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Nomenclature 

E elastic modulus 

R  probe radius of curvature 

𝜈 Poisson’s ratio 

d indentation depth  

zo  indentation depth at maximum pressure 

t  surface gel layer thickness  

a contact area radius  

P contact pressure  

F indentation force 

𝜂 viscosity  

k permeability 

tdr draining time  

Π osmotic pressure 

 
1. Contact Pressure and Draining Time Estimation 
Hertzian contact mechanics were used to estimate contact pressures.1 

 𝑃 = !"
#$%!

 where 𝑎 = 	√𝑅𝑑 (S1) 

The estimated contact pressures for the contact lens and polystyrene-molded hydrogel were plotted 
against the indentation depth to determine whether they exceeded the osmotic pressure. As shown 
in Fig. S1, both the contact lens and PS-molded hydrogel experienced contact pressures that 
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surpassed the predicted elastic modulus of the surface gel layer. These results suggest that fluid 
flow due to draining was possible.  
 

 
Fig. S1 Contact pressures estimated using Hertzian contact mechanics as a function of indentation 
depth for the (a) contact lens and (b) PS-molded hydrogel surface. After a critical indentation 
depth, the pressure surpasses the predicted elastic modulus of the system, indicated by the 
horizontal gray line. Based on scaling principles by de Gennes, the osmotic pressure, Π, scales 
with elastic modulus, and draining will occur once the contact pressure surpasses the osmotic 
pressure. The schematic indicates a unit volume draining as the contact pressure surpasses the 
osmotic pressure.  
 
This estimation of contact pressures validates the use of our model by demonstrating the possibility 
of draining. For further validation, the draining time was estimated using Darcy’s Law:2 
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where V is the volume of hydrogel being drained (Fig. S1a schematic), A is the surface area of the 
volume, P is the contact pressure, a is the contact area radius, d is the indentation depth, 𝜂 is the 
viscosity of the solvent, and k is the permeability of the hydrogel. The permeability of a hydrogel 
is on the order of magnitude of k ~ 1 nm2, which is in agreement with values found in literature.3 
Using this estimation for k, Hertzian contact area and pressure (Eqn. S1), and the viscosity of water 
(𝜂 = 8.9 x 10-4 Pa·s), the estimated maximum draining time is tdr = 0.006 s for the contact lens and 
tdr = 300 s for the PS-molded hydrogel. With an indentation speed of 1 μm s-1, draining was 
possible within the experimental conditions for the contact lens.4  
 
2. Comparison of Contact Mechanics Models 
2.1 Hertzian contact mechanics model1 
The Hertz model is one of the most commonly utilized contact mechanics models, where the 
indentation force is related to the elastic modulus, indenter radius, and indentation depth by:  

 𝐹 =
4𝐸()'*+𝑅,/#𝑑!/#

3(1 − 𝑣#)  (S3) 

However, there are a few assumptions in the derivation that preclude its use in characterizing the 
mechanics of complex, heterogeneous systems5:  

1. Strain and deformations must be small enough to stay within the linear elasticity theory 
(d/t ≤ 0.1) 

2. The substrate is an infinite half-space (t >> R) 
3. There is no friction or adhesion at contact between the indenter probe and substrate 

 
The first assumption is violated in both experiments by high strains (>60%) on the thin surface gel 
layer. The second assumption is violated by the structural anisotropy and heterogeneity of these 
systems. Therefore, Hertz cannot accurately capture the mechanics of these systems, leading to an 
overprediction in the elastic modulus.   
 
2.2 Nonlinear elastic correction factor by Long et al.5 
To account for the overprediction of the Hertz model, Long et al. developed a correction factor, 
𝜓, using nonlinear elasticity and finite-element simulations.5 This correction factor only applies in 
the regime of 0.5 ≤ R/t ≤ 12.7 and d/t ≤ min(0.6, R/t): 

 𝜓 =
𝐸./01
𝐸()'*+

=
1 + 2.3𝜔

1 + 1.15𝜔
,
! + 𝛼𝜔 + 𝛽𝜔#

 (S4) 

where 𝜔 =	B2&
*!
C
"
!. Depending on the R/t regime, 𝛼 and 𝛽 will have different values (Table S1).  
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Table S1. Table of values for 𝛼 and 𝛽 depending on the R/t ratio. These values assume frictionless 
contact between the indenter and substrate.   

