
An introduction to thermodynamic 1 

integration and application to dynamic 2 

causal models – Supplementary material 3 

 4 

S1 A primer on Dynamic Causal Models 5 

In this section, we provide a short introduction to dynamic causal modelling (DCM). Since 6 

the examples in the main text focus on fMRI data, and we limit our discussion to DCM for 7 

fMRI (Friston, Harrison, & Penny, 2003; K. E. Stephan et al., 2008; K. E. Stephan, Weiskopf, 8 

Drysdale, Robinson, & Friston, 2007). 9 

DCM for fMRI is characterized by two layers: first, a set of ordinary differential equations 10 

that model the dynamics of interacting neuronal states 𝑥 and local hemodynamic states ℎ. 11 

Second, the hemodynamic states enter a static nonlinear observation equation that relates 12 

venous blood volume and deoxyhemoglobin content to measured BOLD signal changes. 13 

In the following, we discuss only the most relevant equations, in order to convey an 14 

understanding of the type of problem that model inversion in DCM faces. 15 

The general form of the dynamics of the neuronal layer is 16 

𝑑𝑥

𝑑𝑡
= 𝑓(𝑥, 𝑢, 𝜃 ) (1) 17 

where 𝑥 = (𝑥 , … , 𝑥 )  describes the neuronal states of 𝑁  regions, 𝑢 = (𝑢 , … , 𝑢 ) 18 

represents the time series of 𝑀  experimental manipulations or inputs, and 𝜃  are the 19 

connectivity parameters that determine the neuronal dynamics. Using a second order 20 

Taylor expansion (Stephan et al., 2008), the dynamics 𝑓 can be approximated as: 21 

𝑑𝑥

𝑑𝑡
= 𝐴𝑥 + 𝑢 𝐵 𝑥 + 𝐶𝑢 + 𝑥 𝐷 𝑥 . (2) 22 

The connectivity parameters 𝜃  can be divided into four subsets: The 𝑁 × 𝑁  matrix 𝐴 23 

describes endogenous connectivity strengths between regions. The set of 𝑁 × 𝑁 matrices 24 

𝐵 = {𝐵 , … , 𝐵 } encodes modulatory effects of inputs on connections between regions. 25 

The 𝑁 × 𝑀 matrix 𝐶 describes the direct effects of driving inputs on regions. Finally, the 26 

𝑁 × 𝑁 matrices 𝐷 = {𝐷 , … , 𝐷 } denote second-order interactions between two regions 27 



that affect a third one. Linear DCMs use 𝐴 and 𝐶 matrices, bilinear DCMs contain at least 28 

one non-zero 𝐵  matrix, and nonlinear DCMs contain at least one non-zero 𝐷  matrix. 29 

Together 𝜃 = {𝐴, 𝐵, 𝐶, 𝐷} fully describe the dynamics of the neuronal layer.  30 

The hemodynamic model of DCM originates from the Balloon model proposed by Buxton, 31 

Wong, and Frank (1998) and extended by Friston (2002) and K. E. Stephan et al. (2007). 32 

In brief, it describes how changes in neuronal states locally alter cerebral blood flow, 33 

which, in turn, affects venous blood volume and deoxyhemoglobin content. The model 34 

consists of a cascade of deterministic differential equations: 35 

𝑑ℎ

𝑑𝑡
= 𝑙(ℎ, 𝑥, 𝜃 ), (3) 36 

where ℎ = (ℎ , … , ℎ )  denotes hemodynamic states in each of  𝑁  regions. Detailed 37 

equations and the meaning of the hemodynamic parameters 𝜃  can be found in K. E. 38 

Stephan et al. (2007). It is worth noting that the hemodynamic equations are nonlinear 39 

and that the original implementation in SPM uses a local (bi)linear approximation 40 

(Friston et al., 2003). 41 

Finally, hemodynamic states enter a static nonlinear observation equation 𝑔  with 42 

parameters 𝜃  that models the BOLD signal 𝑦: 43 

𝑦 = 𝑔 ℎ, 𝜃 + 𝑋 𝛽 + 𝜀 (4) 44 

The term 𝑋  is a matrix of confound regressors that accounts for constant terms and low 45 

frequency fluctuations. The Gaussian observation noise 𝜀  is characterized by the 46 

covariance matrix 𝛱 : 47 

𝜀~𝑁(0, 𝛱 ). (5) 48 

The precision matrix 𝛱  is represented as a linear combination 𝛱 = ∑ exp(𝜆 ) 𝑄  . The 49 

precision components 𝑄  serve to account for temporal autocorrelation and regional 50 

differences in noise variance (Friston et al., 2003). Here, we assume that the time series 51 

have been whitened and therefore only account for region-specific variances. In this case, 52 

each 𝑄  is a diagonal matrix with diagonal elements belonging to region 𝑟 set to 1, and 0 53 

elsewhere.  54 

To complete the generative model, the prior distribution of the parameters 𝛩 =55 

(𝜃 , 𝜃 , 𝜃 , 𝛽) and hyperparameters 𝛬 needs to be specified. For the results presented in 56 

this paper, the priors have been largely matched to SPM8 release 5236 57 



(http://www.fil.ion.ucl.ac.uk/spm), except for the scaling of the prior variance of the 58 

coefficients of the confound matrix 𝑋 , which was adapted to the scaling of the data as 59 

explained in S8. All parameters’ prior distributions are Gaussian, and when positivity 60 

needs to be enforced, an adequate transformation function is used. 61 

 62 

S2 Bayesian model comparison and selection 63 

In this section, we provide a summary of Bayesian model selection (BMS). Detailed 64 

treatments can be found in standard textbooks, such as MacKay (2004). 65 

Bayesian inference involves the specification of a probabilistic or generative model 𝑚 66 

with data 𝑦 and parameters 𝜃. The model has two components: the prior density over 𝜃, 67 

