
   
 

   
 

Online Supplement 
This online supplement accompanies the paper “Wavelet-promoted sparsity for noninvasive 

reconstruction of electrical activity of the heart” by M. Cluitmans, J. Karel, P. Bonizzi, P. Volders, R. 

Westra, and R. Peeters. 
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Topic 1: Spatial sparsity 
In Online Figure 1, the spatial sparsity is depicted for a single (sinus) beat. The spatial sparsity is the 

L1-norm of the potential distribution per time instant (when in the potential domain) or over the 

columns of the wavelet coefficient matrix (when in the wavelet domain). Clearly, the spatial sparsity 

is much lower in the wavelet domain (and similar between the Tikhonov and Wavelet-Elastic-Net 

method). This supports our thesis that sparsity in the wavelet domain might be a suitable criterion. 

 

Online Figure 1: Spatial sparsity of reconstructed potentials. Top row: The root mean square (RMS) of 
all reconstructed potentials with the Tikhonov method (red) and the Wavelet-Elastic-Net method 
(blue), to visualize the general course of the potential distribution (first peak: QRS complex; second 
peak: T wave). Bottom row: the L1 norm for the reconstructed potentials (i.e., potential domain: full 
lines) and their wavelet decomposition (i.e., wavelet domain: dotted lines), for the Tikhonov approach 
(red) and the Wavelet-Elastic-Net approach (blue). 

  



   
 

   
 

Topic 2: Wavelet coefficients 
Online Figure 2 displays the wavelet coefficients for a single beat, to illustrate the effect of wavelet 

decomposition at different scales. Note that many coefficients have a low (or zero) value and that 

this wavelet representation is thus an efficient (sparse) choice. 

 

Online Figure 2: Example of the wavelet representation of epicardial potentials.  
Top row: the wavelet coefficients (as stacked from detail level 1, to detail level 2, to detail level 3 and 
approximation coefficients), superimposed for each epicardial node. 
Second row: the wavelet coefficients now displayed as matrix, showing the coefficient value in color 
per epicardial node (rows) and per wavelet column. 
Third row: identical data but now with a logarithmic scale of the absolute values, to show that the 
detail levels contain data as well. Note the many low values (both column-wise and row-wise) in this 
wavelet representation, indicating sparsity. 
Fourth row, left: Reconstructed epicardial potentials. Fourth row, right: zoom-in of the wavelet 
coefficients, again highlighting the many low values (sparsity). 

 

 

  



   
 

   
 

Topic 3: Wavelet design and wavelet choice 
To determine which wavelet was appropriate for this approach, 16 arbitrary beats of canine 

epicardial electrograms from a healthy control dog in sinus rhythm were concatenated, and the 

approach from [17, 20] was used to design an 8th order wavelet filter with two vanishing moments 

enforced, yielding two degrees of freedom. For the wavelet design a stationary wavelet transform 

was used to ensure shift invariance, which was weighted per scale to ensure that Parseval’s relation 

holds. The design goal was the minimization of the L2 norm of the wavelet representation of the 

prototype signal. As described in [17,20] a local search was employed using 250 random starting 

points. The prototype signal, the wavelet representation, its absolute value and the wavelet and 

scaling function are shown below: 

 

Online Figure 3: The wavelet-design approach, showing the prototype signal (top-left), the wavelet 
representation (top-right), its absolute value (bottom-left) and the wavelet and scaling function 
(bottom-right). 

Four of the obtained scaling filter coefficients are close to zero and the remaining coefficients are 

close to the Daubechies 2 scaling coefficients. Therefore, in the main manuscript we worked with the 

Daubechies 2 wavelet and omitted discussing this wavelet design approach. Nevertheless, in future 

applications, this approach could be used to design a wavelet for specific cardiac pathologies. 

  



   
 

   
 

Topic 4: Other regularization methods 

 

Online Figure 4: Qualitative comparison between different regularization methods. 

Tikhonov remains the de facto standard method for inverse reconstruction in ECGI. This makes it the 

first choice to compare new methods to. In one of our previous studies1, we compared Tikhonov 

regularization with Greensite SVD2 and the Generalized Minimal Residual method (GMRes)3 and found 

that Tikhonov showed better performance. For the current study, we performed a qualitative 

comparison in a single beat of the proposed method (wavelet + multitask elastic net) with multitask 

elastic net (without wavelet transform), Greensite SVD, and GMRes, and we compared the 

reconstructed electrograms with the invasive electrograms (ground truth). The comparison is shown 

in the image above. Note that when the multitask elastic net is applied in the time domain (i.e., without 

wavelet transform), the sparsity of the signal is enforced partially by reducing some leads to zeros only. 

This does not occur when enforcing multitask elastic net on the wavelet coefficients. 

References for Topic 4 
1: Cluitmans, M., Peeters, R., Volders, P. & Westra, R. Realistic Training Data Improve Noninvasive Reconstruction of Heart-
Surface Potentials. in Conf Proc IEEE Eng Med Biol Soc. 6373–6376 (IEEE, 2012). 
2: Greensite, F. & Huiskamp, G. An improved method for estimating epicardial potentials from the body surface. Biomedical 
Engineering, IEEE Transactions on 45, 98–104 (1998). 
3: Ghosh, S. & Rudy, Y. Accuracy of quadratic versus linear interpolation in noninvasive Electrocardiographic Imaging (ECGI). 
Ann Biomed Eng 33, 1187–1201 (2005). 

  



   
 

   
 

Topic 5: Parameter search 

 

Online Figure 5: Dependency of in vivo results on wavelet-elastic-net algorithm parameters, based on 

8 recorded beats in a dog. For each combination of alpha and lambda, the median correlation 

coefficient (CC, left) and data mismatch (right) is shown. Red color indicates optimal results, the asterisk 

* the highest correlation coefficient, and the hash # the lowest data mismatch. Grid search points are 

indicated by black dots. Since CC can only be computed when ground truth data are available, the data 

mismatch is a more honest method of selecting parameters. 

 


