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Further Numerical Experiments

In this supplementary material we present additional simulation results for
the regression and the classification case. In the classification case we compare
our results with a random forest. For further comparison of our method with
other procedures see Section “Numerical experiments” in the main paper.

1 Regression Problems

1.1 Set-up

To further investigate the finite sample performance of our procedure we gen-
erate data according to two additional yet simpler models, namely

(CatR) For i = 1, . . . , n, the observations are generated as
Yi = 2(Xi1 + . . .+Xiq) + εi, with iid Xi1, . . . , Xip ∼B(0.5), q ≤ p.

(FunR) For i = 1, . . . , n and j = 1, . . . , p, the functional observations Xij(t), t ∈
[0, T ], are generated according to

X̃ij(t) =

5∑
l=1

(
Bij,l sin

(
t

T
(5−Bij,l)2π

)
−Mij,l

)
,

where Bij,l ∼ U [0, 5] and Mij,l ∼ U [0, 2π] for l = 1, . . . , 5, j = 1, . . . , p, i =
1, . . . , n, and T = 300. U stands for the (continuous) uniform distribution.
Then, Xij(t) is calculated from X̃ij(t) by scaling it in direction i and then
dividing each value by 10. The regression is built by the functional linear
model

Yi = 5

q∑
j=1

∫
Xij(t)γ3, 13 (t/10)dt+ εi, q ≤ p,
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where the coefficient function γa,b(t) = ba/Γ (a)ta−1e−btI{t > 0} is the
density of the Gamma distribution. See Ramsay and Silverman (2005)
Chapter 15 or Kokoszka and Reimherr (2017) Chapter 4 for an introduc-
tion to functional linear models. Furthermore, we assume that each Xij is
observed on a dense, equidistant grid of 300 evaluation points.

The errors εi are iid standard normal in all models.

In both scenarios we investigate ‘minimal’ and ‘sparse’ cases. Specifically,
for CatR and FunR, we compare the cases q = 1, p = 2 (minimal: CatR.m and
FunR.m, respectively) and q = 3, p = 18 (sparse: (*.s)),. For all generated data
sets we use a one-sided Picard kernel K(u) = e−uI{u ≥ 0} and the results
shown are based on 500 replications each.

The weights are determined in the same way as described in the main paper
for model MixR.

1.2 Results

The minimizing weights for our six different scenarios (including MixR.m and
MixR.s) and sample size n = 100, 500, 1000 are shown in Figure 1. We present
all results for MixR here although some of them are already displayed in the
main paper for the sake of completeness. To increase comparability between
the different models we display normed weights ω̂j∑p

k=1 ω̂k
. This can also be

interpreted as separating the estimation of the weights (normed weights) and
optimization of the bandwidth (hopt =

hfun/cat
n∑p
k=1 ω̂k

). It can be seen that the
selection of relevant predictors works well, as the covariates with influence on
the response get distinctly higher weights than those without in all scenarios.
The sum over the weights for relevant covariates should be approximately one
whereas the weights for irrelevant covariates should be close to zero. Both is
visible for the simulated data.

As explained in the main paper we also compute the minimizer of Q under
the restrictions

(i) ω1 = ω2 = . . . = ωp,
(ii) ωj = 0 for all covariates with no influence on the response.

In Figure 2 the squared estimation error of f̂ is shown, where we display the
average over 100 (minimal case) and 10000 (sparse case) x-values, respectively.
In scenario CatR with p = 2, we only use the 4 possible x-values. In all
other scenarios, the x-values are generated randomly in the same way as the
covariates in the respective scenario. In each of the 500 replications, new x-
values are generated. In all cases the results for our procedure are comparable
to those under restriction (ii) and better than those under restriction (i), as
expected. To get an insight in the influence of the x-values on the estimation
error we ran the simulations also with x-values that are the same for each
replication. Like for scenario MixR in the main paper the results are almost
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identical to those with varying x-values shown in Figure 2. Only the variance
of the estimation errors is slightly larger with varying x-values (as could be
expected).

2 Classification Problems

2.1 Set-up

Similar to the regression case, we generate data according to the models

(CatC) For i = 1, . . . , n, the observations are generated with iid errors εi ∼ U [0, 1]
as

Yi

{
= Xi1 + . . . , Xiq + 1 if εi ≤ 0.7

∼ U{1, . . . , G} else,

with Xi1, . . . , Xip ∼B(0.5), q ≤ p; U stands for the (discrete) uniform
distribution. We run the simulations with G = 5.

