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Abstract Purpose: Estimation of brain deformation is crucial during neu-
rosurgery. Whilst mechanical characterisation captures stress-strain relation-
ships of tissue, biomechanical models are limited by experimental conditions.
This results in variability reported in the literature. The aim of this work is to
demonstrate a generative model of strain energy density functions can estimate
the elastic properties of tissue using observed brain deformation. Methods: For
the generative model a Gaussian Process regression learns elastic potentials
from 73 manuscripts. We evaluate the use of Neo-Hookean, Mooney-Rivlin and
1-term Ogden meta-models to guarantee stability. Single and multiple tissue
experiments validate the ability of our generative model to estimate tissue
properties on a synthetic brain model and in eight temporal lobe resection
cases where deformation is observed between pre- and post-operative images.
Results: Estimated parameters on a synthetic model are close to the known ref-
erence with a root mean square error (RMSE) of 0.1 mm and 0.2 mm between
surface nodes for single and multiple tissue experiments. In clinical cases, we
were able to recover brain deformation from pre- to post-operative images re-
ducing RMSE of differences from 1.37 mm to 1.08 mm on the ventricle surface,
and from 5.89 mm to 4.84 mm on the resection cavity surface. Conclusion: Our
generative model can capture uncertainties related to mechanical characteri-
sation of tissue. When fitting samples from elastography and linear studies,
all meta-models performed similarly. The Ogden meta-model performed the
best on hyperelastic studies. We were able to predict elastic parameters in a
reference model on a synthetic phantom. However, deformation observed in
clinical cases is only partly explained using our generative model.
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1 Elastic models of brain tissue from the literature

Fig. 1 Brain tissue models and parameters reported in the literature plotted as strain
energy density functions. Horizontal axis refers to the amount of strain during rest (λi = 1),
tension (λi > 1), and compression (λi < 1). Vertical axis refers to the elastic potential Ψ .
Numbers correspond to column ‘n’ in Table 1.
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Table 1 MRE, linear and hyperelastic studies in the literature reporting elastic parameters
of grey matter, white matter, healthy brain and abnormalities. Rather than listing every
study, especially numerous studies related to linear and MRE models, we refer to the survey
presented by Morin et al (2017) [4], where the original references can be found. The exact
parameters used from these studies can be located in the source code accompanying this
manuscript. In the source code each study is referenced by the study name found in this
table.

