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1 Additional descriptions of Materials and Methods

1.1 Characteristics of the public datasets used in the study

1.1.1 The Plethora dataset

The PleThora dataset [4] is a chest CT scan collection with thoracic volume and
pleural effusion segmentations, delineated on 402 CT studies of the Non-Small Cell
Lung Cancer (NSCLC) radiomics dataset, available through the The Cancer Imag-
ing Archive (TCIA) repository [3]. This dataset has been made publicly available
to facilitate improvement of the automatic segmentation of lung cavities, which
is typically the initial step in the development of automated or semi-automated
algorithms for chest CT analysis. In fact, automatic lung identification struggles
to perform consistently in subjects with lung diseases. The PleThora lung anno-
tations have been produced with a U-net based algorithm trained on chest CT of
subjects without cancer, manually corrected by a medical student and revised by
a radiation oncologist or a radiologist.

1.1.2 The 2017 Lung CT Segmentation Challenge dataset

The Lung CT Segmentation Challenge (LCTSC) dataset consists of CT scans of 60
patients, acquired from 3 different institutions and made publicly available in the
context of the 2017 Lung CT Segmentation Challenge [10]. Since the aim of this
challenge was to foster the development of auto-segmentation methods for organs
at risk in radiotherapy, the lung annotations followed the RTOG 1106 contouring
atlas.
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1.1.3 The 2020 COVID-19 Lung CT Lesion Segmentation Challenge dataset

The 2020 COVID-19 Lung CT Lesion Segmentation Challenge dataset (COVID-
19 Challenge) is a public dataset consisting of unenhanced chest CT scans of 199
patients with positive RT-PCR for SARS-CoV-2 [1]. Each CT is accompanied
with the ground truth annotations for COVID-19 lesions. Data has been provided
in NIfTI format by The Multi-national NIH Consortium for CT AI in COVID-
19 via the NCI TCIA public website [3]. Annotations have been made using a
COVID-19 lesion segmentation model provided by NVIDIA, which takes a full CT
chest volume and produces pixel-wise segmentations of COVID-19 lesions. These
segmentations have been adjusted manually by a certified radiologists board, in
order to give 3D consistency to lesion masks. The dataset annotation was made
possible through the joint work of Children’s National Hospital, NVIDIA and
National Institutes of Health for the COVID-19-20 Lung CT Lesion Segmentation
Grand Challenge.

The dataset and the annotations have been made available in the context
of a MICCAI-endorsed international challenge (https://covid-segmentation.grand-
challenge.org/) which had the aim to compare AI-based approaches to automated
segmentation of COVID-19 lung lesions.

1.1.4 The MosMed dataset

MosMed [7] is a COVID-19 chest CT dataset collected by the Research and Prac-
tical Clinical Center for Diagnostics and Telemedicine Technologies of the Moscow
Health Care Department. It includes CT studies taken from 1110 patients. Each
study is represented by one series of images reconstructed into soft tissue medi-
astinal window. MosMed provides 5 labeled categories, based on the percentage of
lung parenchyma affected by COVID-19 lesions. The 5 categories of lung involve-
ment and their correspondence to the CT-SS scale are described in Table 1. The
first category (CT-0) contains cases with normal lung tissue and no CT-signs of
viral pneumonia, whereas the other categories contain GGO (CT-1 and CT-2) and
both GGO and regions of consolidation in the higher classes (CT-3 and CT-4).

Table 1 MosMed severity categories defined on the basis of the percentage P of lung volume
affected by COVID-19 lesions. The correspondence to the CT-SS scale is reported.

MosMed N. of cases Percentage P of involved Corresponding
CT category lung parenchyma CT-SS

0 254 P = 0 0
1 684 0 < P ≤ 25 1, 2
2 125 25 < P ≤ 50 3
3 45 50 < P ≤ 75 4
4 2 75 < P ≤ 100 5

A small subset of class CT-1 cases (50 patients) had been annotated by expert
radiologists with the support of MedSeg software (2020 Artificial Intelligence AS).
The annotations consist of binary masks in which white voxels represent both
ground-glass opacifications and consolidations. Both CT scans and annotations
were provided in NIfTI format. During the DICOM-to-NIfTI conversion process,
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only one slice out of ten was preserved and, as a result, MosMed CT scans have a
reduced total number of slices with respect to the other datasets.

1.1.5 The COVID-19-CT-Seg dataset

The COVID-19-CT-Seg dataset is a collection of CT scans taken from the Coro-
nacases Initiative and Radiopaedia [6]. It contains 20 CT scans tested positive for
COVID-19 infection. This public dataset contains both lung and infection anno-
tations. The ground truth has been made in three steps: first, junior radiologists
(1-5 years of experience) delineated lungs and infections annotations, then two
radiologists (5-10 years of experience) refined the labels and finally the annota-
tions have been verified and optimized by a senior radiologist (more than 10 years
of experience in chest radiology). The annotations have been produced with the
ITK-SNAP software. Ten CT images of this dataset were provided in 8-bit depth,
therefore, we decided to not use them.

1.2 Additional training details and evaluation strategy for the U-nets

1.2.1 Evaluation metrics

The segmentation performances for both U-nets have been evaluated with the
volumetric Dice Similarity Coefficient (vDSC), computed between the true mask
volume (Vtrue) and the predicted mask volume (Vpredict), and with the surface
Dice Similarity Coefficient (sDSC), computed between the true surface (Strue),
and the predicted one defined, (Spredict) [5], as follows;

vDSCmetric =
2 · |Vtrue ∩ Vpredict|
|Vtrue|+ |Vpred|

(1)

sDSCmetric =
2 · |Strue ∩ Spredict|
|Strue|+ |Spred|

(2)

The loss function used to train the U-net for lung segmentation is the vDSC
loss, defined as follows

vDSCloss = 1− 2 · |Mtrue ∩Mpred|
|Mtrue|+ |Mpred|

(3)

and computed only on the foreground (white voxels). We used this strategy in
order to avoid giving excessive weight to the background (black voxels), since the
number of black and white voxels is quite unbalanced in favor of the former.