𝑝(𝜃|𝑚), and the likelihood function 𝑝(𝑦|𝜃, 𝑚). These are combined to form the posterior 68 

distribution using Bayes’ theorem. Conditioning on a given model 𝑚 , the posterior 69 

distribution is: 70 

𝑝(𝜃|𝑦, 𝑚) =
𝑝(𝑦|𝜃, 𝑚)𝑝(𝜃|𝑚)

𝑝(𝑦|𝑚)
, (6) 71 

𝑝(𝑦|𝑚) = ∫ 𝑝(𝑦|𝜃, 𝑚)𝑝(𝜃|𝑚)𝑑𝜃. (7) 72 

The normalization constant in the denominator, 𝑝(𝑦|𝑚) , is known as the marginal 73 

likelihood or model evidence and corresponds to the likelihood of the data after 74 

marginalizing out the parameters of the model. 75 

In practice, given the monotonicity of the logarithmic function, either the evidence or its 76 

logarithm can be used to score a set of candidate models 𝑚 , … , 𝑚  (Bayesian model 77 

comparison) and to identify the best model within the model space studied (Bayesian 78 

model selection; BMS). One common metric for assessing the relative goodness of two 79 

models is the Bayes factor (Kass & Raftery, 1995): 80 

𝐵 , =
𝑝( 𝑦 ∣∣ 𝑚 )

𝑝 𝑦 ∣∣ 𝑚
. (8) 81 

or, equivalently, the exponential of the difference in LME of two models.  82 

BMS has gained an important role in neuroimaging, not only for DCM but also in other 83 

contexts requiring model comparison, such as EEG source reconstruction (Henson, 84 

Mattout, Phillips, & Friston, 2009; Wipf & Nagarajan, 2009), or computational 85 



neuroimaging (Friston & Dolan, 2010; Klaas E. Stephan, Iglesias, Heinzle, & Diaconescu, 86 

2015; K. E. Stephan et al., 2017). Group-level BMS techniques exist which account for 87 

individual heterogeneity by treating the model as a random variable in the population 88 

(Friston et al., 2016; Rigoux, Stephan, Friston, & Daunizeau, 2014; K. E. Stephan, Penny, 89 

Daunizeau, Moran, & Friston, 2009). Finally, Bayesian model averaging allows one to 90 

compute an average posterior over models (Penny et al., 2010; Trujillo-Barreto, Aubert-91 

Vázquez, & Valdés-Sosa, 2004), weighted by the posterior probability of each model. 92 

Critically, these approaches rely on an accurate estimate of each model’s evidence. 93 

As mentioned above, except for some special cases, the model evidence cannot be 94 

determined analytically, and one typically has to resort to approximations. One 95 

computationally efficient option is VB {for textbook treatments, see \Koller, 2009 96 

#413;MacKay, 2004 #35}, which provides a lower bound of the LME. An alternative, 97 

which we explore in detail here, is MCMC sampling. This family of methods is 98 

characterized by simulating a Markov process whose stationary distribution corresponds 99 

to the posterior distribution 𝑝(𝜃|𝑦, 𝑚) (for a textbook reference, see Robert & Casella, 100 

2010). 101 

 102 

S3 A primer on Markov chain Monte Carlo 103 

In this section, we provide a short introduction to Markov chain Monte Carlo (MCMC). 104 

Thermodynamic integration (TI) requires obtaining samples from a series of power 105 

posterior distributions 𝑝 (𝜃|𝑦, 𝑚) ∝ 𝑝(𝑦|𝜃, 𝑚) 𝑝(𝜃|𝑚) , with 0 = 𝛽 < 𝛽 … < 𝛽 = 1 . 106 

An efficient way to achieve this is to use independent Markov chain Monte Carlo (MCMC) 107 

samplers (one for each of the 𝛽 ) to generate samples from the power posteriors. 108 

