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2 Temporally Consistent Sequence-to-Sequence Translation of Cataract Surgeries

1 UNIT (VAE-GAN) Training Objectives

For a given sampled sequence a ∈ A consisting of two consecutive frames, we
encode it into the latent space which is shared across encoders and decoders,
denoted as zA := EA(a). From the latent representation, the model should
reconstruct the sample when forwarding it through GA, which the VAE
objective enforces:

LV AEA
(EA, GA) = λ1KL(qA(zA|a)||pη(z))− λ2EzA∼qA(zA|a)[log pGA

(a|zA)]
(1)

where pη(z) := N (z|0, I). The translation into domain B is trained using the
GAN objective:

LGANA
(EA, GA, DA) = λ0Ea∼A[logDA(a)]+

λ0Eb∼qB(zB |b)[log(1−DA(GA(zB)] (2)

A VAE-like objective also models the cycle-consistency constraint:

LCCA
(EA, GA, EB , GB) = λ3KL(qA(zA|a)||pη(z))+λ3KL(qB(zB |b̂)||pη(z))

− λ4EzB∼qB(zB |b̂)[log pGA
(a|zB)] (3)

We further employ a commonly used perceptual loss between a sample a and
its translation b̂ by computing the distance between features of both images,
obtained by a pre-trained perceptual VGG network V :

LV GGA
= λ5||V (a)− V (b̂)||22 (4)

The sum of the terms LV AE , LGAN , LCC and LV GG gives the overall objective
for both domains.

2 Flow-Based Image Warping

The Optical Flow (OF) FA between two consecutive frames at and at+1 of
domain A represents their pixel-wise displacement over time.

If we have estimated such a flow-field FA (e.g. using the Gunnar Farneback
algorithm or a pre-trained RAFT model [1]), we can recreate at from at+1 and
vice-versa [2, 3].
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3 Architecture Depiction

Figure 1 displays our entire generative pipeline, omitting the discriminators.
Given two consecutive frames at and at+1 from source domain A, the VAE-
GAN backbone translates them into b̂t and b̂t+1. The adversarial objective in
equation 2 constrains translated frames to resemble samples from domain B.
A pre-trained RAFT model [1] extracts the optical flow FA between the source
domain frames. Our motion translation module then translates FA into F̂B

depending on both source frames and the previous translated target frame b̂t.
The translated flow is used to warp this target frame into f̃(b̂t, F̂B). Eventu-

ally a motion translation loss between b̂t and f̃(b̂t, F̂B) constrains the motion
translation module to produce realistic motion for domain B. Furthermore, a
time-invariant MS-SSIM loss is imposed over consecutive frames b̂t and b̂t+1,
to strengthen the sequential generation of frames.

Fig. 1 Generative pipeline. This diagram depicts the full generative pipeline of our proposed
Seq2Seq translation model. Given consecutive frames at and at+1 of the source domain A,
we predict the optical flow FA between them using a pre-trained RAFT model [1]. The

Motion Translation module is trained to translate this flow into a flow field F̂B that produces
consistent movements for the translated sequence in the target domain B.
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Fig. 2 Consistent translations should have similar differences between frames. One quantity
of interest here are the differences in foreground masks extracted from consecutive frames
(purple). Besides a scaling factor these masks should be similar. A big difference indicates
a vastly different movement in the source sequence (orange) and the translated sequence
(turquoise). Small local differences indicates a non-smooth translation of textures.

4 Temporal Consistency Metrics

To evaluate the temporal consistency of translated image sequences, we pro-
pose to compare the differences in extracted foreground masks fg of a sequence
a ∈ A and its translation b̂ by

Md
TC =

1

T (T − 1)

T∑
t′=1

T∑
t=1

d(|fg(at)− fg(at′)|, |fg(b̂t)− fg(b̂t′)|) (5)

where d is a distance function, as visualized in Figure 2. In our experiments, the
foreground extraction is realized using MOG2 [4]. For possible choices of d, we
explore the Root Mean Squared Error (RMSE) and the Structural Similarity
Index Metric (SSIM):

For an optimal consistent translation of sequences we would like to achieve
the same smooth transitions in the translated sequence as in the input
sequence. This includes the overall global movement that is happening between
the frames. E.g. if the pupil is moving from left to right in the source sequence,
we do not want the pupil to stand still in the translated sequence, as it would
happen with a mode collapse of the generator. Though, smooth transitions
would also include smooth displacements of the displayed textures: If the eye-
ball is not moving in the source frame, we do not want the vessels on the sclera
to change.

The latter displacements will produce tiny patches of high values in the cor-
responding foreground masks. When we compare these masks with the source
masks, then using the RMSE will yield high metric values. The closer the
MRMSE

TC gets to zero, the better the alignment of the translated textures and
movements. Though, there might be sequences where equal entities have dif-
ferent textures or entities have to be scaled across domains. The corresponding
foreground masks show different activations and will result in higher metric
values.