n Study Anatomy Model
0 SurgSim-Dequidt2015 [4] brain linear
1 SurgSim-Sase2015 [4] brain linear
2 Abnormal-WM-castellanoSmith2003 [4] abnormalities linear
3 Abnormal-GM-castellanoSmith2003 [4] abnormalities linear
4 Pathos-Yousefi2013 [4] brain linear
5 Pathos-Prastawa2009 [4] brain linear
6 Pathos-TUMOUR-Kyriacou1999 [4] abnormalities hyperelastic
7 Pathos-WM-Takizawa1994 [4] white matter linear
8 Pathos-GM-Takizawa1994 [4] grey matter linear
9 Pathos-Tumour-Dumpuri2006 [4] abnormalities linear
10 BrainShift-tumour-Miller2013 [4] abnormalities linear
11 BrainShift-tumour-Morin2016 [4] abnormalities linear
12 Reg-min-Soza2004 [4] brain linear
13 Reg-max-Soza2004 [4] brain linear
14 BrainShift-Clatz2005 [4] brain linear
15 BrainShift-Wittek2009 [4] brain linear
16 BrainShift-Dumpuri2006 [4] brain linear
17 BrainShift-Vigneron2012 [4] brain linear
18 BrainShift-deLorenzo2012 [4] brain linear
19 BrainShift-Bucki2012 [4] brain linear
20 BrainShift-ventricles-Bucki2012 [4] abnormalities linear
21 BrainShift-Miller2013 [4] brain linear
22 BrainShift-Mohammadi2015 [4] brain linear
23 BrainShift-ventricles-Mohammadi2015 [4] abnormalities linear
24 BrainShift-Morin2016 [4] brain linear
25 BrainShift-Clatz2003 [4] brain linear
26 MRE-WM-Kruse1999 [4] white matter MRE
27 MRE-GM-Kruse1999 [4] grey matter MRE
28 MRE-WM-Uffmann2004 [4] white matter MRE
29 MRE-GM-Uffmann2004 [4] grey matter MRE
30 MRE-WM-McCracken2005 [4] white matter MRE
31 MRE-GM-McCracken2005 [4] grey matter MRE
32 MRE-WM-Green2006 [4] white matter MRE
33 MRE-GM-Green2006 [4] grey matter MRE
34 MRE-WM-Kruse2008 [4] white matter MRE
35 MRE-abnormal-WM-Kruse2008 [4] abnormalities MRE
36 MRE-GM-Kruse2008 [4] grey matter MRE
37 MRE-Hamhaber2007 [4] brain MRE
38 Hyperelastic-Ogden1-Mihai2017 [2] brain hyperelastic
39 Hyperelastic-MR3-Mihai2017 [2] brain hyperelastic
40 Hyperelastic-NH-Mihai2015 [3] brain hyperelastic
41 Hyperelastic-MR-Mihai2015 [3] brain hyperelastic
42 Hyperelastic-Fung-Mihai2015 [3] brain hyperelastic
43 Hyperelastic-Gent-Mihai2015 [3] brain hyperelastic
44 Hyperelastic-Ogden3-Mihai2015 [3] brain hyperelastic
45 Hyperelastic-Ogden4-Mihai2015 [3] brain hyperelastic
46 Hyperelastic-Ogden5-Mihai2015 [3] brain hyperelastic
47 Hyperelastic-Ogden6-Mihai2015 [3] brain hyperelastic
48 Hyperelastic-Ogden7-Mihai2015 [3] brain hyperelastic
49 Hyperelastic-Ogden8-Mihai2015 [3] brain hyperelastic
50 Hyperelastic-MR3-Laksari2012 [4] brain hyperelastic
51 Hyperelastic-MR2-Schiavone2009 [4] brain hyperelastic
52 Hyperelastic-OgdenMod1-Miller2002 [4] brain hyperelastic
53 Hyperelastic-NH-CC-Budday2017 [1] white matter hyperelastic
54 Hyperelastic-NH-CR-Budday2017 [1] white matter hyperelastic
55 Hyperelastic-NH-BG-Budday2017 [1] grey matter hyperelastic
56 Hyperelastic-NH-C-Budday2017 [1] grey matter hyperelastic
57 Hyperelastic-MR-CC-Budday2017 [1] white matter hyperelastic
58 Hyperelastic-MR-CR-Budday2017 [1] white matter hyperelastic
59 Hyperelastic-MR-BG-Budday2017 [1] grey matter hyperelastic
60 Hyperelastic-MR-C-Budday2017 [1] grey matter hyperelastic
61 Hyperelastic-DMR-CC-Budday2017 [1] white matter hyperelastic
62 Hyperelastic-DMR-CR-Budday2017 [1] white matter hyperelastic
63 Hyperelastic-DMR-BG-Budday2017 [1] grey matter hyperelastic
64 Hyperelastic-DMR-C-Budday2017 [1] grey matter hyperelastic
65 Hyperelastic-Gent-CC-Budday2017 [1] white matter hyperelastic
66 Hyperelastic-Gent-CR-Budday2017 [1] white matter hyperelastic
67 Hyperelastic-Gent-BG-Budday2017 [1] grey matter hyperelastic
68 Hyperelastic-Gent-C-Budday2017 [1] grey matter hyperelastic
69 Hyperelastic-Ogden1-CC-Budday2017 [1] white matter hyperelastic
70 Hyperelastic-Ogden1-CR-Budday2017 [1] white matter hyperelastic
71 Hyperelastic-Ogden1-BG-Budday2017 [1] grey matter hyperelastic
72 Hyperelastic-Ogden1-C-Budday2017 [1] grey matter hyperelastic
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2 Strain energy density functions

2.1 Strain energy density functions in terms of invariants by means of the
right Cauchy-Green deformation tensor CCC = FFFTFFF
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2.3 Least squares optimisation of hyperelastic meta-model
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2.4 Stability conditions

Fig. 2 Stability conditions of hyperelastic functions. A stable (left) and an unstable (right)
function. Shaded area indicates region where parameters are reported in the literature.
However, simulation may exhibit deformation over wider strains (see Fig. 7 in [5]).

Table 2 Stability conditions of hyperelastic strain energy density functions (Ψ) at rest
(λi = 1), and during compression (λi < 1) and tension (λi > 1).