MCMC is a powerful technique that can be used to generate samples from any arbitrary 109 

target probability distribution 𝑝(𝑥) , as long as 𝑝(𝑥)  can be evaluated for any given 110 

argument 𝑥, up to a multiplicative constant 𝑐. 𝑐 can be unknown, but has to be constant, 111 

i.e. cannot depend on 𝑥 . To this end, the MCMC sampler generates a chain of samples 112 

where each sample depends on the previous sample in the chain, but collectively, the set 113 

of all samples in the chain are distributed according to the target distribution 𝑝(𝑥). To 114 

guarantee the latter point, the samples in the chain are generated sequentially according 115 

to the following procedure: Let 𝑥  be the last sample currently in the chain, generate a so-116 

called proposal 𝑥’ via a proposal distribution 𝑞(𝑥’|𝑥 ). The simplest way to do this is by 117 



adding zero-mean Gaussian noise to 𝑥 . Then calculate the so-called Metropolis-Hastings 118 

acceptance rate 𝑎, given by: 119 

𝑎 = min 1,
𝑝(𝑥 )𝑞(𝑥_𝑡|𝑥 )

𝑝(𝑥 )𝑞(𝑥 |𝑥 )
. 120 

Finally, draw a random number 𝑢 that is uniformly distributed between 0 and 1. If 𝑢 < 𝑎, 121 

the proposal is accepted and appended to the end of the chain (𝑥 = 𝑥’), otherwise the 122 

proposal is rejected and the last sample is repeated (𝑥 = 𝑥 ). 123 

Following these steps, it is guaranteed that in the limit of an infinitely long chain, the 124 

elements of the chain represent samples from the target distribution, irrespective of the 125 

value of the first sample in the chain. More detailed treatments of MCMC can be found in 126 

standard textbooks (Brooks, Gelman, Jones, & Meng, 2011). In practice, the fact that MCMC 127 

algorithm can only run for a finite time needs to be taken into account. In this context, it 128 

is necessary to (1) account for the starting position of the chain and (2) monitor the 129 

convergence of the algorithm, i.e. to determine if the MCMC algorithm has already run for 130 

long enough such that the elements of the chain can be regarded as approximately 131 

representing samples from the desired target distribution. 132 

The first problem is typically dealt with by discarding a number of samples at the 133 

beginning of the chain (typically the first half). The discarded part of the chain is generally 134 

referred to as burn-in period. 135 

For the second problem, several techniques have been developed to assess the 136 

convergence of a MCMC sampler. One popular method, which is used throughout this 137 

paper, is the Gelman-Rubin’s potential scale reduction factor 𝑅  (Gelman & Rubin, 1992). 138 

This method tests parameter-wise convergence by comparing the variance of segments 139 

of the chains. A 𝑅 statistic below 1.1 is a commonly accepted criterion for convergence. To 140 

compute this score, the samples of the log likelihood of the first (after the burn-in phase) 141 

and last third section of each chain were compared. 142 

Since TI already requires obtaining samples from a series of power posterior 143 

distributions, convergence of the MCMC samplers can be expedited by adopting a 144 

population MCMC approach in which chains associated with neighboring temperatures 145 

(i.e., 𝛽  and 𝛽 )  are allowed to interact by means of a “swap” accept-reject (AR) step 146 

(McDowell, Dyckman, Austin, & Clementz, 2008; Swendsen & Wang, 1986). In brief, 147 

population MCMC defines a joint product distribution 148 



𝑝(𝜃 |𝑦, 𝛽 , 𝑚) =
𝑝(𝑦|𝜃 , 𝑚) 𝑝(𝜃 |𝑚)

𝑍
, (9) 149 

where N is the number of distributions or chains. The goal is to obtain samples from this 150 

distribution by two types of AR steps: First, local steps are used to sample parameters θ  151 

from 𝑝 (𝜃 |𝑦, 𝑚). Second, samples are obtained using the swapping step in which a set of 152 

neighboring parameters 𝜃 , 𝜃  are randomly chosen and then exchanged between 153 

chains with probability: 154 

min(1, (𝑝(𝑦|𝜃 , 𝑚) 𝑝(𝜃 |𝑚)/((𝑝(𝑦|𝜃 , 𝑚)  
𝑝(𝜃 |𝑚))) . (10) 155 

This AR step does not change the stationary distribution of any of the chains. 156 

Population MCMC can be easily parallelized, with or without exploiting GPUs (Aponte et 157 

al., 2016) as each of the chains is independent of the rest of the ensemble. Swapping steps 158 

need to be performed serially but, assuming that the likelihood and prior functions have 159 

been already evaluated, this method increases the efficiency of the sampling scheme while 160 

only inducing negligible computational costs (for example, Aponte et al., 2016; 161 

Calderhead & Girolami, 2009). Intuitively, the increase in efficiency is achieved by 162 

exploring the sampling space in a way comparable to simulated annealing, i.e., allowing 163 

some of the chains to explore the parameter space more freely by relaxing the likelihood 164 

function.  165 

 166 

S4 Derivation of the equilibrium distribution for the ideal gas example 167 

In this section, we present the derivation of the equilibrium distribution for the ideal gas 168 

example in the main text. As outlined in the main text, the equilibrium distribution is 169 

attained as the maximum entropy solution, which can be found using a variational 170 

Lagrangian with two constraints represented by the Lagrange multipliers 𝜆  and 𝜆  (see 171 