R/t ratio 𝜶 𝜷 
0.5 ≤ R/t ≤ 2 10.05 − 0.63H𝑡 𝑅⁄ (3.1 +	𝑡# 𝑅#⁄ ) 4.8 − 4.23 𝑡# 𝑅#⁄  
2 < R/t < 12.7 9.5 4.212 

 
To determine whether the parameters of the contact lens and PS-molded hydrogel experiment fit 
within the regime of the correction factor, d/t and R/t were estimated using the maximum 
indentation depth value and surface gel layer thickness value predicted by our proposed model (t 
= 0.5 μm and t = 12 μm for the contact lens and PS-molded hydrogel, respectively). As shown in 
Table S2, the maximum d/t ratio for both the contact lens and PS-molded hydrogel is larger than 
the maximum allowable d/t ratio of 0.6. The authors note that the behavior of the system may not 
be accurately captured at strains higher than 0.6 due to the inability of neo-Hookean models to 
fully capture the amount of strain hardening that occurs at large deformations.5  
 
Table S2. Comparison of the R/t and d/t ratios for the two surface gel layer surfaces from literature. 

 R/t ratio d/t ratio 
delefilcon A contact lens4 5 0.86 

PS-molded hydrogel6 1.2 0.81 
 
2.3 Winkler foundation model7,8 
The Winkler foundation model was developed for layered systems, such as a rigid thin film on a 
soft substrate, and takes into account the thickness of the system when relating indentation force 
to the elastic modulus, indenter radius, and indentation depth. 

 𝐹 =
𝜋𝑅𝑑#𝐸34056)'

𝑡(1 − 𝑣#)  (S5) 

While this model works well for thin films, it does not fully capture the mechanics of 
heterogeneous film layers because the main assumption in this model depends on the linear 
elasticity of the substrate.  
 
2.4 Poroelastic model for thin gel films by Hu et al.9  
To account for relaxation in thin films of crosslinked polymer networks on rigid substrates, Hu et 
al. developed a poroelastic model for the short- and long-time limit.9 The indentation force is 
related to the shear modulus, G, contact area radius, surface gel layer thickness, and indentation 
depth as:   

 𝐹 =
8𝐺𝑑𝑎

3(1 − 𝑣) L
2.36 B𝑎𝑡C

#
+ 0.82 B𝑎𝑡C + 0.46
𝑎
𝑡 + 0.46

M	 (S6a) 

where 𝑎 = 	√𝑅𝑑 and the shear modulus can be related to the elastic modulus as	𝐺 = 7
#(,9:)

, leading 

to:  
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(S6b) 

During the short-time limit of instantaneous compression, the gel is assumed to be incompressible 
and 𝑣 = 0.5, leading to:  

 𝐹 =
16𝐸(<𝑑√𝑅𝑑
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(S6c) 

During the long-time limit of stress relaxation, F takes the form of Eqn. S6b, where 𝑣 is not 
assumed. Eqns. S6b and S6c only apply for intermediate values of √𝑅𝑑 𝑡⁄  when the contact area 
radius and gel thickness are comparable. When √𝑅𝑑 𝑡⁄  à 0, F approaches Hertzian contact 
mechanics, and when √𝑅𝑑 𝑡⁄  à ∞, F approaches Winkler mechanics.  
 
Because 𝑣 = 0.5 was used to estimate the elastic modulus using the different contact mechanics 
models, the short-time limit equation (Eqn. S6c) was implicitly used. This corresponds well with 
the nanoindentation experimental conditions for both the contact lens and PS-molded hydrogel 
surface, which underwent compression with indentation velocities of 1 μm/s.  
 
3. Metric for Determining Best Fit 
To fit the models to the experimentally gathered force-indentation curves, the sum of squares of 
the residual was minimized (“least squares fitting”) for each model using Eqns. S3, S5, and S6b. 
This error was used as the metric to determine the “best-fitting” model. 

 𝑆𝑆𝐸 =YZ𝐹=/&)6,4 − 𝐹&%*%,4[
#

4

 (S7) 

The lsqcurvefit function in MATLAB was used to fit the model to the entire approach curve of the 
experimental data and minimize the SSE. A two-parameter fit was used for the contact mechanics 
models that were functions of both E and t (Table S3). A one-parameter fit was also tested by 
setting either E (Table S4) or t (Table S5) as a known value and solving for the other. 
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Table S3. Comparing the predicted elastic modulus, surface gel layer thickness, and SSE values 
for the two surface gel layer systems when using a two-parameter fit for the entire approach curve. 
A Poisson’s ratio of  𝑣 = 0.5 was used to estimate the elastic modulus. Our proposed model had 
the lowest SSE while Hertz had the highest.  

Contact 
Mechanics 
Model 

Contact Lens PS-molded hydrogel surface 

Predicted 
elastic 

modulus 
(kPa) 

Predicted 
surface gel 

layer 
thickness 

(μm) 

SSE 

Predicted 
elastic 

modulus 
(kPa) 

Predicted 
surface gel 

layer 
thickness 

(μm) 

SSE 

Hertz 106 -- 1.3 x 104 0.54 -- 9.5 x 104 

Long et al.  6.5 -- -- 0.16 -- -- 
Winkler 30 0.58 4.5 x 103 13 603 5.0 x 104 

Hu et al.  5.5 0.10 4.4 x 103 0.028 1.3 5.0 x 104 

Model 3.2 0.54 2.1 x 103 0.026 12 7.5 x 103 

 
Table S4. Comparing the predicted surface gel layer thickness and SSE values for the surface gel 
layer systems when using a one-parameter fit to solve for t when given E. In this test, E = 3.2 kPa 
for the contact lens and E = 0.026 kPa for the PS-molded hydrogel. 

