-designed features
with respect to Table 1 of the manuscript. Text S3 focuses on a detailed description of the workflow
referring to Section 3.3 and Figure 2 of the main text. Text S4 and Table S1 summarize the results of
all experiments conducted to explore the robustness of our features against data gaps, noise and time
series length. Text S5 explains the streamflow influence analysis based on Strahler classes.
Texts S1 to S5 are followed by graphics showing detailed results of the visual skill test results of
all features used in this study (Figures S1 to S13). The detailed results of the feature robustness
experiments as a supplement to Text S4 an Table S1 are given in Figures S14 to S26 and Tables S2
to S3. Figure S27 gives detailed information on correlation between all features. Figure S28 shows
the feature values as boxplots for the final clusters, Figures S29 to S65 show detailed results of our
clustering in the Upper Rhine Graben (stacked hydrograph plots and maps of respective well positions).
Table S4 gives a summary of the correlation analysis results between features and influencing factors,
Figure S66 shows according scatter plots.

Text S1. Groundwater dynamics and its influences in the upper Rhine graben

This section refers to Section 2 (Data and Study area) of the main text and especially describes and
discusses the factors mentioned in Figure 1b.

One of the main processes with influence on groundwater dynamics in the region is groundwater recharge
(Pr1), either directly (Pr1a/b) or as inter-aquifer exchange (Pr1c). Direct recharge is a highly complex
process and occurs diffuse through the unsaturated zone (Pr1a) or localized (DF2/Pr1b). Recharge in
general also depends on many other factors like precipitation (physical state, amount, intensity) (DF4),
temperature (DF4), topography (GP1), vegetation (GP2), geology (GP3), soil moisture (DF5) etc. (e.g.
Jasechko et al., 2014; Alley et al., 2002). Some of these, especially precipitation and temperature, in
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turn are driven by global climatic patterns (DF4), which especially in humid regions have a signifi-
cant influence on groundwater levels (Cuthbert, 2014) and generally influence factors like land-use and
vegetation (GP2) directly. These in turn have a strong impact on soil-moisture (DF5) and evapotran-
spiration (Pr2). Further, mainly during long dry seasons, shallow groundwater is exposed to the risk of
strong direct groundwater evaporation (Balugani et al., 2017) even in moderate climate with significant
portions, as shown by Lam et al. (2011). The URG is one of the warmest areas in Germany and the
yearly precipitation within the Graben is in the order of 500 to 900 mm per year, the adjacent mountain
regions can reach cumulative rainfalls of 2000 mm per year (Thierion et al., 2012). Mean annual ground-
water recharge in our dataset covers a range from 0 mm (mainly floodplains of the Rhine) to about 350
mm/a, with a mean value of about 150 mm/a. In general, the diffuse recharge in the northern part is
comparably low, while the highest recharge values mostly occur in the middle URG between the cities
of Offenburg and Rastatt (BGR, 2019). Dominant land use types within the URG are agricultural areas
of different types (37%), on par with artificial surfaces (36%), the rest are mostly forests/semi-natural
surfaces (22%) (CORINE Land Cover, 2018).

Geology (GP3), thus, material properties (permeability/hydraulic conductivity, effective porosity) or
more generally speaking the aquifer type (porous, fractured, karstic), also plays a major role in con-
trolling groundwater dynamics. Porous unconsolidated gravel or sand aquifers like in the URG usually
show highest matrix porosities, often going along with high hydraulic conductivity and high storage
capacity. Also, the regional geological setting is of great importance, since the development of local and
regional groundwater flow-systems (DF3), thus the lateral recharge (Pr1d) within an aquifer, depends
on it (Toth, 2009). Confined and unconfined aquifers (GP4) are known to react differently to atmo-
spheric pressure changes or groundwater withdrawal (Alley et al., 2002; Hölting and Coldewey, 2013).
The mean depth to groundwater (GP5) is also an important factor concerning groundwater dynamics as
the recharge signal is increasingly damped with depth (Pr3), filtering seasonal variation patterns leaving
only multi-annual periodicities. Overlying layers with lower hydraulic conductivities can amplify this
low-pass filter effect (e.g. Corona et al., 2018). The study area comprises mainly unconfined sand/gravel
aquifers of generally high storage coefficients and high hydraulic conductivities in the order of 10E-4 to
10E-3 m/s (LUBW, 2006). Hydrographs used in this study are from the uppermost aquifer, with very
shallow mean depths to groundwater (<5 m bgl for 70% of the wells), rising to a maximum of about
20-30 m towards the Graben edges. A rather shallow gradient towards the north of the Graben and
at the same time from the Graben edges towards the graben center controls the regional groundwater
flow-systems (Thierion et al., 2012). Towards the Graben edge, local inflow from adjusting fissured
aquifers or alluvial fans from side-valleys may dominate the flow regime and result in steeper gradients,
towards the Rhine River as the main receiving streamflow of the region.