Blundell & Blundell, 2009; Jaynes, 1957): 172 

𝛿

𝛿𝑞
−𝑘 𝑞(𝜃) ln 𝑞(𝜃) 𝑑𝜃 − 𝜆 𝑞(𝜃)𝜙(𝜃)𝑑𝜃 − 𝑈 − 𝜆 𝑞(𝜃)𝑑𝜃 − 1 = 0. (11) 173 

Noting that 174 

−
𝛿

𝛿𝑞
𝑘 𝑞(𝜃) ln 𝑞(𝜃) 𝑑𝜃 = 𝑘 (−1 − ln 𝑞(𝜃)) (12) 175 



−
𝛿

𝛿𝑞
𝜆 𝑞(𝜃)𝜙(𝜃)𝑑𝜃 − 𝑈 = −𝜆 𝜙(𝜃), (13) 176 

−
𝛿

𝛿𝑞
𝜆 𝑞(𝜃)𝑑𝜃 − 1 = −𝜆 , (14) 177 

the Lagrangian yields 178 

𝑘 ln 𝑞(𝜃) = −𝜆 𝜙(𝜃) − 𝜆 − 𝑘 , (15) 179 

𝑞(𝜃) =
1

exp
λ
𝑘

+ 1
exp −

𝜆

𝑘
𝜙(𝜃) . (16) 180 

The term 𝜆  constitutes the definition of inverse temperature in statistical physics 181 

(Blundell & Blundell, 2009; Jaynes, 1957): 182 

1

𝑇
≝ 𝜆 . (17) 183 

The term =  is commonly represented by the symbol 𝛽 . In order to derive the 184 

second constant λ , we write: 185 

𝑞(𝜃) =
1

𝑍
exp −

𝜙(𝜃)

𝑘 𝑇
, (18) 186 

where 𝑍 is referred to as the partition function of the system: 187 

𝑍 ≝ exp −
𝜙(𝜃)

𝑘 𝑇
𝑑𝜃 . (19) 188 

Hence, the term exp + 1  is the normalization constant of 𝑞(𝜃) , and thus 𝜆 =189 

𝑘 (ln 𝑍 − 1).  190 

 191 

 192 

S5 Variational Bayes under the Laplace approximation for DCM 193 

This section introduces the variational Bayes under the Laplace (VBL) approximation for 194 

inverting dynamic causal models. For an in-depth discussion see (Friston, Mattout, 195 

Trujillo-Barreto, Ashburner, & Penny, 2007). 196 



Commonly, in order to maximize −𝐹 , a mean field approximation of 𝑞 is used. In other 197 

words, the distribution 𝑞 is assumed to factorize into different sets of parameters, each of 198 

which defines a more tractable optimization problem. In the case of DCM, 𝑞 is assumed to 199 

have the form: 200 

𝑞(Θ, 𝛬) = 𝑞(Θ)𝑞(Λ), (20) 201 

i.e., the parameters Θ = (𝜃 , 𝜃 , 𝜃 , 𝛽)  and the hyperparameters Λ  are assumed to be 202 

conditionally independent. The functional −𝐹  can be optimized iteratively with respect 203 

to Θ  and Λ  converging to a maximum −𝐹 ≤ ln 𝑝(𝑦|𝑚)  (Koller, 2009). This rests on 204 

maximizing the variational energies: 205 

ln 𝑞(𝛩) = 𝑞(𝛬) ln 𝑝(𝑦, 𝛩, 𝛬)𝑑𝛬 + 𝑐 , (21) 206 

ln 𝑞(𝛬) = 𝑞(𝛩) ln 𝑝(𝑦, 𝛩, 𝛬)𝑑𝛩 + 𝑐 . (22) 207 

where 𝑐  and 𝑐  are constants with respect to 𝛩 and 𝛬, respectively. In DCM, it is typically 208 

assumed that all terms are Gaussian (but see Raman, Deserno, Schlagenhauf, and Stephan 209 

(2016) and Yao et al. (2018) who used conjugate priors for the noise terms).  210 

Despite the mean field approximation, the integrals in Eq. 22 and 21 and  cannot be solved 211 

analytically because of the nonlinearities of the forward model (Eq. 4). This problem is 212 

circumvented by approximating the log of the unnormalized posterior with a second 213 

order Taylor expansion on a local maximum (or equivalently, the unnormalized posterior 214 

is assumed to be Gaussian) and optimizing the objective function ln 𝑝(𝑦, 𝛩, 𝛬) through 215 

gradient ascent (but see Lomakina et al. (2015) for an alternative based on Gaussian 216 

processes). This approach is called the Laplace approximation (Friston et al., 2007) and 217 

underlies other methods such as BIC (Schwarz, 1978) or when the normalization constant 218 

of an approximate, tractable posterior is directly used (Kass & Raftery, 1995). As a 219 

consequence of this approximation, the variational free energy is no longer guaranteed to 220 

represent a lower bound on the log evidence (Wipf & Nagarajan, 2009). A detailed 221 

treatment of VBL can be found in Friston et al. (2007). In section S9, we present a 222 

simplified version of the derivation of the VBL estimate of the free energy and an 223 

explicit expression for the accuracy term. 224 



The VBL algorithm used here was the implementation available in the software package 225 