(FunC) The functional observations are based on those built in model FunR, see
Section 1. Let’s call them X

(Fun)
ij . Then the functional observations for this

classification model are Xij(t) = X
(Fun)
ij (t)+c ·Cij for some constant c > 0

with Cij ∼ U{0, 1, 2}, and the outcome is Yi = Ci1 + . . .+ Ciq + 1, q ≤ p.
Thus we have G = 2q + 1 response classes in this scenario. We simulate
this setup for different values of c ∈ {0.1, 0.3, 0.7}. In Figure 3 examples
for the functional observations with different c are shown to highlight the
effect of the size of c. It can be seen that for c = 0.7 and q = 1 classes
are distinctly separated, and the classification task could even be done
manually/visually. In what follows, we will hence focus on c = 0.3.

As before we compare minimal (*.m) and sparse (*.s) cases in all scenarios,
i. e., q = 1, p = 2 (*.m) and q = 3, p = 18 (*.s) for CatC and FunC, and qfun =
qcat = 1, pfun = pcat = 2 (*.m) . The results are based on 500 replications. We
use again the one-sided Picard kernel as described in Section 1. In contrast to
the regression case, however, we use a pre-estimator for the weights instead of
a starting value for the bandwidth, as explained in the main paper.

2.2 Results

In Figure 4 the minimizing normed weights for model CatC, FunC (with
c = 0.3) and MixC for n = 100, 500, 1000 are displayed. Again we repeat
some results for scenario MixC for the sake of completeness.The performance
regarding the variable selection is very encouraging. The prediction perfor-
mance of our procedure is shown in Figure 5, where we display the squared
error of P̂g and compare it to the results under restriction (i) and (ii) as
described in Section 1.2. Additionally we compare the results to those of a
random forest, as a benchmark apart from kernel-based, nonparametric pre-
diction. After applying a functional principal component analysis (R package
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Fig. 1 Normed minimizing weights ω̂j∑p
k=1

ω̂k
for models CatR (top), FunR (middle) and

MixR (bottom) in the minimal and sparse case, respectively.
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Fig. 2 Prediction results for models CatR (top), FunR (middle) and MixR (bottom) in the
minimal (left) and sparse (right) case with no restriction (‘data driven weights’), restriction
(i, ‘equal weights’) and (ii, ‘oracle’), respectively.
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Fig. 3 Examples for functional observations from model FunC for c = 0.1, 0.3, 0.7 (from
left to right). The green dashed lines represent Xij with Cij = 2, the blue solid lines those
with Cij = 1 and the red dotted lines are realizations of Xij with Cij = 0.

refund by Goldsmith et al. (2021)) on the functional observations we build a
random forest using the R function randomForest (Liaw and Wiener (2002)),
as also explained in the main paper. For new x-values that are generated in
the same way as the observations from the training set, we predict the poste-
rior probability with the random forest and with our P̂g with the estimated
weights, respectively. The data for the boxplots is calculated on test sets with
N = 100 (minimal case) and N = 1000 (sparse case) as the Brier Score In
scenario CatC the response is calculated as y(x) = x1 + . . . + xq + 1 and in
FunC and MixC y(x) are built in the same way as for the training observa-
tions. Similar to the regression case, the results achieved with new x-values for
each replication and those with the same x-values in all replications are com-
parable. We display the results with varying x-values. It can be seen that the
prediction works well and in almost all cases clearly better than the random
forest. Further in the sparse cases, the results with data driven weights are
much better than those with equal weights, which confirms the good variable
selection/weighting performance.

As additional information we display the missclassification rate. The results
are summed up in Table 1. They confirm and extend the good performance
shown in Figure 5, especially that our procedure works much better than the
random forest in most of the settings considered. For model FunC with differ-
ent values of c, we see that classification becomes much easier with growing c
as expected.

To gain some further insight into the performance of our procedure in
the classification of functional data, we simulate another model with a purely
nonparametric concept of classification, that is

(FunC.2) The functional observations are generated in exactly the same way as in
model FunR. The classification is then based on the maximizing argument
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Fig. 4 Normed minimizing weights ω̂j∑p
k=1

ω̂k
for models CatC (top), FunC (middle) with

c = 0.3 and MixC (bottom) in the minimal (left) and sparse (right) case, respectively.
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Fig. 5 Prediction results for models CatC (top), FunC (middle) with c = 0.3, and MixC
(bottom) in the minimal (left) and sparse (right) case with no restriction (‘data driven
weights’), restriction (i, ‘equal weights’) and (ii, ‘oracle’), and with a random forest, respec-
tively.
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Model n Data driven w. Equal weights Oracle Random forest

(CatC.m)
100 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
500 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)
1000 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00)

