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A Prony Series

A.1 Introduction

The discrete data of E ′ vs. log f were first obtained from a DMA experiment. The approach to

produce a Prony Series data is to fit these data into the Generalized Maxwell Model, which enables

an optimal curve to be constructed and fit to the experimental data.

A.2 Calculation Theorem

There is a relation between the variations of E ′ and and the retardation time spectrum as a function

of frequency. Relaxation and retardation time spectra can be calculated exactly from the plot of

stress relaxation by using simple Alfrey Approximations in which the exponential term for a single

Maxwell unit is replaced by a step function [1]. The exponential term is generally expressed as

E(t) = [Er] +

∫ +∞

−∞
H(τ) exp

(
−t
τ

)
d(lnτ)

where H(τ) =

[
d E(ω)
d logω

]
t=τ

(A1)

If we assume that e−t/τ = 0 up to the time τ = t, and e−t/τ = 1 for τ > t. We can write

E(t) = [Er] +

∫ +∞

−lnτ
H(τ) d(lnτ) (A2)

The relaxation time spectrum is expressed as an approximation in terms of the real and imaginary

parts of the complex modulus
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H(τ) =

[
d E ′(ω)
d logω

]
1
ω
=τ

=
2

π
[E ′′(ω)] 1

ω
=τ (A3)

The relationship between storage modulus and relaxation time spectrum are illustrated diagrammati-

cally for the case of a single relaxation transition in Figure A.1. The distribution of time spectrum

for the model is the derivative of a continuous distribution of storage modulus. The element of

area at log ω: H(τ) · d (log ω) represents the local strength of the relaxation at log ω axis. The

integrated area represents a single Maxwell element, and equals the strength contribution to entire

set of Maxwell elements.

The Prony Series is governed by the integration of all individual integral areas from the time

spectrum patterns. The individual time spectrum ω and τ can be replaced by symbol of time t and

frequency f . The distribution of relaxation time H(t) is derivative by fitting the discrete data in

the plot of storage modulus against logarithm of frequency, further the shape of the H(t) function

are divided into 60 pieces presenting 60 Maxwell elements individually. The left endpoint (i.e.

low frequency) in primary plot is closed as the value of first elastic element to form an eventual

Generalized Maxwell Model.
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Figure A.1: Alfrey Approximations

A.3 Prony Series at Different Temperatures

The Prony series can be produced from different reference temperature, such as 25, 22.5, 18.7 and

16.8 °C, to match the real experimental temperatures. The optimal curve fitting was restructured by

substituting all 61 sets of parameters into Generalized Maxwell Model followed Eq. A4 and Eq.

A5. The experimental data and Prony fits are shown in Figure 5 and Figure 6. in the body text.

E ′(ω) = E0 +
M∑
i=1

Ei
τi

2ω2

1 + τi2ω2
(A4)

E ′′(ω) =
M∑
i=1

Ei
τiω

1 + τi2ω2
(A5)
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B Modelling of Bending and Compression Experiments

B.1 Introduction of Timoshenko Beam Theory

The goal of using beam theory is to simplify the mechanical analysis of beams in the DMA

experiment. The common-used beam theory is Euler-Bernoulli beam theory, which can be applied

for small deflections if the beam length is much larger than its depth. However, the problem with

Euler-Bernoulli beam theory is that it is inaccurate for deep beams, for which shear deformation

must be included. Timoshenko beam theory is then applied to include the effect of shear deformation

which is ignored in Euler-Bernoulli beam theory. We are here interested the effect of load acting

transverse to the longitudinal axis of the beam. The basic assumptions for Timoshenko beam theory

are

• The longitudinal axis of the unloaded beam is straight.

• All applied loads act transverse to the longitudinal axis.

• All deformations and strains are small. Hooke’s law can be used to relate stresses and

strains.

• Plane cross sections, which are initially normal to the longitudinal axis, will remain plane

after deformation.

