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1 Methods

1.1 Obstruction Detection

In Figure 1, we detail how we handle obstructions that occur in the back-
projection of the 3D face mesh. If an object is positioned between the face and
a camera then the calculated distance between the camera and face in 3D will
be larger than the distance inferred from the depth. Specifically, we obtain the
2D coordinates of 20 fixed vertices of the 3D face mesh for each camera view.
Using the depth map, we calculate the corresponding 3D coordinates using the
depth values of each 2D coordinate. If the distance between a 3D coordinate
inferred from the depth map and the corresponding actual 3D coordinate of a
vertex is similar, we conclude the face is visible for the camera in question.

1.2 Dataset Curation

In Figure 2, we provide a set of examples of the ground truth annotations in
our dataset. It denotes the annotation bounding boxes of obstructed faces and
cases where no face information is visible.

1.3 3D Key-Point Smoothing

To generate less noisy and more robust keypoints we perform a 3D keypoint
smoothing and tracking over an entire sequence before fitting the SMPL mesh
onto the 3D keypoints. The smoothing process helps to diminish outliers caused
by incorrect triangulations during the 3D human pose estimation stage and
to interpolate missed human poses. This allows for a more reliable human
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2 DisguisOR

Fig. 1 Obstructed faces in the point cloud and color image. The left image shows three
face meshes in 3D, the right image shows the depth map of surgical camera 2. The two red
rectangles reveal the positions of two face meshes in both images. Our method checks for
obstructions by calculating the distance between the meshes’ 3D locations and the inferred
3D locations from the depth map.
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Fig. 2 Examples of faces from our dataset with their respective annotation
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Fig. 3 Examples of tuning the parameter for image blending with poisson image editing.
With an alpha value of 1.0, no gradient of the background image is used, while a value of 0
uses only the gradients of the background image. We chose 0.725 as parameter to balance
image quality and sufficient anonymization.

mesh regression onto the 3D human poses. Furthermore, the tracking enables
anonymizing each person with the same face texture in every frame.

1.4 Rendering: Poisson Image Editing

We further highlight the effect of different blending parameters of the poisson
image editing image harmonization (Figure 3). As an additional robustness
towards privacy preservation, one may also opt to blur in the source image
prior to blending (Figure 4) or avoid blending altogether (Figure 3 Alpha:
1.0).
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Fig. 4 Illustration of combining poisson image editing with blurring. Blurring the target
image allows to further hide prominent background information in the result. The medical
mask’s contour of the original target blends seamlessly with the final output.

2 Results and Discussion

2.1 Face Localization

In Tables 1, 2 and 3, we present the precision (P), recall (R), F1-score (F1),
and number of annotated faces of each individual camera and scenario. The
precision of DisguisOR is lower for some scenarios than that of DSFD, notably
in the surgical cameras (SC1 and SC2). This is mainly due to the hardware
constraints of the Kinect camera system, which does not generate a corre-
sponding depth value for each pixel. Cropping to the depth field of view and
downsizing the color image to the resolution of the depth camera would miti-
gate these issues and likely favor DisguisOR – however, we perform inference
for all methods at native resolution of 2048x1536. While the self-supervised
domain adapation (SSDA) [1] with DSFD increased the recall significantly,
especially in the surgical cameras, it also decreased the precision, resulting in
a lower F1-score.

Table 1 Comparison of precision (P), recall (R) and F1-score (F1) at IOU@0.4 of
DSFD [2], the Self-Supervised Domain Adaption (SSDA) method of [1], and DisguisOR on
the Easy Scenario across all cameras. The last column depicts the number of ground
truth faces in each camera view.

DSFD [2] SSDA [1] DisguisOR No. Faces
P R F1 P R F1 P R F1

SC1 90.5 91.9 91.2 44.8 98.4 61.6 83.5 91.1 87.1 384
SC2 87.2 87.8 87.5 71.6 91.1 80.2 75.7 86.5 80.7 327
WFC1 69.3 86.8 77.1 51.0 91.1 65.4 61.8 84.2 71.3 190
WFC2 97.8 98.3 98.1 62.2 97.6 76.0 87.3 92.2 89.7 409
Avg. 86.2 91.2 88.5 57.4 94.6 70.8 77.1 88.5 82.2 327

2.1.1 Different Confidence Thresholds

In Table 4 depicts the precision, recall and F1-scores of DSFD [2] using different
confidence thresholds. The default confidence threshold is 0.5. We average
each metric across all four cameras, and present the results for each scenario.
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Table 2 Comparison of precision (P), recall (R) and F1-score (F1) at IOU@0.4 of
DSFD [2], the Self-Supervised Domain Adaption (SSDA) method of [1], and DisguisOR on
the Medium Scenario across all cameras. The last column depicts the number of ground
truth faces in each camera view.

