Surface Engineered TiO₂ for high performance flexible supercapacitor applications

Abdelnaby M. Elshahawy^{1*}, Saeid M. Elkatlawy², Mustafa S. Shalaby³, Cao Guan ⁴, and John Wang⁵

¹ Physics Department, Faculty of Science, Assiut University, Assiut 71516, Egypt

² Department of Physics, Faculty of Science, Damanhour University, 22111 Damanhour, Egypt.

³Solid State Physics and Accelerators department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt

⁴Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, P. R. China

⁵ Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575, Singapore.

*Address correspondence to <u>a.elshahawy@science.aun.edu.eg</u>.

Figure S1: TEM images of (a) TiO_2 with Tape Under N2, (b) TiO_2 without Tape Under Air, (c) TiO_2 with Tape under Air

Figure S2: (a) Cyclic Voltammetry Curves at different scan rate, and (b) Charge and Discharge curves at different current densities of TiO₂ with Tape under N2.

Figure S3: (a) Cyclic Voltammetry Curves at different scan rate, and (b) Charge and Discharge curves at different current densities of TiO₂ with Tape before annealing.

Figure S4: (a) Cyclic Voltammetry Curves at different scan rate, and (b) Charge and

Discharge curves at different current densities of TiO2 without Tape under air.