SPM8 (release 5236), which employs a gradient ascent scheme to optimize the marginal 226 

distributions 𝑞(𝛩) and 𝑞(Λ) (Friston et al., 2007). 227 

 228 

S6 Conventional sampling-based estimation of model evidence  229 

In this section, we provide summaries to two popular sampling-based estimators for the 230 

log model evidence: the prior arithmetic mean estimator (AME) and the posterior 231 

harmonic mean estimator (HME). 232 

Prior arithmetic mean estimator (AME) 233 

Importance sampling is a Monte Carlo method for approximating the expected value of a 234 

random variable ℎ(X) under the density 𝑝 by means of an auxiliary density function 𝑤(𝑋), 235 

which is required to be absolutely continuous with respect to 𝑝 (Robert & Casella, 2010; 236 

p. 92, Def. 3.9), or less formally, the auxiliary density w should share the same support as 237 

p to avoid zeros in the denominator: 238 

ℎ(𝑥)𝑝(𝑥)𝑑𝑥 =
ℎ(𝑥)𝑝(𝑥)𝑤(𝑥)

𝑤(𝑥)
𝑑𝑥. (23) 239 

From the strong law of large numbers, if this expected value exists, the process  240 

lim
→

1

K
ℎ(𝑥 )

𝑝(𝑥 )

𝑤(𝑥 )
(24) 241 

converges almost surely to Eq. 9 when the samples 𝑥 , … , 𝑥  have been drawn from the 242 

auxiliary distribution 𝑤.  243 

In order to approximate the model evidence by importance sampling, the simplest choice 244 

of the auxiliary density is the prior distribution, 𝑤 = 𝑝(𝜃 ∣ 𝑚). This results in the prior 245 

arithmetic mean estimator (AME): 246 

𝑝(𝑦|𝑚) = 𝑝(𝑦|𝜃, 𝑚)𝑝(𝜃|𝑚)𝑑𝜃 = 𝑝(𝑦|𝜃, 𝑚)𝑝(𝜃|𝑚)
𝑝(𝜃|𝑚)

𝑝(𝜃|𝑚)
𝑑𝜃 , (25) 247 

𝑝 =
1

𝐾
𝑝(𝑦|𝜃 , 𝑚) . (26) 248 

where samples 𝜃  have been obtained from the prior distribution 𝑝(𝜃|𝑚) . Because 249 

samples of the likelihood 𝑝(𝑦|𝜃, 𝑚)  can greatly exceed the range of double precision 250 



floating point numbers, it is necessary to normalize the likelihood function in log space. 251 

This can be achieved with the following formula: 252 

ln 𝑝 = ln 𝛼 − ln 𝐾 + ln exp[ln 𝑝(𝑦|𝜃 , 𝑚) − ln 𝛼], (27) 253 

where 𝛼 > 0  is an arbitrary constant. In all analyses reported here, 𝛼 was set to 254 

max 𝑝(𝑦|𝜃 , 𝑚).   255 

A serious shortcoming of AME is that in the great majority of situations most samples 256 

drawn from the prior have very low likelihood. Therefore, an extremely large number of 257 

samples is required to ensure that high likelihood regions of the parameter space are 258 

taken into account by the estimator; otherwise, the estimator suffers from high variance 259 

(Vyshemirsky & Girolami, 2008). 260 

Posterior harmonic mean estimator (HME) 261 

The second choice for the auxiliary density is the posterior distribution, which results in 262 

the posterior harmonic mean estimator (HME). This estimator has received divergent 263 

appraisals in the literature as a method for computing the LME (for example, Kass & 264 

Raftery, 1995; Wolpert & Schmidler, 2012). Re-expressing the model evidence, the HME 265 

can be derived as follows: 266 

1

𝑝(𝑦|𝑚)
=

𝑝(𝜃|𝑚)

𝑝(𝑦|𝑚)
𝑑𝜃, 267 

=
𝑝(𝑦|𝜃, 𝑚)𝑝(𝜃|𝑚)

𝑝(𝑦|𝜃, 𝑚)𝑝(𝑦|𝑚)
𝑑𝜃 , 268 

=
𝑝(𝜃|𝑦, 𝑚)

𝑝(𝑦|𝜃, 𝑚)
𝑑𝜃 (28) 269 

𝑝 =  
1

𝐾

1

𝑝(𝑦|𝜃 , 𝑚)
. (29) 270 

Here, samples 𝜃  are drawn from the posterior distribution 𝑝(𝜃|𝑦, 𝑚).  271 

In order to avoid numerical instabilities, it is again necessary to normalize in log space, 272 

using the formula 273 

ln 𝑝 = ln 𝐾 + ln 𝛼 − ln exp[−ln 𝑝(𝑦|𝜃 , 𝑚) + ln 𝛼] . (30) 274 

Here, ln 𝛼 has been chosen to be max −ln 𝑝(𝑦|𝜃 , 𝑚). 275 



A disadvantage of HME is that its variance might be infinite when the likelihood function 276 

is not heavy-tailed (Raftery, Newton, Satagopan, & Krivitsky, 2007), which has serious 277 

consequences for the convergence rate of a wide variety of models (Wolpert & Schmidler, 278 