To analyse the DMA test, energy principles, the stiffness matrix, and Green’s functions [2] are

formulated to solve a typical Timoshenko beam problem in which the beam has a downward unit

point load acting at location x = a, δ = µ (shown in Figure B.1). The point load is represented as a
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delta function: ω(x) = −δ(x − a). In terms of the dimensionless variable ξ (0<ζ<1), we set µ =

a/L. The delta function obeys the scaling property

or (x-a)
/L

(x-a)

1
x

a
L

a/L

 = x/L (0< <1)

V1=V(1)V0=V(0)

M1=M(1)M0=M(0)

(x)

Figure B.1: The simplified bending mechanism of Timoshenko beam in DMA

δ(x− a) = δ

[
1

L
(ξ − µ)

]
=

1

L
δ(ξ − µ) (B1)

Thus we write: µ(ξ)= −δ(ξ − µ)/L. We also require the fact that the integral of the delta function

is the Heavside function

∫ ζ

0

δ(τ − µ) dµ = H(ζ − µ) =


1 if ζ ≥ µ

0 if ζ < µ

(B2)

Successive integrals of the Heaviside function are given by the formula

∫ ζ

0

(τ − µ)nH(τ − µ) dτ =
(ζ − µ)n+1

n+ 1
H(τ − µ)

where n ≥ 0 (B3)
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These properties allow explicit integration of the solutions below to apply Green’s function. The

shear force is computed to be

V (ζ) = L

∫ ζ

0

ω(τ) dτ + V0 (B4)

V (ζ) = L

∫ ζ

0

− 1

L
δ(τ − µ) dτ + V0 (B5)

V (ζ) = −H(ζ − µ) + V0 (B6)

The bending moment is given as

M(ζ) = L

∫ ζ

0

V (τ) dτ +M0 (B7)

M(ζ) = L

∫ ζ

0

−H(τ − µ) dτ +M0 (B8)

M(ζ) = L [−(ξ − µ)H(ζ − µ) + V0ξ] +M0 (B9)

The angle of deflection can be simplified

θ(ζ) = L

∫ ζ

0

M(τ)

EI
dτ + θ0 (B10)
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θ(ξ) =
L2

EI

∫ ζ

0

[
− (τ − µ)H(τ − µ)+ Voτ +

1

L
M0ζ

]
dτ + θ0 (B11)

θ(ξ) =
L2

EI

∫ ζ

0

[
− 1

2
(ξ − µ)2H(ξ − µ) +

1

2
V0ξ

2 +
1

L
M0ζ

]
+ θ0 (B12)

θ(ξ) =
L2

2EI

[
− (ξ − µ)2H(ξ − µ) + V0ξ

2 +
2

L
M0ζ

]
+ θ0 (B13)

Finally, the deflection is calculated in the form

u(ξ) = L

∫ ζ

0

θ(τ) dτ − 1

GAS

∫ ζ

0

V (τ) dτ + u0 (B14)

u(ξ) =
L3

2EI

∫ ζ

0

[
− (τ − µ)2H(τ − µ) + V0τ

2 +
2

L
M0τ +

2EI

L2
θ0

]
dτ

− 1

GAS

∫ ζ

0

[−H(ζ − µ) + V0

]
dτ + u0 (B15)

u(ξ) =
L3

2EI

[
−1

3
(ζ − µ)2H(ζ − µ) +

1

3
V0ζ

2 +
1

L
M0ζ

2 +
2EI

L2
θ0ζ

]
+

1

GAS
[(ζ − µ)H(ζ − µ)− V0ζ] + u0 (B16)
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u(ξ) =
L3

2EI

[
− (ζ − µ)3H(ζ − µ) + V0ζ

2 +
3

L
M0ζ

2

]
+

1

GAS
[(ζ − µ)H(ζ − µ)− V0ζ] + Lθ0ζ + u0 (B17)

where G is shear modulus of material property and AS is cross-section shear area along longitudinal

axis. In terms of the deflection expression, Eq. B17, the first part of the equation is the deflection

for the Euler-Bernoulli beam. The second part is the shear deformation from Green’s function. The

schema of installation for DMA experiment is shown in Figure B.2.

