Supplementary Material of the Manuscript "Multi-Featured Collective Perception with EvidenceTheory: Tackling Spatial Correlations"

Palina Bartashevich • Sanaz Mostaghim

Received: date / Accepted: date

Multi-Featured Benchmark Generator

The environmental grid is not predefined and is generated each simulation upon the desired pattern type (Bartashevich and Mostaghim, 2019). To construct the multi-featured environment with $n>2$ colours, a colour ratio parameter ρ has to be defined prior to the pattern generation. For a binary case with $n=2$ colours, the parameter ρ was identified as a ratio of black cells to the white ones, given that white is a prevailing colour. For instance, the parameter's values $\rho \in\{0.67,0.93\}$ correspond to an easier (i.e., 40% black and 60% white) and the most difficult (i.e., 48% black and 52% white) cases, respectively.

In case of multiple features $(n>2)$, for the environment with colour proportions $\vec{f}_{\Omega}=\left(f_{\omega_{1}}, \ldots, f_{\omega_{n}}\right)$, we define $\rho\left(\vec{f}_{\Omega}\right)$ as $\rho\left(\vec{f}_{\Omega}\right):=1-\operatorname{gini}\left(\vec{f}_{\Omega}\right)$, where:

$$
\begin{equation*}
\operatorname{gini}\left(\vec{f}_{\Omega}\right)=\frac{1}{n-1}\left(n+1-2 \cdot\left(\sum_{i=1}^{n} \sum_{j=1}^{i} f_{\omega_{j}}\right) \cdot\left(\sum_{i=1}^{n} f_{\omega_{i}}\right)^{-1}\right) \tag{1}
\end{equation*}
$$

and $f_{\omega_{i}}$ indicates either a ratio or the amount of cells with a specific colour $\omega_{i} \in$ Ω in the whole environment, such that $f_{\omega_{i}} \leq f_{\omega_{i+1}}$. Here, the Gini coefficient $\operatorname{gini}(\cdot) \in[0,1]$ is a measure of the degree of inequality in a distribution (Gini, 1921), indicating how a given feature distribution \vec{f}_{Ω} differs from a totally equal one. That is, $\operatorname{gini}\left(\vec{f}_{\Omega}\right)$ equals zero in the case when there is an equal amount of all the features, and equals one when there is a definitive distinguish, i.e., complete inequality.

Palina Bartashevich

Faculty of Computer Science
Otto von Guericke University
Magdeburg, Germany
E-mail: palina.bartashevich@ovgu.de

To keep consistent with the difficulty levels of ρ for the binary case, i.e., $\rho \in\{0.67,0.93\}$, we need to define colour proportions \vec{f}_{Ω} also for $n>2$ in such a way that $\rho\left(\vec{f}_{\Omega}\right) \in\{0.67,0.93\}$ regardless of the vector's length $\left|\vec{f}_{\Omega}\right|=n$. According to our definition of $\rho\left(\vec{f}_{\Omega}\right)$, where $\operatorname{gini}\left(\vec{f}_{\Omega}\right)=1-\rho\left(\vec{f}_{\Omega}\right)$, the easiest case of $\rho\left(\vec{f}_{\Omega}\right)=0.67$ corresponds then to the Gini value of 0.33 , indicating some level of colour disproportion. While $\rho\left(\vec{f}_{\Omega}\right)=0.93$ implies almost equal colour distribution as intended, since the Gini value is approaching zero in this case, i.e., $\operatorname{gini}\left(\vec{f}_{\Omega}\right)=0.07$. For instance, in the case of $n=3$ and $\rho\left(\vec{f}_{\Omega}\right)=0.67$, the vector of colour ratios is then defined as follows: $\vec{f}_{\Omega}=(0.17,0.33,0.5)$.

References

Bartashevich P, Mostaghim S (2019) Benchmarking collective perception: New task difficulty metrics for collective decision-making. In: Progress in Artificial Intelligence, Springer International Publishing, pp 699-711, https: //doi.org/10.1007/978-3-030-30241-2_58
Gini C (1921) Measurement of inequality of incomes. The Economic Journal 31(121):124-126, http://dx.doi.org/10.2307/2223319

