Supplementary Information

Ballistic and Blast-Relevant, High-Rate Material Properties of Physically and Chemically Crosslinked Hydrogels

Elizabeth C. Bremer-Sai¹, Jin Yang², Alexander McGhee¹, Christian Franck^{1,*}

Supplementary Table 1:

Material	Model	${\rm Concentration} [\%]$	$G_{\infty}[\mathrm{kPa}]$	G[kPa]	$\mu[\text{Pa· s}]$	α	NRMSE
Polyacrylamide[14]	qKV	3 (v/v)	0.57	-	0.060 ± 0.057	0.960 ± 0.058	$4.05 \times 10^{-3} \pm 2.02 \times 10^{-3}$
	NHKV	3 (v/v)	0.57	$8.31 {\pm} 0.43$	0.093 ± 0.073	-	$4.10 \times 10^{-3} \pm 2.05 \times 10^{-3}$
	qKV	8 (v/v)	2.77	-	$0.186 {\pm} 0.194$	0.480 ± 0.140	$2.58 \times 10^{-3} \pm 1.89 \times 10^{-3}$
	NHKV	8 (v/v)	2.77	15.09 ± 4.35	$0.209 {\pm} 0.180$	-	$3.13 \times 10^{-3} \pm 2.19 \times 10^{-3}$
	qKV	$0.5 \; (w/w)$	2.11 ± 0.11	-	0.054 ± 0.015	0.880 ± 0.147	$9.85 \times 10^{-3} \pm 1.66 \times 10^{-2}$
Agarose[16]	NHKV	$0.5 \; (w/w)$	2.11 ± 0.11	27.82 ± 8.56	0.170 ± 0.092	-	$8.29 \times 10^{-3} \pm 1.06 \times 10^{-2}$
	qKV	1 (w/w)	12.38 ± 0.14	-	0.210 ± 0.032	$0.460 {\pm} 0.051$	$3.86 \times 10^{-3} \pm 6.64 \times 10^{-3}$
	NHKV	1 (w/w)	12.38 ± 0.14	58.12 ± 9.38	0.300 ± 0.092	-	$3.70 \times 10^{-3} \pm 6.30 \times 10^{-3}$
	qKV	$2.5 \; (w/w)$	81.05 ± 0.17	-	0.190 ± 0.105	$0.104{\pm}0.006$	$2.24 \times 10^{-3} \pm 2.05 \times 10^{-3}$
	NHKV	$2.5 \; (w/w)$	81.05 ± 0.17	114.64 ± 4.85	0.110 ± 0.046	-	$1.84 \times 10^{-3} \pm 1.78 \times 10^{-3}$
	qKV	5 (w/w)	333.63 ± 0.11	-	$1.060 {\pm} 0.053$	$0.054 {\pm} 0.006$	$1.45 \times 10^{-2} \pm 8.24 \times 10^{-3}$
	NHKV	5 (w/w)	333.63 ± 0.11	$282.37{\pm}22.83$	0.500 ± 0.065	-	$1.44 \times 10^{-2} \pm 7.61 \times 10^{-3}$
	qKV	6 (w/v)	0.74 ± 0.02	-	0.023 ± 0.025	$5.481{\pm}1.329$	$1.37 \times 10^{-3} \pm 2.03 \times 10^{-3}$
Gelatin	NHKV	6 (w/v)	0.74 ± 0.02	12.78 ± 3.69	0.027 ± 0.022	-	$1.36 \times 10^{-3} \pm 1.86 \times 10^{-3}$
	qKV	$10 \; (w/v)$	3.08 ± 0.01	-	0.098 ± 0.040	$4.053{\pm}0.792$	$1.37 \times 10^{-3} \pm 1.96 \times 10^{-3}$
	NHKV	$10 \; (w/v)$	3.08 ± 0.01	$29.85{\pm}6.20$	$0.055 {\pm} 0.061$	-	$1.43 \times 10^{-3} \pm 1.95 \times 10^{-3}$
	qKV	$14 \; (w/v)$	6.71 ± 0.03	-	$0.018 {\pm} 0.007$	7.106 ± 1.411	$1.74 \times 10^{-3} \pm 2.29 \times 10^{-3}$
	NHKV	14 (w/v)	6.71 ± 0.03	$101.50{\pm}4.01$	$0.166{\pm}0.208$	-	$8.92 \times 10^{-4} \pm 9.66 \times 10^{-4}$

Table S1: Summary of both qKV and NHKV IMR-fitted viscoelastic material properties for PAAm, Agarose, and Gelatin over a strain rate envelope of $10^3 \, \text{s}^{-1} \sim 10^6 \, \text{s}^{-1}$ and the associated NRMSE values for each model.

¹Department of Mechanical Engineering, University of Wisconsin – Madison, Madison, WI 53706 ²Department of Aerospace Engineering & Engineering Mechanics, The University of Texas at Austin, TX

^{*}Corresponding Author: cfranck@wisc.edu