2012). A second problem is that the samples used for HME are obtained from the posterior 279 

distribution only. This leads to the opposite behavior as for AME: because the contribution 280 

of the prior to the LME might not be appropriately accounted for, the HME tends to 281 

overestimate the model evidence, a behavior that can be difficult to diagnose (Lartillot & 282 

Philippe, 2006). Several improvements of the HME have been proposed to account for this 283 

shortcoming (for example, Raftery et al., 2007). 284 

 285 

Implementation 286 

Since TI requires samples from both the prior and the posterior distribution, which 287 

correspond to the power posteriors with 𝛽 = 0  and 𝛽 = 1 , respectively, the samples 288 

acquired for TI can be used for computing the other sampling-based estimators, AME and 289 

HME. In our comparisons throughout this paper, we have used this technique to ensure 290 

that any observed differences between estimators are not simply due to differences in the 291 

implementation of the samplers. 292 

 293 

S7 Connectivity parameters of the synthetic models 294 

The connectivity parameters of the synthetic models used here are shown below. 295 

Model 1 296 

Model one did not include any bilinear or non-linear terms. 297 

𝐴 =
−0.5 0 0

0 −0.5 0
0 0 −0.5

,     𝐶 =
1 0
0 1
1 1

. 298 

Model 2 299 

Models 2 to 5 used the same A and C matrices. In addition, models 2 to 4 included one 300 

bilinear term (B matrices), and model 5 included a nonlinear term (D matrices). 301 



𝐴 =
−0.5 0 −0.25

0 −0.5 −0.25
0.5 0.5 −0.5

,     𝐶 =
1 0
0 1
0 0

, 302 

𝐵 =
0 0 0
0 0 0
0 3 0

,     𝐵 =
0 0 0
0 0 0
0 0 0

. 303 

Model 3 304 

Because model 3 shared the same A and C matrix with model 2, we only display the B 305 

matrices. 306 

𝐵 =
0 0 0
0 0 0
0 0 0

,     𝐵 =
0 0 0
0 0 0
3 0 0

. 307 

Model 4 308 

Again, only the B matrices differed between models 2, 3, and 4. 309 

𝐵 =
0 0 0
0 0 0
0 0 0

,     𝐵 =
0 0 0
0 0 0
0 0 −2

. 310 

Model 5 311 

Model 5 included no bilinear term but included one non-linear term. 312 

𝐷 =
0 0 0
0 0 0
0 0 0

,     𝐷 =
0 0 0
0 0 0
1 0 0

,      𝐷 =
0 0 0
0 0 0
0 0 0

. 313 

The exact data structures can be downloaded from the ETH research collection (ETH 314 

Zurich, 2020). 315 

 316 

S8 Scaling of BOLD signals 317 

In the SPM version used here (5236), BOLD signals 𝑦 are rescaled with respect to their ℓ  318 

norm, such that 319 

|𝑦| = 4. (A. 1) 320 

In DCM, the observation equation (see Eq. 4) can be written as 321 



𝑦 = 𝑔 ℎ, 𝜃 + 𝑋 𝛽 + 𝜀 (A. 2) 322 

where 𝑋  represents confounding factors. This matrix usually consists of cosine functions 323 

that account for baseline effects and low frequency components and can be imagined as 324 

implementing a model of structured noise (scanner-related fluctuations in signal 325 

intensity) that is distinct from the model’s residuals. We assume N observations such that 326 

data from a region is 𝑦[𝑡], 𝑡 = 0, … , 𝑁 − 1, and the components of 𝑋 = [𝑥 , … , 𝑥 ] , 327 

𝐾 > 0 are 328 

𝑥 [𝑡] = cos(
2𝜋𝑘𝑡

𝑁
). (A. 3) 329 

In this case, 𝑋 𝑋  is a diagonal matrix as all base functions are orthogonal. The diagonal 330 

elements are given by 331 

cos
2𝜋𝜔𝑛

𝑁
=

𝑁

2
, (A. 4) 332 

Thus, 333 

𝑋 𝑋 =
𝑁

2
𝐼. (A. 5) 334 

The posterior variance of the regressors conditioned on the predictions from DCM, the 335 

variance of the error 𝜎 , and the prior variance 𝜎 , is  336 

(𝜎 𝑋 𝑋 + 𝜎 𝐼) =
𝜎 𝑁

2
𝐼 + 𝜎 𝐼 , (A. 6) 337 

 338 

=
𝑁

2𝜎
+

1

𝜎
𝐼. (A. 7) 339 

To derive the prior variance of the signal predicted by 𝑋 𝛽, we note that for the predicted 340 

signal 𝑦: 341 

𝐸[𝑦[𝑡] ] = 𝐸 𝛽 cos
2𝜋𝑡𝜔

𝑁
, (A. 8) 342 

=  𝐸 𝛽 𝛽 cos
2𝜋𝑡𝜔

𝑁
cos

2𝜋𝑡𝑘

𝑁
,

. (A. 9) 343 



Because the coefficients are assumed to be uncorrelated and to have zero mean, it follows 344 

that 345 

=  𝑉𝑎𝑟(𝛽 ) cos
2𝜋𝑡𝜔

𝑁
, (A. 10) 346 

= 𝜎 cos
2𝜋𝑡𝜔

𝑁
− cos

2𝜋𝑡𝜔

𝑁
. (A. 11) 347 

Assuming that 2𝑀𝑡/𝑁 is an integer, it follows that 348 

= 𝜎
𝑀

2
− cos

2𝜋𝑡𝜔

𝑁
. (A. 12) 349 

It follows that 350 

𝜎 (𝑀 − 𝐾)