Surface water interactions (DF2), already mentioned as a source of local recharge, are usually impor-
tant driving forces of groundwater dynamics. Important processes and driving forces in this context are
for example streamflow in- and exfiltration (Pr4), bank storage (Pr5), tides, waves, as well as floods
(DF2a)(Alley et al., 2002; Cloutier et al., 2014). In the study area, the main surface water body is
the Rhine River, with a strong influence on groundwater dynamics, up to several hundreds of meters
in distance. To a lesser degree, there are also smaller streams from the adjacent mountain ranges that
strongly affect groundwater dynamics on local scale (Longuevergne et al., 2007). Besides natural in-
teraction, especially in floodplains and along the ancient river course, anthropogenic intervention like
correction of the streambed course or weir locks and dams influence the dynamics in many parts along
the streams.

Anthropogenic actions in general cannot only influence streamflows but also strongly alter groundwater
dynamics directly (Stoll et al., 2011). Typical influences in general, also widely present in the study area,
are land-use changes over wide areas, landscape-engineering actions (e.g. river course modifications and
dredging lakes), recharge inhibition by surface sealing in urban areas, abstraction for drinking water
supply or industrial purposes, artificial infiltration, and irrigation in agricultural areas, which increased
in the study area particularly in recent years. Especially direct groundwater interactions like abstractions
and infiltrations (DF1) are most important because on local scale pumping patterns can partly or
even completely superimpose the natural groundwater dynamics. Especially in the northern part of
the URG intensive groundwater management is applied by managing extraction rates and artificial
aquifer recharge. Besides the increasing water demand in these areas this is especially necessary to
protect ecosystems and infrastructure from land-subsidence and groundwater-floodings (Bouwer, 2002;
Regierungspräsidium Darmstadt, 1999).
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Text S2. Self-designed Features: Calculation and Explanations

In the following, we introduce detailed information on the interpretation and calculation of the self-
designed features. For a description of features derived from literature, please refer to the respective
publications. Features based on standard statistics are not explained in detail either.

Feature: RangeRatio

The feature Range Ratio (RR) considers the ratio of the mean annual range (rngy) to the maximum
overall range (rngmax) of the groundwater time series. Primary purpose of this feature is to differen-
tiate between hydrographs with and without superimposing long-periodic signals. In addition to such
periodicities, periods of increased or decreased groundwater levels as well as outliers or partial outliers
can also lead to low range ratio values. For the calculation of rngy, only years with a maximum of
16 missing values are used. This ensures a realistic range per year. Ranges are calculated on original,
unscaled, unnormalized hydrographs.

RR =
rngy

rngmax
(1)

Feature: Periodicity

The feature Periodicitiy (P52) is designed as a measure of the strength of the annual cycle of a hydro-
graph (TS). For this purpose, the mean annual periodicity (TSperiodic) is extracted by simply averaging
the corresponding values of the individual years. For this purpose, a period length of 52 (number of
weeks/measured values per year) is assumed and all values are averaged at an interval of 52. The final
feature value is obtained by calculating the Pearson R between TS and TSperiodic. P52 is calculated
on original, unscaled, unnormalized hydrographs.

P52 = corr
(
TS, TSperiodic

)
(2)

Feature: SDdiff

The feature SDdiff describes how often strong rates of changes within a time series TS occur. It is
therefore a measure of flashiness and variability. We use the standard deviation σ of the first derivative
of the original, unscaled, unnormalized time series date for calculation:

SDdiff = σ

(
d

dt
TS(t)

)
(3)

Feature: Longest Recession

The feature Longest Recession (LRec) searches for the longest section of a time series TS without rising
groundwater levels. This allows to identify time series with sections with (unnaturally) long falling
groundwater levels, where even the annual cycle can be completely lost, as well as to group together
smoother time series.

LRec =

(
d

dt
TS(t),

d

dt
TS(t+ 1), . . .

)
max

, ∀ d

dt
TS(t) ≤ 0 (4)

Feature: Jumps

The feature Jumps is designed to detect inhomogeneities/breaks resulting in jumps in the time series.
For this purpose, the absolute change of the mean value of successive years is considered. Analogous to
the feature RR, only years with a maximum of 16 missing values are included, to ensure that the mean
value realistically represents the annual variation. In contrast to the previously mentioned features, the
calculation of jumps is based on z-scored data, since inhomogeneities are to be considered independent
of the scale and only relative to the dynamics of the individual time series. The standardization of the
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maximum mean value change by the mean change of successive years makes it possible to distinguish
between true inhomogeneities and regularly occurring changes. To highlight large jumps values, the
values are finally squared. For J as the time series of the annual mean values, Jumps is calculated as
follows:

Jumps =

(
| d
dtJ(t)|max

| d
dtJ(t)|

)2

(5)

Feature: Seasonal Behaviour

The feature Seasonal Behaviour (SB) is used to differentiate the time series according to the position
of their yearly maximum and minimum. For this purpose, all corresponding values of the time series
are averaged monthly and a mean annual cycle AC of the monitoring well consisting of twelve values
is generated. AC is compared (Pearson correlation) with the expected seasonality for this area (model
curve (MC): sine curve with maximum in March and minimum in September). In order to also include
the normalized amplitude, the euclidean distance (L2 norm) of both curves AC and MC is calculated.
If the correlation of both curves is smaller than zero, the L2 norm between AC and the inverse model
curve MCinv (minimum and maximum exchanged) is used. SB is based on z-scored data to enable a
meaningful comparison of AC and MC.

R = corr
(
AC,MC

)
(6)

SB =
R

d
{ d = ||AC −MC||, ∀ R ≥ 0d = ||AC −MCinv||, ∀ R < 0 (7)

Feature: Yearly Variance

The feature Yearly Variance (Yvar) is calculated as the median of the annual variances µ of a z-scored
time series. Again, the calculation is made only for years J with less than 17 missing values. Yvar

captures a combination of periodicity and variance of a time series. The correlation to the periodicity
feature P52 is often high, since time series with strong annual cycle usually also show high annual
variances on average. Conversely, however, high Yvar values can also be achieved if no strong regular
annual periodicity is present.

Yvar = µ̃(J) (8)

Text S3. Detailed description of workflow

Figure 3 of the main text summarizes the workflow applied in this study. in the following we extent
section 3.3 to share more insights on the applied methodology.

First, depending on data characteristics and hydrogeological conditions, an adequate set of features
with good explanatory power is selected. Next, a gradual optimization of the cluster parameters fol-
lows (optionally including a revision of step one). From experience we conclude that both steps usually
require incremental adjustment and repetition to obtain a promising feature-parameter combination.
They are hereby extremely valuable to create and include existing expert knowledge in terms of which
features might be important and how many features will be approximately needed to describe major
dynamics aspects. The result is processed by the first ensemble calculation with the goal of finding a
most suitable feature combination.

Like all ANNs, SOM are sensitive to the initialization procedure. Despite we use linear initialization
(Vesanto, 2000) to minimize this effect, still, some dependency on the input-order remains. This makes
it necessary to also test feature-order permutations, usually by applying a grid search for fewer fea-
ture numbers. Unfortunately, this causes factorial growth of the computational complexity. However,
the number of calculations generally can be reduced significantly by deducing constraints from prior
knowledge (e.g. some features must be included, min./max number of features etc.), which normally can
already be derived from steps one and two of the workflow. Another way to handle this problem might
be to partly ignore the influence of the feature order and test only permutations of promising feature
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combinations, since, in our experience, the latter usually seems to be more important. There is also a
certain entanglement between feature number and cluster parameters, meaning that the cluster param-
eters are already matched to an order of magnitude in terms of the number of features. The ensemble
is therefore not completely free of assumptions, which is certainly desirable for the aforementioned rea-
sons. We combined five different internal validation indices to judge cluster quality (Caliński-Harabasz
criterion (CH) (Caliński and Harabasz, 1974), McClain-Rao criterion (MR) (McClain and Rao, 1975),
PBM-Index (Pakhira et al., 2004), Ratkowsky-Lance criterion (RL) (Ratkowsky and Lance, 1978), C-
Index (Hubert and Schultz, 1976)). The first three indices (CH, MR, PBM) use both compactness and
separation of the clusters, RL judges only cluster separation, C-Index in turn only cluster-compactness.
For index calculation we use the R-package ClusterCrit (Desgraupes, 2018). These validation indices
determine a ranking of all members to select the supposedly most suitable realization.

Next, we use delete-d-Jackknifing resampling to build the second ensemble (10.000 members). The pur-
pose is to simulate changes in the observational network by manipulating the input data set, and to
obtain cluster results as robust as possible. Accordingly, the data is randomly reduced by d samples
without replacement for each member. In agreement to Sinharay (2010) we choose the lower bound for
d to be the square root of the available sample number.

For each member, cluster solutions are calculated and then combined by applying Voting-Consensus
(Shestakov, 2017; Ayad and Kamel, 2010), which improves the quality and consistency/robustness of the
result severely (Alqurashi and Wang, 2018; Ghosh and Acharya, 2011; Vega-Pons and Ruiz-Shulcloper,
2011). Due to very slight start value dependency of voting, we repeat this step 12 times.