DSFD [2] SSDA [1] DisguisOR No. Faces
P R F1 P R F1 P R F1

SC1 97.5 84.2 90.4 71.9 93.4 81.3 87.4 97.3 92.1 558
SC2 63.4 37.9 47.4 29.6 53.5 38.1 35.1 78.5 48.5 256
WFC1 87.2 96.2 91.5 67.1 88.3 76.3 71.7 79.8 75.5 426
WFC2 94.0 96.0 95.0 94.0 95.4 94.7 93.3 92.3 92.8 1077
Avg. 85.5 78.6 81.1 65.7 82.7 72.6 71.9 87.0 77.2 579

Table 3 Comparison of precision (P), recall (R) and F1-score (F1) at IOU@0.4 of
DSFD [2], the Self-Supervised Domain Adaption (SSDA) method of [1], and DisguisOR on
the Hard Scenario across all cameras. The last column depicts the number of ground
truth faces in each camera view.

DSFD [2] SSDA [1] DisguisOR No. Faces
P R F1 P R F1 P R F1

SC1 88.2 16.9 28.4 10.3 52.8 17.2 19.6 97.8 32.7 89
SC2 88.3 55.2 67.9 89.6 74.6 81.4 62.3 74.1 67.7 232
WFC1 76.2 87.1 81.3 73.5 56.4 63.8 51.1 79.7 62.3 202
WFC2 99.2 95.3 97.2 73.2 88.5 80.1 93.8 90.8 92.3 763
Avg. 88.0 63.6 68.7 61.7 68.1 60.7 56.7 85.6 63.7 321

Lowering the confidence scores increases the recall, but at a significant cost
of precision. Even at lower confidence thresholds, DSFD does not attain the
recall of DisguisOR. Furthermore, errant detections cover large swaths of the
images (Figure 5). Subsequent anonymization steps could impact the image
integrity and affect downstream tasks.

Table 4 Comparison of precision (P), recall (R) and F1-score (F1) at IOU@0.4 of
DSFD [2] with different confidence thresholds and DisguisOR on all scenarios. P, R and F1
are averaged across all cameras.

DSFD [2] @ 0.1 DSFD [2] @ 0.025 DisguisOR
P R F1 P R F1 P R F1

Easy 73.3 94.8 81.7 12.5 96.5 20.6 77.1 88.5 82.2
Medium 71.2 84.0 76.4 26.9 88.4 38.3 71.9 87.0 77.2
Hard 64.1 69.6 64.8 23.6 73.6 28.9 56.7 85.6 63.7
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Fig. 5 Detections of DSFD [2] with different confidence thresholds. While lowering the
threshold of DSFD leads to additional correct predictions, this typically comes at the expense
of errant predictions which cover large portions of the image.

Fig. 6 Illustration of two different frames, each with a false positive detection due to a failed
occlusion check (best viewed digitally). Dotted red face bounding boxes denote false positive
detections, while solid bounding boxes depict true positive detections. Many DisguisOR false
positive predictions are due to failed occlusion checks. However, these artifacts represent a
small area of the image.

2.2 Experiments on Downstream Tasks

Face Detection. To evaluate the preservation of image integrity, we compare
our anonymization method with the three conventional anonymization meth-
ods (blurring, pixelization and blackening) and DeepPrivacy [3] on downstream
face detection. This experiment is designed to measure the degree to which
an anonymization method creates unnatural alterations, which would lead to
errant predictions from an existing method. We compare the performance of
the pre-trained DSFD [2] model on images from all three scenarios anonymized
through several methods. For a fair comparison between the two methods, we
only consider face detections made by both DeepPrivacy and DisguisOR. We
report the percentage of average precision (AP) at an intersection over union
of greater than 0.4 (IOU@0.4) retained with respect to the original unaltered
images.
Human Pose Estimation. In order to further demonstrate the image quality
preservation of our method, we evaluate the widely used AlphaPose [4] human
pose estimator, pre-trained on COCO [5], to understand the effect of unnatural
image artifacts on human pose estimation. We generate pseudo-ground truth
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by projecting the 3D joint positions of each generated SMPL mesh into each
camera view. In accordance with previously established works [1], we use the
percentage of correct keypoints (PCK) metric to measure how many keypoints
were accurately predicted within a threshold. DeepPrivacy is omitted from
this experiment to avoid an unfair bias in favor of DisguisOR due to how
pseudo-ground truth is generated.

3 Results.

Face Detection. Table 5 depicts the downstream face detection performance
of the face detector DSFD [2] on images anonymized through various obfus-
cation methods. We report the percentage AP retained compared to the AP
achieved on the original unaltered images. The results show that blackening
the face area removes a considerable amount of information, making it pro-
hibitively difficult for a method to localize a face. Blurring or pixelization
is less detrimental to the detection methods’ performance. Nevertheless, the
detection results of both methods are severely impacted by the blurring of face
regions. This becomes even more evident in difficult scenarios. For all three
conventional anonymization approaches, the performance drop is severe, and
the AP for the face detection task is too low for most use cases. In contrast,
our proposed method generates faces that the detection methods can identify
with high accuracy.