2
≤ 𝐸[𝑦[𝑡] ] = 𝑉𝑎𝑟(𝑦[𝑡]) ≤

𝜎 𝑀

2
. (A. 13) 351 

This constitutes an approximation to the prior variance of the signal. Although in the SPM 352 

implementation of DCM used here, 𝜎  is set to 10 , here we use a more pragmatic value 353 

𝜎 = |𝑦| = 4. From Eq. A.12, it can be seen that this constitutes a more conservative 354 

prior variance than the SPM implementation, but still liberal enough to a priori easily 355 

account for the totality of the variance in the data. 356 

 357 

S9 Derivation of variational negative free energy under the Laplace 358 

approximation 359 

The expression for the variational negative free energy can be derived by noting that Eq. 360 

34 in the main text can be written as an energy term plus an entropy term 361 

−𝐹 = E[ln 𝑝(𝑦, 𝜃)] ( ) − E[ln 𝑞(𝜃)] ( ). (A. 14) 362 

For simplicity, in the rest of this section, we collapse parameters 𝛩 and hyperparameters 363 

𝛬  into a 𝑑-dimensional vector 𝜃, assuming that a maximum has been obtained. Also, we 364 

assume that all densities are conditioned on model m, and make this assumption implicit. 365 

Moreover, we assume that the prior distribution of parameters 𝜃  is a Gaussian 366 

distribution centered at 𝜃  with covariance 𝛱 . 367 



According to the Laplace approximation, 𝑞(𝜃) is a Gaussian distribution with mean 𝜃∗ =368 

arg max 𝑝(𝑦, 𝜃) and variance 369 

𝛱 = −
𝜕 ln 𝑝(𝑦, 𝜃)

𝜕𝜃
= 𝛱 −

𝜕 ln 𝑝(𝑦|𝜃)

𝜕𝜃
. (A. 15) 370 

We denote the negative Hessian of the likelihood or observed Fisher information in the 371 

following as 𝛱 . 372 

The energy term in Eq. A. 14 is approximated using the Laplace method, which yields 373 

𝐸[ln 𝑝(𝑦, 𝜃)] ( ) ≈ ln 𝑝(𝑦, 𝜃∗) −
1

2
E[(𝜃∗ − 𝜃) 𝛱(𝜃∗ − 𝜃)] ( ), (A. 16) 374 

= ln 𝑝(𝑦, 𝜃∗) −
1

2
𝑡𝑟 𝛱E[(𝜃∗ − 𝜃)(𝜃∗ − 𝜃) ] ( ) , (A. 17) 375 

= ln 𝑝 (𝑦, 𝜃∗) −
1

2
𝑡𝑟(𝛱𝛱 ) = ln 𝑝(𝑦, 𝜃∗) −

1

2
𝑑. (A. 18) 376 

where 𝑡𝑟 denotes the trace operator.  377 

The last term in Eq. A. 14  is the entropy of a Gaussian distribution, which is given by: 378 

−𝐸[ln 𝑞(𝜃)] ( ) =
1

2
(𝑑 ln 2𝜋 +  𝑑 − ln|𝛱|). (A. 19) 379 

where 𝛱 is the precision of 𝑞. 380 

Plugging Eqs. A. 18 and A. 19 into Eq. A. 14, the variational free energy is given by 381 

−𝐹 = ln 𝑝(𝑦, 𝜃∗) +
1

2
(𝑑 ln2𝜋 − ln|𝛱|) . (A. 20) 382 

The first term on the right of Eq. A. 20 can be expanded to obtain the full expression: 383 

ln 𝑝(𝑦, 𝜃∗) =  ln 𝑝(𝑦|𝜃∗) + ln 𝑝(𝜃∗), (A. 21) 384 

= ln 𝑝(𝑦|𝜃∗) −
1

2
𝑑 ln 2𝜋 +

1

2
ln|𝛱 | −

1

2
(𝜃∗ − 𝜃 ) 𝛱 (𝜃∗ − 𝜃 ). (A. 22) 385 

where 𝜃  and 𝛱  are the mean and precision of the prior density, respectively. By 386 

inserting Eq.  Error! Reference source not found. into Eq. A. 20, the scheme proposed 387 

by Friston et al. (2007) can be written as: 388 

−𝐹 = ln 𝑝(𝑦|𝜃∗) +
1

2
ln

|𝛱 |

|𝛱|
 −

1

2
(𝜃∗ − 𝜃 ) 𝛱 (𝜃∗ − 𝜃 ). (A. 23) 389 



Although VBL is typically orders of magnitude faster than MCMC sampling, it exhibits 390 

several limitations: it is susceptible to (i) local extrema, (ii) violations of the distributional 391 

assumptions imposed on the posterior, (iii) violations of the conditional independence 392 

assumptions of the mean field approximation (see Daunizeau, David, & Stephan, 2011 for 393 

discussion), and (iv) it is only defined when the Hessian in Eq. A. 15 is not singular. 394 