The last step includes the evaluation of the cluster results by judging the clusters mathematically,
visually and spatially. The workflow can be re-entered at any step to optimize the outcome.

Text S4. Feature Robustness Results

To better examine the properties and data requirements of the applied features we designed three
experiments. The first two experiments try to answer the question how strongly the features react to
missing values and to white noise in the data respectively. Thus, 0%-25% of each time series is randomly
replaced by white noise or data gaps in 0.25% steps (50 times each) and both the absolute characteristic
values and their changes compared to the initial undisturbed values are examined. In order to estimate
how long a time series has to be at least to provide a representative feature value, the features for
systematically varied time series lengths were calculated in experiment three. Starting from 2016, the
time series length was extended in 1-year steps until 1986. For this experiment we used only a subgroup
of about 50% of the data set, which had complete data over the 30 years. To make the feature values
and changes comparable, in all experiments the features were standardised, using the respective mean
and standard deviation from the (undisturbed) 30-year feature values.

We conducted these three experiments to explore the robustness of the 13 tested features and present
the results hereafter. As reference values within each experiment the undisturbed features values (no
additional gaps, noise or shortened time series) were used. We compare the changes after standardization
using th mean and standard deviation from the (undisturbed) 30-year feature values. Thus, the unit is
basically standard deviations. Table S1 summarizes the results of all three experiments.

We can show that most features only react little (<0.1 with 25% missing values) to additional data
gaps. In contrast, adding white noise leads to much higher differences much faster. Though one might
think, this could lead to unstable results for noisy datasets, in reality this is probably not the case.
Little noise from unknown sources is hard to recognize at all and will not lead to strong differences
in feature calculation. Strong noise, however, which causes higher differences in the features, usually
can be detected as outliers and removed hereafter. Therefore, data should always be carefully checked
for implausible outliers in preprocessing. Experiment three shows that time series length seems to have
a constant influence on the feature values. We found a steady increase of differences the shorter the
time series, up to strong increases for lengths of only few years. No threshold value that might serve as
recommendation as minimum length can be found, thus we rather generally conclude that the longer
the time series the better. Features that are not robust and show bad performance, or cause unsatisfying
cluster results, should usually be ruled out by the visual skill test or by the feature selection ensemble.
Please check the supplement for detailed information on feature robustness results. Answering how
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Table S1 Median influences of data gaps, white noise and time series length on standardized feature values. The table
shows the absolute values of the differences between the according disturbed values and the undisturbed values (no
additional noise, data gaps, full length).

Added White Noise Added Data Gaps
Feature 1% 5% 10% 25% 1% 5% 10% 25%

RR 0.13 0.49 0.75 1.14 0.00 0.01 0.02 0.04
Skew 0.00 0.03 0.05 0.12 0.00 0.00 0.00 0.01
P52 0.02 0.08 0.15 0.34 0.00 0.01 0.03 0.07
SDdiff 0.41 1.37 2.10 3.42 0.01 0.03 0.06 0.15
LRec 0.00 0.20 0.40 0.69 0.00 0.06 0.11 0.23
Jumps 0.01 0.03 0.05 0.11 0.00 0.02 0.03 0.12
SB 0.00 0.02 0.03 0.08 0.00 0.00 0.01 0.01
Med01 0.00 0.11 0.30 0.49 0.00 0.00 0.00 0.00
HPD 0.10 0.31 0.42 0.52 0.01 0.03 0.04 0.10

RBI 0.03 0.24 0.46 0.99 0.00 0.01 0.01 0.03
Yvar 0.00 0.00 0.00 0.01 0.01 0.04 0.09 0.22
SEM 0.08 0.27 0.38 0.48 0.01 0.03 0.04 0.10
LPD 0.14 0.68 1.31 2.82 0.01 0.04 0.08 0.18

Time Series Length [years]
30 25 20 15 10 5 3 1

RR 0.00 0.05 0.24 0.40 0.87 1.47 2.10 NaN
Skew 0.00 0.08 0.17 0.29 0.27 0.39 0.53 0.51
P52 0.00 0.07 0.16 0.18 0.45 0.78 0.78 2.68
SDdiff 0.00 0.02 0.04 0.06 0.09 0.10 0.14 0.16
LRec 0.00 0.00 0.00 0.00 0.06 0.34 0.40 0.92
Jumps 0.00 0.14 0.23 0.44 0.91 1.39 1.76 NaN
SB 0.00 0.04 0.07 0.12 0.16 0.22 0.32 0.61
Med01 0.00 0.10 0.29 0.46 0.53 0.60 0.85 0.95
HPD 0.00 0.05 0.08 0.10 0.14 0.15 0.17 0.31

RBI 0.00 0.06 0.15 0.21 0.51 0.76 1.38 NaN
Yvar 0.00 0.15 0.26 0.47 0.60 1.49 2.13 5.08
SEM 0.00 0.03 0.05 0.08 0.12 0.17 0.19 0.27
LPD 0.00 0.02 0.03 0.05 0.07 0.09 0.10 0.13

these disturbances alter the clustering result is extremely difficult, because additional factors such
as the ensemble and the consensus voting approaches also influence the final results. Extensive and
thorough experiments would be necessary to investigate these interactions, which is why this question
lies beyond the scope of this work, but would be worth to be answered in future research.