In the easy scenario, we observe a decrease of merely 2% in DSFD’s face
detection AP, highlighting the preservation qualities of our method. DeepPri-
vacy is able to retain more AP in the medium and hard scenarios, most likely
since it generates synthetic faces with distinct facial features. Using a maskless
face texture further increases the retained AP by enabling face detectors to
rely on more facial elements, such as the nose and mouth. However, this comes
at a cost of image quality, as apparent by the experiments in the main paper.
These results indicate that a given template and source image harmonization
may be more suitable for a certain application. These results indicate that the
realistic faces generated by DisguisOR could mitigate costly annotation and
retraining due to an inferior anonymization method. Furthermore, they also
indicate that a given template and source image harmonization may be more
suitable for a certain application.
Human Pose Estimation. In Table 6 we report the PCK of the human pose
estimator AlphaPose [4] on differently anonymized frames. Human pose esti-
mators are less susceptible to limited modifications of the face area. Therefore,
the deviation of the PCKs is less severe. Blurring, pixelization, and blackening
of the faces can confuse the methods resulting in a decreased performance. It
is interesting to see that the anonymization limited to the region of the head
still has a measurable negative impact on the joint detection of the hip. This
again highlights the importance of retaining the information and the need to
anonymize without severe information loss. The PCK on images anonymized
by our method is the highest, demonstrating the realism of our method.
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Table 5 Percentage of face detection AP of DSFD [2] at IOU@0.4 for differently
anonymized images with the AP on original images as baseline. Masked Texture denotes
that blended templates contain medical masks (see Figure 3), whereas Maskless Texture
denotes that blended templates do not contain medical masks.

Anonymization Method Easy Scenario Medium Scenario Hard Scenario

Blackening 12.2 10.9 9.1
Gaussian Blur 18.4 19.3 7.8
Pixelization 72.4 60.6 63.1
DeepPrivacy [3] 99.1 98.9 94.2
DisguisOR (Masked Texture) 98.2 85.3 74.7
DisguisOR (Maskless Texture) 100.0 92.8 82.8

Table 6 PCKh@0.5 results for AlphaPose [4] on differently anonymized images. Images
are taken from all scenarios across all cameras.

Anonymization Method Head Shoulder Elbow Wrist Hip Knee Ankle Avg.

Blackening 58.8 76.1 71.6 63.7 66.7 31.4 25.7 56.4
Pixelization 71.1 79.0 74.5 65.9 72.2 32.5 26.1 61.4
Gaussian Blur 72.6 81.5 76.8 67.3 74.2 34.1 26.3 63.0
DisguisOR 78.2 82.0 77.4 67.4 76.2 33.9 27.0 65.0

4 Appendix

For reproducibility, we provide the GitHub repository link and python ver-
sion for each method that we have used in this paper. All computations were
performed on a computer with 64GB of RAM and an NVIDIA GeForce RTX
2080 Ti. DeepPrivacy needed approximately 2.44s for anonymizing each frame
(i.e., 4 images),while DisguisOR needed approximately 6.47s for anonymizing
each frame (i.e., 4 images) (see Table 7). The majority of this time is spent
on point cloud alignment and rendering, which could be made more efficient.
More specifically, it needed 0.52s for 2D human pose estimation, 0.23 for 3D
human pose estimation, 0.62s for human mesh estimation and 3.74s for reg-
istration and 1.36s rendering. The memory footprint of DeepPrivacy reached
around 4.6GB, while DisguisOR used approximately 6.5GB.

Table 7 The runtime for each frame (i.e., 4 images) of DisguisOR split into respective
stages.

Stage Runtime (seconds)

2D Human Pose Estimation 0.52
3D Human Pose Esimtation 0.23
Human Mesh Estimation 0.62
Point Cloud Registration 3.74
Rendering 1.36

Total 6.47
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• DisguisOR https://github.com/wngTn/disguisor (Python 3.7.2)

– DEKR [6] https://github.com/HRNet/DEKR (Python 3.7.2)
– VoxelPose [7] https://github.com/microsoft/voxelpose-pytorch (Python
3.10.2)

– EasyMocap [8] https://github.com/zju3dv/EasyMocap (Python 3.6.2)
– SMPL [9] https://smpl.is.tue.mpg.de

• Evaluation code versions

– DSFD [2] https://github.com/hukkelas/DSFD-Pytorch-Inference
(Python 3.8.13)

– DeepPrivacy [3] https://github.com/hukkelas/DeepPrivacy (Python
3.8.2)

– AlphaPose [4] https://github.com/MVIG-SJTU/AlphaPose (Python
3.7.2)
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