(CatC.s)
100 0.09 (0.07) 0.50 (0.03) 0.00 (0.02) 0.34 (0.06)
500 0.00 (0.00) 0.36 (0.02) 0.00 (0.00) 0.05 (0.02)
1000 0.00 (0.00) 0.30 (0.02) 0.00 (0.00) 0.02 (0.01)

(FunC.m) 100 0.38 (0.05) 0.40 (0.05) 0.38 (0.05) 0.50 (0.18)
500 0.36 (0.04) 0.37 (0.04) 0.35 (0.04) 0.44 (0.17)

c = 0.1 1000 0.35 (0.04) 0.36 (0.05) 0.35 (0.05) 0.42 (0.16)

(FunC.s) 100 0.73 (0.02) 0.74 (0.02) 0.69 (0.02) 0.75 (0.02)
500 0.73 (0.02) 0.74 (0.02) 0.69 (0.02) 0.71 (0.02)

c = 0.1 1000 0.65 (0.02) 0.70 (0.02) 0.63 (0.02) 0.69 (0.02)

(FunC.m) 100 0.04 (0.02) 0.05 (0.02) 0.04 (0.02) 0.28 (0.31)
500 0.03 (0.02) 0.04 (0.02) 0.03 (0.02) 0.23 (0.30)

c = 0.3 1000 0.03 (0.02) 0.04 (0.02) 0.03 (0.02) 0.21 (0.28)

(FunC.s) 100 0.31 (0.05) 0.69 (0.02) 0.27 (0.03) 0.74 (0.03)
500 0.31 (0.05) 0.69 (0.02) 0.27 (0.03) 0.65 (0.09)

c = 0.3 1000 0.14 (0.01) 0.60 (0.02) 0.13 (0.01) 0.58 (0.12)

(FunC.m) 100 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.29 (0.33)
500 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.26 (0.33)

c = 0.7 1000 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.25 (0.32)

(FunC.s) 100 0.08 (0.14) 0.68 (0.04) 0.03 (0.03) 0.75 (0.05)
500 0.00 (0.00) 0.78 (0.18) 0.00 (0.00) 0.67 (0.17)

c = 0.7 1000 0.00 (0.00) 0.81 (0.19) 0.00 (0.00) 0.55 (0.24)

(FunC.2.m)
100 0.46 (0.05) 0.57 (0.06) 0.46 (0.05) 0.78 (0.12)
500 0.34 (0.05) 0.47 (0.05) 0.34 (0.05) 0.77 (0.14)
1000 0.30 (0.04) 0.43 (0.05) 0.30 (0.04) 0.76 (0.15)

(FunC.2.s)
100 0.74 (0.03) 0.77 (0.02) 0.70 (0.02) 0.78 (0.03)
500 0.62 (0.02) 0.72 (0.02) 0.60 (0.02) 0.75 (0.03)
1000 0.58 (0.02) 0.71 (0.02) 0.56 (0.02) 0.74 (0.05)

(MixC.m)
100 0.04 (0.02) 0.06 (0.07) 0.03 (0.02) 0.32 (0.43)
500 0.03 (0.02) 0.03 (0.03) 0.03 (0.02) 0.20 (0.37)
1000 0.03 (0.01) 0.03 (0.02) 0.03 (0.01) 0.18 (0.35)

(MixC.s)
100 0.13 (0.03) 0.59 (0.02) 0.10 (0.02) 0.63 (0.11)
500 0.07 (0.01) 0.44 (0.02) 0.06 (0.01) 0.21 (0.25)
1000 0.06 (0.01) 0.39 (0.02) 0.06 (0.01) 0.13 (0.24)

Table 1 Missclassification rates as arithmetic mean (and standard deviation) with no re-
striction (‘Data driven weights’), restriction (i) (‘Equal weights’), restriction (ii) (‘Oracle’)
and with a random forest respectively. The values in teal are the lowest and the values in
violet the second to lowest in each row.

of each functional observation following the set-up in Fuchs et al. (2015).
Let ji,max be the index such that
maxtXiji,max(t) = max(maxtXi1(t), . . . ,maxtXiq(t)), q ≤ p.
Then Yi = g ∈ {1, . . . , G} if and only if argmaxtXiji,max(t) ∈ ( gT−T

G , gTG ].

The results for this model are displayed in Figure 6 with G = 5 and in Table 1.
It can be seen that the prediction for this model is more difficult than for model
FunC while the variable selection still works quite well. In comparison to the
random forest, however, our procedure is still highly competitive.
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Fig. 6 Normed minimizing weights (top) and prediction resulte (bottom) for model
(FunC.2) in the minimal (left) and sparse (right) case, respectively.
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