Text S5. Analysis of streamflow influence based on Strahler classes

In the following, we introduce detailed information on the calculation of the streamflow analysis based on
the Strahler classes of the streamflows in the study area. The degree of interaction between streamflows
and groundwater depends both on the distance to the streamflow and the size of the streamflow. We
calculate the streamflow influence SFinf as follows:

SFinf =
StrahlerClass3

Distance
(9)

In this way we take into account that although large rivers may be further away from a particular
groundwater monitoring well, the overall influence may be greater than the influence of a nearby but
very small streamflow. We calculate the influence for each groundwater observation well to the nearest
streamflow of the respective class and select the highest influence respectively. This also means that for
wells that may not be influenced by streamflows at all, we choose the influence for the largest streamflow
the Rhine River (Strahler: 7) in the region. However, this influence is then very small.
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Fig. S1 Selected results of the visual skill test that support the explanatory power of feature RR.
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Fig. S2 Selected results of the visual skill test that support the explanatory power of feature Skew.
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Fig. S3 Selected results of the visual skill test that support the explanatory power of feature P52.
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Fig. S4 Selected results of the visual skill test that support the explanatory power of feature SDdiff .



Electronic Supplementary Material 11

Fig. S5 Selected results of the visual skill test that support the explanatory power of feature LRec.
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Fig. S6 Selected results of the visual skill test that support the explanatory power of feature Jumps.
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Fig. S7 Selected results of the visual skill test that support the explanatory power of feature SB.
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Fig. S8 Selected results of the visual skill test that support the explanatory power of feature Med01.
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Fig. S9 Selected results of the visual skill test that support the explanatory power of feature HPD.
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Fig. S10 Selected results of the visual skill test that support the explanatory power of feature RBI.
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Fig. S11 Selected results of the visual skill test that support the explanatory power of feature Yvar.
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Fig. S12 Selected results of the visual skill test that support the explanatory power of feature SEM.
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Fig. S13 Selected results of the visual skill test that support the explanatory power of feature LPD.
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Fig. S14 Results of the three feature robustness experiments for feature RR.

Fig. S15 Results of the three feature robustness experiments for feature Skew.
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Fig. S16 Results of the three feature robustness experiments for feature P52.

Fig. S17 Results of the three feature robustness experiments for feature SDdiff .
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Fig. S18 Results of the three feature robustness experiments for feature LRec.

Fig. S19 Results of the three feature robustness experiments for feature Jumps.
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Fig. S20 Results of the three feature robustness experiments for feature SB.

Fig. S21 Results of the three feature robustness experiments for feature Med01.
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Fig. S22 Results of the three feature robustness experiments for feature HPD.

Fig. S23 Results of the three feature robustness experiments for feature RBI.
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Fig. S24 Results of the three feature robustness experiments for feature Yvar.

Fig. S25 Results of the three feature robustness experiments for feature SEM.
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Fig. S26 Results of the three feature robustness experiments for feature LPD.
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Table S2 Summary of feature robustness experiments 1 and 2