As an alternative, we can use a perceptual metric like the SSIM directly on
both foreground masks. This metric is less prone to small local differences and
scaling. Therefore, higher values of MSSIM

TC indicate that the global movement
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Fig. 3 Illustrations of all metrics used during evaluation. MTC is comparing residuals
between images. MtOF is computing the distance of optical flow fields between sequences.
ForMtLP a feature encoder extracts feature representations, whose differences are compared
across domains. Finally, MW uses the extracted flow of the source sequence the evaluate if
it can be used to warp frames of the target sequence.

of entities is not correctly translated, e.g. when a tool is moving smoothly in
the input sequence but disappears in some frames of the translated sequence
(see for example Figure 2. On the contrary, values closer to 0 indicate that the
global movement of entities in the scene is better translated. Additionally, we
make use of the following metrics, as proposed in recent work [5–7]:

First, we compare the optical flow between consecutive frames of the
translated sequence and the original sequence, which computes as

MtOF =
1

T

T∑
t=2

||W (at, at−1)−W (b̂t, b̂t−1)||1 (6)

where W is a pre-trained optical-flow estimator. In our experiments we use the
RAFT model [1] for W . Higher values stem from a discrepancy in the optical
flow between the sequences. This metric is not robust against scaling (using the
non-translated flow) and textural differences of equal entities across domains.

Second, we compare the frames’ perceptual feature distances

MtLP =
1

T

T∑
t=2

||LP (at, at−1)− LP (b̂t, b̂t−1)||1 (7)

using the perceptual LPIPS metric. Values close to 0 indicate that the percep-
tual differences between consecutive frame-pairs of both sequences is similar.
This metric heavily depends on the performance of a pre-trained feature extrac-
tor. To correctly penalize only non-smooth transitions, the extractor has to
map semantically similar frames (and therefore their distances) to similar
feature vectors.

Finally, we examine the warping error

MW =
1

T

T∑
t=1

||b̂t − f̃(b̂t−1, (W (at, at−1))||22 (8)
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where f̃ is the warping operation, using the estimated flow from the source
domain to warp the frame in the target domain sequence. This metric evaluates
if the source domain flow (translated or not) can be used to successfully warp
the translated frames. The lower the metric values are, the more the translated
sequences and the (translated) flow align spatially. All metrics are visualized
schematically in Figure 3.
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5 Evaluation Procedure

Our evaluation procedure is laid out schematically in Figure 4.

1
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Fig. 4 Full evaluation procedure. We first train our MT-UNIT model to translate frames
between domains A and B (1). Then we evaluate the model regarding the image quality (2)
and temporal consistency (3) of translated test sequences. Following that, we train a phase
classifier on domain A and evaluate it on the domain’s test samples and translated test
samples from domain B (4). Subsequently, we retrain the phase classifier after extending the
training set from domain A with translated samples from both - the test and the training
set of domain B - and finally evaluate it once more on the test set of domain A (5).
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6 Ablation Study: Importance of Motion
Translation and Time-Invariant Structural
Similarity

We carried out ablation studies to highlight the importance of both compo-
nents of our proposed method. We evaluate the performance of our model
without the motion translation module (w/o MT ) and without the time-
invariant structural-similarity loss (w/o SSIM ). Table 1 displays the results.
Note that the model without the motion translation module achieved a con-
stantly lower score for MtOF , which is expected since the motion translation
module adapts the target sequence flow based on the spatial properties of both
domains. This adapted flow is significantly different from the source sequence
flow if both domains differ greatly in their spatial arrangements, which is often
the case between CATARACTS and Cataract101. Overall we found that both
components yield a performance increase.

Table 1 Ablation study results.

CATARACTS → Cataract101

Metric MSSIM
TC (↑) MRMSE

TC (↓) MtOF (↓) MtLP (↓) MW (↓)
UNIT 10.1807 0.2694 1.7202 0.0525 0.1848
w/o MT 10.9073 0.2317 1.1375 0.0355 0.184
w/o SSIM 11.0199 0.2176 1.2905 0.0451 0.1756
MT-UNIT 11.9856 0.2163 1.2579 0.0304 0.1648

Cataract101 → CATARACTS

Metric MSSIM
TC (↑) MRMSE

Tc (↓) MtOF (↓) MtLP (↓) MW (↓)
UNIT 11.6594 0.1667 1.7219 0.0534 0.1061
w/o MT 13.6513 0.14 0.4908 0.04 0.1069
w/o SSIM 11.3445 0.1522 1.5403 0.0522 0.1203
MT-UNIT 14.9375 0.155 0.5825 0.0215 0.0985
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7 Phase classification model

The downstream task model architecture is explained in Table 2. To incorpo-
rate temporal information, we concatenate three sequential frames to form a
nine-channel tensor that yields as the input to our model. Every intermediate
convolutional layer is followed by a LeakyReLU nonlinearity with a negative
slope of 0.2. Additionally, we use BatchNorm2d layers after Conv2, Conv3 and
Conv4. The final convolutional layer maps to the desired number of classes,
k = 11 in the case of Cataract-101.