Returning to our theme of connecting TI to VBL, one can write the variational negative 395 

free energy in terms of an approximate accuracy and complexity term (Eq. Error! 396 

Reference source not found.). One observes that the accuracy term can be computed as 397 

−𝐹 + 𝐾𝐿 𝑞(𝜃)||𝑝(𝜃) = 𝐴 . (A. 24) 398 

Given a Gaussian prior and posterior, the KL divergence has the following analytical form: 399 

𝐾𝐿 𝑞(𝜃)||𝑝(𝜃) =
1

2
ln

|𝛱|

|𝛱 |
+ 𝑡𝑟(𝛱 𝛱 ) − 𝑑 + (𝜃∗ − 𝜃 ) 𝛱 (𝜃∗ − 𝜃 ) . (A. 25) 400 

Replacing terms, we obtain 401 

𝐴 = 𝐸[ln 𝑝(𝑦|𝜃)] ( ), (A. 26) 402 

≈ A = ln 𝑝(𝑦|𝜃∗) +
𝑡𝑟(𝛱 𝛱 )

2
−

𝑑

2
. (A. 27) 403 

A more familiar expression for the accuracy can be derived by noting that the posterior 404 

covariance can be written as the sum of the negative Hessian of the likelihood plus the 405 

prior covariance, such that 406 

A = ln 𝑝(𝑦|𝜃∗) +
1

2
𝑡𝑟

𝛱 + 𝛱 − 𝛱

𝛱 + 𝛱
−

𝑑

2
, (A. 28) 407 

= ln 𝑝(𝑦|𝜃∗) −
1

2
𝑡𝑟

𝛱

𝛱 + 𝛱
, (A. 29) 408 

𝕡 = 𝑡𝑟
𝛱

𝛱 + 𝛱
. (A. 30) 409 

𝕡  is the effective number of parameters proposed by Moody (1991) Eq. 18 and see 410 

Spiegelhalter, Best, Carlin, and van der Linde (2002) Eq. 15 and is commonly used for 411 

model selection. 412 

 413 



S10 Predicted fMRI time series for the attention to motion dataset 414 

 
 

Figure S1. Comparison of 10 predicted BOLD signal trajectories (for the MAP estimate) of model m4 
between TI and VBL for the “attention to motion” dataset from Buchel (1997). In order to obtain an 
unbiased impression of the variability, the predicted BOLD responses are plotted in full (i.e., including 
estimated confounds; compare Eq. 4). Both estimates are qualitatively similar, but VBL fits display 
higher variability. 

 415 

S11 Final step in the derivation of the fundamental TI equation  416 

Applying the chain rule of differentiation to the logarithm of a positive-valued function, 417 

we have the following relation: 418 

𝑑

𝑑𝛽
ln 𝑓(𝛽) =

1

𝑓(𝛽)

𝑑

𝑑𝛽
𝑓(𝛽) 419 

In the main text section Thermodynamic Integration and the origin of free energy, we 420 

have shown that the log-model evidence is given by the expression (Eq. 22 main text): 421 

ln 𝑝(𝑦|𝑚) =
𝑑

𝑑𝛽
ln 𝑝(𝑦|𝜃, 𝑚) 𝑝(𝜃|𝑚) 𝑑𝜃 𝑑𝛽 422 



Applying the above relation with 𝑓(𝛽) = ∫ 𝑝(𝑦|𝜃, 𝑚) 𝑝(𝜃|𝑚) 𝑑𝜃 = 𝑍 , we have 423 

𝑑

𝑑𝛽
ln 𝑝(𝑦|𝜃, 𝑚) 𝑝(𝜃|𝑚) 𝑑𝜃 =

𝑑
𝑑𝛽 ∫ 𝑝(𝑦|𝜃, 𝑚) 𝑝(𝜃|𝑚) 𝑑𝜃

∫ 𝑝(𝑦|𝜃, 𝑚) 𝑝(𝜃|𝑚) 𝑑𝜃
 424 

=
1

𝑍

𝑑

𝑑𝛽
𝑝(𝑦|𝜃, 𝑚) 𝑝(𝜃|𝑚) 𝑑𝜃 425 

=
1

𝑍
𝑝(𝑦|𝜃, 𝑚) 𝑝(𝜃|𝑚) ln 𝑝(𝑦|𝜃, 𝑚) 𝑑𝜃 426 

=
𝑝(𝑦|𝜃, 𝑚) 𝑝(𝜃|𝑚)

𝑍
ln 𝑝(𝑦|𝜃, 𝑚) 𝑑𝜃. 427 

Note that the last line above is the integrand in Eq. 23 in the main text. Also note that in 428 

the second line above, we have exchanged the derivative with respect to 𝛽  with the 429 

integration over 𝜃 and in the third line, we have used the derivative of an exponential 430 

function: 431 

𝑑

𝑑𝛽
𝑎 = 𝑎 ln 𝑎. 432 
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