Feature Quan�le 1 5 10 25 1 5 10 25

2.50% 0.00 0.02 0.03 0.05 0.00 0.00 0.00 0.00

25% 0.05 0.19 0.30 0.52 0.00 0.00 0.01 0.02

50% 0.13 0.49 0.75 1.14 0.00 0.01 0.02 0.04

75% 0.31 1.06 1.51 2.06 0.00 0.01 0.03 0.08

97.50% 0.57 1.69 2.30 2.92 0.00 0.04 0.08 0.21

2.50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

25% 0.00 0.01 0.02 0.05 0.00 0.00 0.00 0.00

50% 0.00 0.03 0.05 0.12 0.00 0.00 0.00 0.01

75% 0.01 0.04 0.09 0.20 0.00 0.00 0.01 0.01

97.50% 0.04 0.17 0.32 0.73 0.00 0.02 0.03 0.04

2.50% 0.00 0.00 0.01 0.02 0.00 0.00 0.00 0.01

25% 0.01 0.04 0.08 0.16 0.00 0.01 0.02 0.04

50% 0.02 0.08 0.15 0.34 0.00 0.01 0.03 0.07

75% 0.03 0.13 0.24 0.54 0.00 0.02 0.05 0.12

97.50% 0.07 0.28 0.48 0.97 0.01 0.07 0.13 0.29

2.50% 0.05 0.20 0.36 0.69 0.00 0.01 0.02 0.04

25% 0.21 0.80 1.31 2.23 0.00 0.02 0.04 0.10

50% 0.41 1.37 2.10 3.42 0.01 0.03 0.06 0.15

75% 0.68 1.98 2.95 4.72 0.01 0.05 0.09 0.23

97.50% 1.57 4.26 6.27 9.68 0.02 0.11 0.22 0.55

2.50% 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00

25% 0.00 0.06 0.17 0.40 0.00 0.03 0.06 0.14

50% 0.00 0.20 0.40 0.69 0.00 0.06 0.11 0.23

75% 0.00 0.46 0.75 1.26 0.00 0.09 0.17 0.40

97.50% 0.35 1.96 2.54 3.29 0.06 0.20 0.40 0.87

2.50% 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00

25% 0.01 0.01 0.02 0.05 0.00 0.01 0.01 0.04

50% 0.01 0.03 0.05 0.11 0.00 0.02 0.03 0.12

75% 0.02 0.06 0.10 0.20 0.01 0.04 0.08 0.30

97.50% 0.04 0.17 0.29 0.58 0.03 0.26 0.41 1.45

2.50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

25% 0.00 0.01 0.01 0.02 0.00 0.00 0.00 0.00

50% 0.00 0.02 0.03 0.08 0.00 0.00 0.01 0.01

75% 0.01 0.05 0.09 0.21 0.00 0.01 0.01 0.02

97.50% 0.09 0.37 0.69 1.30 0.01 0.04 0.07 0.15

2.50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

25% 0.00 0.01 0.06 0.20 0.00 0.00 0.00 0.00

50% 0.00 0.11 0.30 0.49 0.00 0.00 0.00 0.00

75% 0.01 0.36 0.56 0.78 0.00 0.00 0.00 0.01

97.50% 0.25 0.93 1.14 1.38 0.01 0.02 0.03 0.04

2.50% 0.01 0.04 0.06 0.10 0.00 0.00 0.00 0.01

25% 0.04 0.14 0.21 0.28 0.00 0.01 0.02 0.06

50% 0.10 0.31 0.42 0.52 0.01 0.03 0.04 0.10

75% 0.31 0.74 0.90 1.04 0.01 0.06 0.10 0.20

97.50% 2.03 3.22 3.49 3.69 0.05 0.24 0.42 0.86

2.50% 0.00 0.02 0.05 0.15 0.00 0.00 0.00 0.00

25% 0.01 0.13 0.27 0.60 0.00 0.00 0.00 0.01

50% 0.03 0.24 0.46 0.99 0.00 0.01 0.01 0.03

75% 0.06 0.31 0.58 1.24 0.00 0.02 0.04 0.08

97.50% 0.13 0.42 0.73 1.48 0.01 0.09 0.15 0.32

2.50% 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.08

25% 0.00 0.00 0.00 0.00 0.01 0.03 0.06 0.16

50% 0.00 0.00 0.00 0.01 0.01 0.04 0.09 0.22

75% 0.00 0.01 0.01 0.03 0.01 0.06 0.11 0.30

97.50% 0.02 0.09 0.18 0.36 0.02 0.12 0.23 0.61

2.50% 0.00 0.02 0.03 0.06 0.00 0.00 0.00 0.01

25% 0.02 0.08 0.13 0.20 0.00 0.01 0.02 0.04

50% 0.08 0.27 0.38 0.48 0.01 0.03 0.04 0.10

75% 0.29 0.73 0.92 1.08 0.01 0.06 0.10 0.22

97.50% 1.55 2.75 3.07 3.30 0.05 0.20 0.37 0.77

2.50% 0.02 0.12 0.22 0.49 0.00 0.01 0.02 0.05

25% 0.09 0.41 0.79 1.71 0.00 0.02 0.05 0.11

50% 0.14 0.68 1.31 2.82 0.01 0.04 0.08 0.18

75% 0.22 1.05 2.00 4.32 0.01 0.06 0.13 0.29

97.50% 0.40 1.91 3.64 7.87 0.04 0.20 0.39 0.91

absolute differences to undisturbed feature value on standardized feature-value scale

Added White Noise (%) Added Data Gaps (%)

RR

Skew

P52

SDdiff

Lrec

Jumps

SB

Med01

HPD

LPD

RBI

Yvar

SEM
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Table S3 Summary of feature robustness experiment 3