Contact 
Mechanics 
Model 

Contact Lens PS-molded hydrogel surface 

Elastic 
modulus 

(kPa) 

Predicted 
surface 

gel layer 
thickness 

(μm) 

SSE 
Elastic 

modulus 
(kPa) 

Predicted 
surface gel 

layer 
thickness 

(μm) 

SSE 

Hertz 3.2 -- 1.0 x 105 0.026 -- 1.1 x 106 
Long et al. 0.2 -- -- 0.008 -- -- 

Winkler 3.2 0.06 4.5 x 103 0.026 1.2 5.0 x 104 

Hu et al. 3.2 0.06 4.4 x 103 0.026 1.2 5.0 x 104 

Model 3.2 0.54 2.1 x 103 0.026 12 7.5 x 103 

 
Table S5. Comparing the predicted elastic modulus and SSE values for the surface gel layer 
systems when using a one-parameter fit to solve for E when given t. In this test, t = 0.54 μm for 
the contact lens and t = 12 μm for the PS-molded hydrogel. A Poisson’s ratio of  𝑣 = 0.5 was used 
to estimate the elastic modulus. 

Contact 
Mechanics 
Model 

Contact Lens PS-molded hydrogel surface 
Predicted 

elastic 
modulus 

(kPa) 

Surface 
gel layer 
thickness 

(μm) 

SSE 

Predicted 
elastic 

modulus 
(kPa) 

Surface gel 
layer 

thickness 
(μm) 

SSE 

Hertz -- -- -- -- -- -- 
Long et al. -- -- -- -- -- -- 
Winkler 28 0.54 4.5 x 103 0.26 12 5.0 x 104 

Hu et al. 28 0.54 4.9 x 103 0.24 12 5.9 x 104 

Model 3.2 0.54 2.1 x 103 0.026 12 7.6 x 103 
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To determine whether the best-fitting contact mechanics model changed based on the portion of 
the indentation curve analyzed, the approach curve was fit by incrementally increasing the 
displacement along the curve by 20 data points. The SSE was plotted against % strain for both 
surface gel layer systems, where % strain = d/t x 100 and t is the predicted surface gel layer 
thickness when the entire approach curve is analyzed (t = 0.5 μm for the contact lens and t = 12 
μm for the PS-molded hydrogel surface) (Fig. S2). Our proposed model was able to capture the 
behavior of the system at all strains for the contact lens and higher strains (> 40%) for the PS-
molded hydrogel comparably better than the other contact mechanics models tested.  

 
Fig. S2 Comparison of the sum of squares of the residual as the maximum indentation depth of the 
approach curve is incrementally increased for the (a) contact lens and (b) PS-molded hydrogel 
surface. (a) At low strains (< 20%), the poroelastic model proposed by Hu et al. closely follows 
Hertzian mechanics but switches to Winkler-like mechanics when strain > 40%. Within 20-40% 
strain, the model proposed by Hu et al. had lower SSE values, indicating a better fit. However, our 
proposed model had the lowest SSE values for all strains. (b) The poroelastic model proposed by 
Hu et al. follows Hertzian mechanics between 10-20% strain and Winkler mechanics thereafter. 
Our proposed model has the lowest SSE values for both low (< 20%) and high (>40%) strain. 
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The change in predicted E and t values based on the portion of the indentation curve analyzed was 
also analyzed for the contact lens (Fig. S3a, b) and PS-molded hydrogel surface (Fig. S3c, d). 

 
Fig. S3 Change in the predicted elastic modulus and surface gel layer thickness values of the best 
fit line as the maximum indentation depth of the approach curve is incrementally increased by (a,b) 
10 data points for the contact lens and (c,d) 20 data points for the PS-molded hydrogel surface. 
Each data point represents the predicted E and t value of the best fit line for that portion of the 
curve. (a,c) Below 20% strain, the elastic modulus values predicted by the poroelastic model by 
Hu et al. (lightest gray circles) are similar to those predicted by Hertz (gray circles), Winkler (black 
circles), and the corrected elastic modulus values by Long et al. (light gray circles). Above 30% 
strain, the elastic modulus values of the poroelastic model by Hu et al. are closer to those predicted 
by our proposed model (red circles). (b,d) Below 20% strain for the contact lens and <30% strain 
for the PS-molded hydrogel, our model predicted non-physical surface gel layer thicknesses. 
However, at higher strains, the predicted surface gel layer thicknesses are within the range of those 
predicted by Winkler and the poroelastic model by Hu et al.  
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