Figure B.2: The bending mechanism in the DMA

B.2 Calculation Theorem and Results

The properties of TPU were determined by DMA (TA Q800). This is a technique in which a

beam (sample dimension is 60×10×5 mm, effective length of bending is 35 mm) is placed in dual-

cantilever clamps and subjected to a cyclic deformation (Figure B.2). The machine outputs modulus

(E ′ and E ′′), loss tangent (tan δ), stress, temperature and frequency which are calculated from the

amplitude and phase of the force and displacement. Isothermal frequency sweeps were performed at

2 C intervals between -50 C to 80 C , and frequencies 0.5, 2, 5, 10 Hz. The displacement amplitude
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was 30 µm. An example of phase retardation between force and deflection in DMA experiment is

shown in Figure B.3.
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Figure B.3: The DMA experimental phase retardation between force and deflection at 1 Hz

frequency

The clamp device in Figure B.3 can be simplified as a beam under centeral loading. Substituting

V0 = 1/2, M0 = −L/8, θ0 = 0, µ0 = 0 as the boundary conditions; ζ = 1/2, µ = 1/2 as the

loading conditions, into Green’s functions, the deflection expression is calculated as

u

(
1

2

)
=

[
L3

192EI

]
+

[
L

4GAS

]

where G =
E

2(1 + υ)
, AS =

bd

2
(B18)

Substituting the loading into this equation, and further substituting shear modulus G and shear area

AS , giving the full deflection expression

u =

(
L3

192EI
+

3L

2bdE

)
W (B19)
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where u is the resultant bending deflection when force W acts on the centre; E, G are Young’s

modulus and shear modulus respectively; AS is the cross-section shear area along longitudinal axis,

ν is Poisson’s ratio, and I is the second moment of area. Shear-bending-curvature of the bending

equation, the first term PL3/192EI is the derivative from Euler–Bernoulli theory, representing

force-bending-curvature, while the second term PL/4GAS relates to the shear effect along the

neutral axis in length, representing shear-bending-curvature. Re-writing the equation gives the force

response in terms of the deflection and the complex modulus

W =
u(

L3

192I
+ 3L

2bd

)E∗ (B20)

where E∗ is the complex modulus value for the viscoelastic material.

For a viscoelastic material undergoing cyclic deformation, the stress is found to lag behind the strain,

with a phase shift δ which depends on the complex modulus and frequency of applied loading.

To express the dynamic stress and strain responses, we write the strain and stress as

ε = ε∗0e
iω0t (B21)

σ = σ∗0e
iω0t (B22)

For a one-term Standard Linear Solid Model, the modulus is given as

E∗ =
ε∗

σ∗
=

[
E0 + E1

τ2ω0
2

1 + τ2ω0
2

]
+ i

[
E1

τω0

1 + τ2ω0
2

]
(B23)
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So that,

E ′ =

[
E0 + E1

τ2ω0
2

1 + τ2ω0
2

]
(B24)

E ′′ =

[
E1

τω0

1 + τ2ω0
2

]
(B25)

tan δ =
E ′

E ′′
(B26)

where the E0 represents the elastic element, while E1 and τ1 belong to the Maxwell elements. The

equivalent functions of complex modulus for the Generalized Maxwell Model are expressed as

E ′(ω) = E0 +
m∑
i=1

Ei
τi

2ω2

1 + τi2ω2
(B27)

E ′′(ω) =
m∑
i=1

Ei
τiω

1 + τi2ω2
(B28)

where ω is the frequency of the applied deflection, which is expressed as log f in the body text. E0,

Ei and τi indicate the properties of elements from the Generalized Maxwell Model. We then define

the storage and loss moduli as the real and imaginary parts of the complex modulus during the

dynamic harmonic cyclic loading. The phase shift factor tan δ = E ′/E ′′ is the ratio of imaginary

modulus to real modulus and represents the lag between strain-stress responses.

