Supplementary Material of the Manuscript "Multi-Featured Collective Perception with EvidenceTheory: Tackling Spatial Correlations"

Palina Bartashevich · Sanaz Mostaghim

Received: date / Accepted: date

Multi-Featured Benchmark Generator

The environmental grid is not predefined and is generated each simulation upon the desired pattern type (Bartashevich and Mostaghim, 2019). To construct the multi-featured environment with n > 2 colours, a colour ratio parameter ρ has to be defined prior to the pattern generation. For a binary case with n = 2 colours, the parameter ρ was identified as a ratio of black cells to the white ones, given that white is a prevailing colour. For instance, the parameter's values $\rho \in \{0.67, 0.93\}$ correspond to an easier (i.e., 40% black and 60% white) and the most difficult (i.e., 48% black and 52% white) cases, respectively.

In case of multiple features (n > 2), for the environment with colour proportions $\vec{f}_{\Omega} = (f_{\omega_1}, ..., f_{\omega_n})$, we define $\rho(\vec{f}_{\Omega})$ as $\rho(\vec{f}_{\Omega}) := 1 - gini(\vec{f}_{\Omega})$, where:

$$gini(\vec{f}_{\Omega}) = \frac{1}{n-1} \left(n+1-2 \cdot \left(\sum_{i=1}^{n} \sum_{j=1}^{i} f_{\omega_j} \right) \cdot \left(\sum_{i=1}^{n} f_{\omega_i} \right)^{-1} \right)$$
(1)

and f_{ω_i} indicates either a ratio or the amount of cells with a specific colour $\omega_i \in \Omega$ in the whole environment, such that $f_{\omega_i} \leq f_{\omega_{i+1}}$. Here, the Gini coefficient $gini(\cdot) \in [0, 1]$ is a measure of the degree of inequality in a distribution (Gini, 1921), indicating how a given feature distribution \vec{f}_{Ω} differs from a totally equal one. That is, $gini(\vec{f}_{\Omega})$ equals zero in the case when there is an equal amount of all the features, and equals one when there is a definitive distinguish, i.e., complete inequality.

Palina Bartashevich Faculty of Computer Science Otto von Guericke University Magdeburg, Germany E-mail: palina.bartashevich@ovgu.de To keep consistent with the difficulty levels of ρ for the binary case, i.e., $\rho \in \{0.67, 0.93\}$, we need to define colour proportions \vec{f}_{Ω} also for n > 2 in such a way that $\rho(\vec{f}_{\Omega}) \in \{0.67, 0.93\}$ regardless of the vector's length $|\vec{f}_{\Omega}| = n$. According to our definition of $\rho(\vec{f}_{\Omega})$, where $gini(\vec{f}_{\Omega}) = 1 - \rho(\vec{f}_{\Omega})$, the easiest case of $\rho(\vec{f}_{\Omega}) = 0.67$ corresponds then to the Gini value of 0.33, indicating some level of colour disproportion. While $\rho(\vec{f}_{\Omega}) = 0.93$ implies almost equal colour distribution as intended, since the Gini value is approaching zero in this case, i.e., $gini(\vec{f}_{\Omega}) = 0.07$. For instance, in the case of n = 3 and $\rho(\vec{f}_{\Omega}) = 0.67$, the vector of colour ratios is then defined as follows: $\vec{f}_{\Omega} = (0.17, 0.33, 0.5)$.

References

- Bartashevich P, Mostaghim S (2019) Benchmarking collective perception: New task difficulty metrics for collective decision-making. In: Progress in Artificial Intelligence, Springer International Publishing, pp 699–711, https://doi.org/10.1007/978-3-030-30241-2_58
- Gini C (1921) Measurement of inequality of incomes. The Economic Journal 31(121):124–126, http://dx.doi.org/10.2307/2223319