For U-net2, we used a loss function (L) consisting of the sum of the vDSC loss
and a weighted cross-entropy (CE), defined as follows:

L = vDSCloss + CEweighted (4)

CEweighted = w(x)
∑
x∈Ω

log(Mtrue(x) ·Mpred(x)) (5)
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where w(x) is the weight map which takes into account the frequency of white
voxels, x is the current sample and Ω is the training set.

Since the background class is larger than the foreground class on the order 103,
we computed the weight map w(x) for each ground-truth segmentation to increase
the relevance of the underrepresented class, following the approach described in [8].
The weight map was defined as w(x) = w0/fj where fj is the average number of
voxels of the jth class over the entire training data set (j = 0, 1) and w0 is the the
average between the frequencies fj .

1.2.2 Data augmentation

Data augmentation is a strategy to increase the size of the training set by synthet-
ically generating additional training images through geometric transformations.
This technique is particularly important to improve the generalization capability
of the model, especially in the case of a limited number of training samples. In our
work, we applied data augmentation during the data pre-processing phase (after
defining the bounding boxes enclosing the segmented lungs) in order to generate a
fixed number of augmented images for each original data. We chose an augmenta-
tion factor equal to 2 which means that the number of artificially generated images
is twice the number of the original training set. For each image in the training set,
two of the following geometric transformations were randomly chosen:

– Zooming. The CT image and the ground truth masks were zoomed in the
axial plane, using a third-order spline interpolation and the k-nearest neighbor
method, respectively. The zooming factor was randomly chosen among the
following values: 1.05, 1.1, 1.15, 1.2.

– Rotation. The CT image and the ground truth mask were rotated in the ax-
ial plane, using a third-order spline interpolation and the k-nearest neighbor
method, respectively. The rotation angle was randomly sampled among the
following values: -15°, -10°, -5°, 5°, 10°, 15°.

– Gaussian noise. An array of noise terms randomly drawn from a normal distri-
bution was added to the original CT image. For each image, the mean of the
Gaussian distribution was randomly sampled in the [-400, 200] HU range and
the standard deviation randomly chosen among 3 values: 25, 50, 75 HU.

– Elastic deformation. An elastic distortion was applied to the original 3D CT
and mask arrays following the approach of Simard et al. [9]. This transforma-
tion has two parameters: the elasticity coefficient which we fixed to 12 and the
scaling factor, fixed to 1000.

– Motion blurring. Slice by slice, we convolved the CT image with a linear kernel
(i.e. ones along the central row and zero elsewhere for a matrix of size k ×
k) through the function filter2D, defined in the OpenCV Python library [2],
keeping the output image size the same as the input image. The filter is applied
with a kernel size of 4, 3, and 3, in the anterior-posterior, latero-lateral and
cranio-caudal direction, respectively.

An example of the application of these augmentation techniques to one CT scan
of the dataset is provided in Fig. 1.
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Fig. 1 Data augmentation to increase the diversity of dataset: a) Image without data aug-
mentation; b) Zooming; c) Rotation; d) Gaussian noise; e) Elastic deformations; f) Motion
blurring.

1.3 Morphological refinement of U-net1 lung segmentation

In order to remove false-positive regions (i.e. voxels misclassified as lung parts),
at first, we identified the connected components in the lung masks generated by
U-net1, then, we excluded those components whose number of voxels was below an
empirically-fixed threshold. This threshold was set to the 40% of the foreground
mask, and it was reduced to 30% whether the resulting number of voxels was found
to be lower than the 65% of the initial mask provided by U-net1. Figure 2 shows
some examples of how this procedure works on real CT scans.

1.4 Generation of a set of reference lung segmentation for model training

As reported in Table 1 (main paper), the available datasets with lung mask anno-
tations, which were necessary to train the U-net for lung segmentation, are mainly
of subjects affected by lung cancer (Plethora and LCTSC datasets). To comple-
ment this sample with subjects without lesions, and, at the same time, to expose
to U-net to the acquisition characteristics of the MosMed CT scans, we generated
the lung mask annotations for a subset of subjects of the CT-0 MosMed category,
i.e. that of subjects without COVID-19 lesions.

An in-house lung segmentation algorithm was developed for this purpose and
implemented in matlab (The MathWorks, Inc.). It is based on the following steps:
1) CT windowing in the [-1000,1000] HU range; 2) rough segmentation of the lungs
on a central coronal slice (Otsu binary thresholding and removal of components
connected with the image border) to define the minimum and maximum axial
coordinates of the lung region; 3) 2D rough segmentation of the lungs on each
axial slice (same procedure as the previous step) to generate a 3D seed mask for
the following step; 4) segmentation of the lung parenchyma by an active contour
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Fig. 2 Morphological refinement of the U-net1 output: a) and c) lung masks as generated by
U-net1; b) and d) refined masks after the connected component selection.

model (activecontour matlab function); 5) filling holes (e.g. vessels and airway
walls) with 3D morphological operators (imclose matlab function).

This algorithm, which accurately segments the lung parenchyma in absence
of lesions, has very limited performance on CT scans of subjects with COVID-19
lesions.
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