Feature Quan�le 30 25 20 15 10 5 3 1

2.50% 0.00 0.00 0.01 0.01 0.06 0.22 0.23 NaN

25% 0.00 0.03 0.11 0.18 0.45 0.93 1.36 NaN

50% 0.00 0.05 0.24 0.40 0.87 1.47 2.10 NaN

75% 0.00 0.11 0.47 0.69 1.28 2.11 2.75 NaN

97.50% 0.00 0.50 1.00 1.31 1.93 3.25 4.09 NaN

2.50% 0.00 0.00 0.01 0.01 0.01 0.01 0.03 0.03

25% 0.00 0.04 0.07 0.12 0.11 0.19 0.32 0.26

50% 0.00 0.08 0.17 0.29 0.27 0.39 0.53 0.51

75% 0.00 0.14 0.44 0.65 0.59 0.61 0.82 0.81

97.50% 0.00 0.59 1.26 1.74 1.67 1.90 1.89 2.31

2.50% 0.00 0.00 0.01 0.01 0.02 0.04 0.05 0.47

25% 0.00 0.03 0.08 0.08 0.24 0.36 0.36 2.09

50% 0.00 0.07 0.16 0.18 0.45 0.78 0.78 2.68

75% 0.00 0.13 0.29 0.31 0.73 1.14 1.28 3.26

97.50% 0.00 0.30 0.66 0.78 1.50 1.89 2.37 4.87

2.50% 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

25% 0.00 0.01 0.02 0.02 0.04 0.04 0.06 0.07

50% 0.00 0.02 0.04 0.06 0.09 0.10 0.14 0.16

75% 0.00 0.05 0.09 0.15 0.22 0.28 0.31 0.37

97.50% 0.00 0.25 0.45 0.63 0.93 1.07 1.21 1.27

2.50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11

25% 0.00 0.00 0.00 0.00 0.00 0.11 0.11 0.52

50% 0.00 0.00 0.00 0.00 0.06 0.34 0.40 0.92

75% 0.00 0.00 0.00 0.11 0.46 0.74 0.80 1.55

97.50% 0.00 0.75 1.21 1.37 2.29 2.41 2.69 3.56

2.50% 0.00 0.00 0.01 0.02 0.05 0.29 0.89 NaN

25% 0.00 0.07 0.11 0.23 0.45 0.96 1.37 NaN

50% 0.00 0.14 0.23 0.44 0.91 1.39 1.76 NaN

75% 0.00 0.25 0.43 0.76 1.44 1.88 2.21 NaN

97.50% 0.00 0.77 1.49 2.29 3.31 3.58 4.10 NaN

2.50% 0.00 0.00 0.00 0.01 0.01 0.01 0.02 0.03

25% 0.00 0.02 0.03 0.06 0.07 0.10 0.16 0.38

50% 0.00 0.04 0.07 0.12 0.16 0.22 0.32 0.61

75% 0.00 0.07 0.15 0.21 0.28 0.43 0.53 0.92

97.50% 0.00 0.26 0.69 0.69 0.78 1.19 1.36 2.52

2.50% 0.00 0.00 0.00 0.01 0.02 0.03 0.04 0.04

25% 0.00 0.04 0.11 0.20 0.24 0.27 0.45 0.48

50% 0.00 0.10 0.29 0.46 0.53 0.60 0.85 0.95

75% 0.00 0.19 0.66 0.93 0.94 1.05 1.38 1.55

97.50% 0.00 0.68 1.66 2.12 2.14 2.24 2.57 3.14

2.50% 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01

25% 0.00 0.02 0.03 0.03 0.05 0.05 0.07 0.10

50% 0.00 0.05 0.08 0.10 0.14 0.15 0.17 0.31

75% 0.00 0.15 0.27 0.33 0.45 0.51 0.51 0.89

97.50% 0.00 1.57 2.57 2.41 3.13 2.97 3.15 3.71

2.50% 0.00 0.00 0.01 0.01 0.02 0.02 0.09 NaN

25% 0.00 0.03 0.06 0.09 0.26 0.33 0.71 NaN

50% 0.00 0.06 0.15 0.21 0.51 0.76 1.38 NaN

75% 0.00 0.12 0.32 0.40 0.88 1.29 2.29 NaN

97.50% 0.00 0.45 0.89 0.98 1.65 2.53 3.97 NaN

2.50% 0.00 0.02 0.03 0.06 0.06 0.11 0.13 0.20

25% 0.00 0.09 0.14 0.30 0.34 0.76 1.14 2.45

50% 0.00 0.15 0.26 0.47 0.60 1.49 2.13 5.08

75% 0.00 0.23 0.40 0.70 1.00 2.30 3.33 8.38

97.50% 0.00 0.49 0.88 1.54 2.32 5.39 6.90 19.77

2.50% 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.01

25% 0.00 0.01 0.02 0.03 0.04 0.06 0.07 0.09

50% 0.00 0.03 0.05 0.08 0.12 0.17 0.19 0.27

75% 0.00 0.13 0.17 0.25 0.35 0.53 0.64 0.83

97.50% 0.00 1.35 1.78 2.35 2.36 2.82 3.09 3.10

2.50% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

25% 0.00 0.01 0.02 0.02 0.03 0.04 0.05 0.05

50% 0.00 0.02 0.03 0.05 0.07 0.09 0.10 0.13

75% 0.00 0.04 0.07 0.11 0.16 0.19 0.21 0.26

97.50% 0.00 0.15 0.27 0.48 0.69 0.70 0.70 0.95

absolute differences to undisturbed feature value on standardized feature-value scale