Function State Condition Range

Ψ(λ1, λ2, λ3)

Resting

Ψ = 0
∂Ψ
∂λi

= 0

det[ ∂2Ψ
∂λi∂λj

] > 0

λ1 = 1
λ2 = 1
λ3 = 1

Compression

limλi→0 Ψ =∞
limλi→0

∂Ψ
∂λi

= −∞
∂Ψ
∂λi

< 0

0 < λi < 1

Tension

limλi→∞ Ψ =∞
limλi→∞

∂Ψ
∂λi

=∞
∂Ψ
∂λi

> 0

1 < λi <∞

All ∂2Ψ
∂λ2
i

> 0 0 < λi <∞

2.5 Optimisation of meta-models

Fig. 3 Meta-model parameters search space.
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Table 3 Elapsed time of key simulation steps of the deformation of a synthetic phantom.
Average time and standard deviation (within parenthesis) are shown in milliseconds for
single tissue (st) and multiple tissue (mt) experiments of two volumetric mesh resolution
(see Fig. 3 (left) in main manuscript). Simulation was performed on an Alienware 13 R3
laptop with Intel Core i7 CPU @ 2.8GHz, 32GB RAM, x64 Windows 10 OS, and NVIDIA
GeForce GTX 1060 with 6GB GPU.

Main loop (in ms)
Pre-

processing
Compute

internal forces
Assemble
system

Solve
system

Time
Integration

Main
loop

st coarse 569 27.44 (3.9) 18.32 (2.0) 63.36 (4.9) 4.95 (5.4) 118.78 (10.2)
st fine 1026 36.40 (3.6) 28.31 (2.5) 90.4 (5.3) 4.16 (1.2) 164.20 (8.9)
mt coarse 2577 70.93 (5.2) 55.43 (3.6) 174.03 (6.1) 5.91 (7.6) 310.90 (11.8)
mt fine 9953 126.99 (14.9) 136.8 (5.6) 437.54 (9.5) 5.27 (1.4) 710.87 (17.0)

3 Gaussian Process

Fig. 4 Gaussian Process (log space) of strain energy density functions extrapolated over
wider ranges of stretches.

Fig. 5 GP distributions and sampling of strain energy density functions.
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4 Simulation

Table 4 Physical properties of cases and parameters used for simulation. Young’s modulus
E = 2µ(1 + v) and Lamé coefficient λ = Ev

(1+v)(1−2v)
are using Poisson’s ratio v = 0.45.

Total mass is computed based on density ρ = 1211.5. Implicit backward Euler integration
is executed with time step h = 0.001. Rayleigh matrix D = kdK +mdM, where kd = 0.001
and md = 0.0 are stiffness and damping coefficients, respectively.

Physical properties

case
volume

[10−3m3]
mass
[Kg]

density
[Kg/m3]

shear modulus
[Pa]

Poisson’s ratio
v

Synthetic 1.6092 1.9495
0529 1.1654 1.4119
0614 1.0617 1.2862
0660 1.1344 1.3743
0685 1.0899 1.3204
0535 1.2388 1.5008
0555 1.1706 1.4182
0603 1.0601 1.2843
0684 1.1865 1.4374

1211.5

Sampled
from

generative
model

0.45

Table 5 Geometrical properties of clinical cases used for simulation. For each case, we report
the total number of nodes and elements, as well as the number of nodes along ventricles
and resection margins that are used to compute RMSE (our similarity metric). Median and
median absolute deviation are shown in the last row.

volume
patient

elements similarity nodes

case
temporal

lobe
single
tissue

multi
tissue

ventricles resection

0529 left 3619 5060 263 26
0614 left 2692 4112 196 26
0660 left 2795 4308 198 32
0685 left 2425 4093 164 30
0535 right 2662 4225 174 27
0555 right 2221 3932 140 30
0603 right 2742 4348 169 42
0684 right 2250 3930 137 38

median
(MAD)

2677
(185)

4168.5
(159.5)

171.5
(25.5)

30
(3.5)
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5 Synthetic brain phantom

Fig. 6 Validation on MNI phantom. Nodes under deformation (red circles) and boundary
conditions (green circles) are of brain tissue (translucent). An external force of 10 N (red
vertical lines) is applied for compression to a subset of nodes located superiorly.

6 Temporal lobe resection cases

Fig. 7 Application to account for brain shift in temporal lobe resection cases. Rest state
of ventricles (in yellow) and manually-delineated resection mask (in green) in pre-operative
images. Deformed stated of ventricles (in blue) and automatedly-segmented resection cavity
(in purple) from post-operative images.
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