The calibrated model for the complex modulus can then be substituted into Eq. B20 to give the

relationship between displacement, load and time.
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B.3 FE Model Validation

A FE model in compression (Figure B.4) was meshed using C3D8I elements, with 5 elements

through the thickness of the specimen. The model has fixed bottom plate (ENCASTRE), while

the top plate was driven under velocity control to achieve uniaxial compression at strain rates

0.09, 0.009, 0.0009, 0.08, 0.008 and 0.0008 s−1. The simulation was compared to the results from

analytical implementation of the Generalized Maxwell Model using 61 legs of Prony series at

reference temperature of 25 C. Figure B.5 exhibits the same strain-stress response in both FE model

and analytical Models.

Figure B.4: FE model in compression to validate the implementation of the Generalized Maxwell

Model.
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 Generalized Maxwell Model, 0.09 s-1 
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Figure B.5: FE and analytical implementations of the Generalised Maxwell Model at different strain

rates.
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C Full Set of Experimental Data

C.1 Introduction

TPU is a relatively soft elastomer which has mechanical properties that are easily affected by

experimental technique. In addition, certain systematic and experimental errors are inevitable,

such as ambient temperature changes, contact problems, as well as the inherent property variations

from manufacture. The extensometer accessories (Figure C.1) and digital image correlation (DIC)

analysis (Figure C.2) were simultaneously implemented in both compression and tensile tests to

validate the experimental data obtained.

In compression experiments, the test sample, a rubber cylinder, has an aspect ratio of 1 to reduce

any possible buckling or barrelling during the loading. However, the asymmetrical barrelling shown

in Figure C.3 generally happened when true strain was above 0.4.

In quasi-static tests, the imperfection of alignment in load cell and clamps could affect the loading

results. Particularly in tensile tests, tearing may occur in the clamp which would seriously affect the

strain rate control. To eliminate these errors, an extra extensometer travelling along the compression

or tensile axis was implemented into the INSTRON in order to valid the accuracy of strain data

obtained from DIC analysis. Figure C.4 indicates the experimental strain rate was only maintained

up to 0.35 due to the difficulty in clamping samples at large extensions. This is the main reason that

we only took results up to 0.35 strain in cyclic tensile experiments. Experiments were performed

3-5 times for each compression and tensile condition, and the temperature was recorded each time

for use in further calculation and analysis.
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Figure C.1: The extensometer used in quasi-static tests

Figure C.2: Use of DIC to confirm strains in quasi-static tests
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Figure C.3: Asymmetrical barrelling deformation occurred in compression experiments state the

strain here

 Strain vs. time curve fit, 0.008 s-1
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Figure C.4: DIC implementated into strain rate calculationb: the mean of 50 pixel-to-pixel exten-

sions against time indicates that the strain rate can only be maintained up to 0.35 strain in tensile

experiments. Here, pixel-to-pixel extensions of 8 pairs of pixels are shown for schema.
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C.2 Results

Full sets of data from quasi-static tensile and compression tests are shown in Figure C.5, Figure C.6

and Figure C.7. At least three experiments with virgin sample were performed at each strain rate.

The test data closest to the mean value were used in the main text of the paper. The simulation plots

based on continuous damage theory were analysed, plotted and compared to other experimental

results to examine the validity of the viscoelastic damage model.
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Figure C.5: The quasi-static compression tests data and calibration results for Figure 9 in main text
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Figure C.6: The quasi-static compression tests data and calibration results for Figure 10 in main text
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Figure C.7: The quasi-static tensile tests data and calibration results for Figure 11 in main text
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