Timeseries length [years]

RR

Skew

P52

SDdiff

Lrec

Jumps

SB

Med01

HPD

LPD

RBI

Yvar

SEM
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Fig. S27 Detailed Correlation Matrix of all Features, red = significant
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Fig. S28 Boxplots showing feature-value distributions within all clusters including Cluster 18
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Fig. S29 Well locations in Cluster 1
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Fig. S30 First 180 stacked, and z-scored hydrographs of Cluster 1
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Fig. S31 Last 59 stacked, and z-scored hydrographs of Cluster 1
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Fig. S32 Well locations in Cluster 2
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Fig. S33 First 180 stacked, and z-scored hydrographs of Cluster 2
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Fig. S34 Last 36 stacked, and z-scored hydrographs of Cluster 2
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Fig. S35 Well locations in Cluster 3
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Fig. S36 Stacked, and z-scored hydrographs of Cluster 3
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Fig. S37 Well locations in Cluster 4
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Fig. S38 Stacked, and z-scored hydrographs of Cluster 4
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Fig. S39 Well locations in Cluster 5
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Fig. S40 Stacked, and z-scored hydrographs of Cluster 5
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Fig. S41 Well locations in Cluster 6
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Fig. S42 Stacked, and z-scored hydrographs of Cluster 6
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Fig. S43 Well locations in Cluster 7
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Fig. S44 Stacked, and z-scored hydrographs of Cluster 7
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Fig. S45 Well locations in Cluster 8
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Fig. S46 Stacked, and z-scored hydrographs of Cluster 8
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Fig. S47 Well locations in Cluster 9
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Fig. S48 Stacked, and z-scored hydrographs of Cluster 9
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Fig. S49 Well locations in Cluster 10
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Fig. S50 Stacked, and z-scored hydrographs of Cluster 10
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Fig. S51 Well locations in Cluster 11
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Fig. S52 Stacked, and z-scored hydrographs of Cluster 11
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Fig. S53 Well locations in Cluster 12
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Fig. S54 Stacked, and z-scored hydrographs of Cluster 12
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Fig. S55 Well locations in Cluster 13
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Fig. S56 Stacked, and z-scored hydrographs of Cluster 13
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Fig. S57 Well locations in Cluster 14
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Fig. S58 Stacked, and z-scored hydrographs of Cluster 14
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Fig. S59 Well locations in Cluster 15

Fig. S60 Stacked, and z-scored hydrographs of Cluster 15
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Fig. S61 Well locations in Cluster 16

Fig. S62 Stacked, and z-scored hydrographs of Cluster 16
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Fig. S63 Well locations in Cluster 17

Fig. S64 Stacked, and z-scored hydrographs of Cluster 17
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Fig. S65 Z-scored hydrograph of Cluster 18
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Table S4 Summary of correlation analysis between features and influencing factors (n.s. - not significant)

Feature RR Skew P52 SDdiff LRec Jumps SB Med01 HPD Comment

Mean Depth to GW -0.44 n.s. -0.45 -0.16 0.29 -0.07 -0.29 n.s. 0.33

Diffuse GW-Recharge 0.26 n.s. 0.19 0.05 -0.15 n.s. 0.07 n.s. -0.14 1663 german wells only

Hydr. Conductivity 0.15 0.24 0.1 0.18 -0.23 0.2 -0.18 -0.21 -0.34
Subset of german wells (828), 

Spearman Rank-Correlation

Streamflow-Influence 

(Dist. to Rhine River)
-0.17 -0.18 n.s. -0.19 0.15 -0.15 0.26 0.19 0.2 Distance as surrogate for influence

Streamflow Influence 

(Strahler-Classes)
0.14 0.15 n.s. 0.39 -0.22 0.12 -0.18 -0.16 -0.22 Influence is considered directly

Distance to GW 

Extractions
0.06 0.2 0.21 n.s. -0.07 n.s. 0.07 -0.16 -0.17 1663 german wells only
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Fig. S66 Summary of correlation analysis between features and influencing factors (black: not significant), hydraulic
conductivity correlations are based on Spearman rank-correlation instead of linear Pearson correlation, due to categor-
ical data.
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