Table 2 Downstream task model.

Layer Input Ch. Conv. Kernel Stride Padding Output Ch.
Conv1 9 4 7 1 64
Conv2 64 4 2 1 128
Conv3 128 4 2 1 256
Conv4 256 4 1 1 512
Conv5 512 4 1 1 k
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8 Downstream Task Phase-Wise Performance

Figure 5 shows the per-phase F1 score for the two different experiments of our
last downstream task evaluation.

First (normal, orange), we train a multi-frame phase classification model
on the training dataset of Cataract101 and evaluate it on the test split of this
dataset.

Next (extended, blue), we artificially increase the amount of training
data by translating the CATARACTS training and test data (pre-filtered for
matching phases). Then we retrain the model and again evaluate it on the
Cataract101 test split to see if the artificial data can help with the performance
for underrepresented classes.

The results show increased scores for the labels that yield more samples
after the extension. Note that the performance for untranslated phases slightly
decreases, which explains the only marginal increase in the overall F1 score
from 0.767 to 0.786. This problem is very closely related to the problem of
forgetting in continual learning, and we plan to address it in future research.
A classifciation example for one sequence is displayed in Figure 6.

Fig. 5 Label-wise F1 score of phase-classification model. The graph compares the per-
formance when training on the original Cataract101 training data (orange) vs training on
the artificially extended training data (blue). Note how classes that have been artificially
increased (green) yield increased performance, while not translated classes only drop slightly
(red).



Springer Nature 2021 LATEX template

Temporally Consistent Sequence-to-Sequence Translation of Cataract Surgeries 11

Ground Truth

Normal

Extended

Idle

Incision

Viscous Agent Injection

Rhexis

Hydrodissection

Phacoemulsi cation

Irrigation + Aspiration

Capsule Polishing

Lens Implant Setting-Up

Viscous Agent Removal

Tonifying + Antibiotics

0 1000 2000 3000 4000 5000 6000

Fig. 6 Phase segmentations of Cataract101 video 846. Training the phase predictor on the
artificially extended data improves the prediction of surgical phases.

9 Limitations and Failure Cases

The proposed temporal constraints increase the usability of translated data
for downstream applications. Nonetheless, the first part of our downstream
evaluations still reveals room for improvement. While achieving higher tempo-
ral consistency, complete tool preservation compared to the source sequence
remains a problem, as shown in Figure 7. The evaluated approaches will often
collapse onto always displaying a specific tool in the output sequences or not
showing any tool. We think that further constraints on the latent space could
improve upon this issue, e.g. in the form of weak supervision or structured
representations.

We found another limitation in the applicability for cases without direct
matches in the target domain, e.g. if certain tools from CATARACTS are not
present in the Cataract101 dataset. Alternatively, when Cataract101 samples
show zoom levels that are not present in the CATARACT data. We contribute
the latter to the performance decrease when translating from Cataract101 to
CATARACTS, compared to the other way round. The approaches assume a
certain degree of perceptual similarities in the domains. When, for example, a
plastic container that contains the artificial lens is held in front of the camera,
this is not the case. Further guiding the latent space will also improve upon
this problem, and it is one part we will address in future research.

Fig. 7 Typical failure cases. Lacking tool preservation (left), zoom level discrepancies (mid-
dle) and objects in front of the camera that occlude the eye (right).
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10 Data-Sets

We use publicly available datasets in our experiments:

• CATARACTS2020
• Cataract101

11 Video Examples of Translated Sequences

Video files of original and translated sequences are provided at
https://hessenbox.tu-darmstadt.de/getlink/fiXb3gSKVNPvtuwq54rNEbvN/.
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[2] Farnebäck, G.: Two-frame motion estimation based on polynomial expan-
sion. In: Scandinavian Conference on Image Analysis, pp. 363–370 (2003).
Springer

[3] Bouguet, J.-Y., et al.: Pyramidal implementation of the affine lucas kanade
feature tracker description of the algorithm. Intel corporation 5(1-10), 4
(2001)

[4] Zivkovic, Z.: Improved adaptive gaussian mixture model for background
subtraction. In: Proceedings of the 17th International Conference on
Pattern Recognition, 2004. ICPR 2004., vol. 2, pp. 28–31 (2004). IEEE

[5] Chu, M., Xie, Y., Mayer, J., Leal-Taixé, L., Thuerey, N.: Learning temporal
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