Supporting Information

Tuning *d*-spacing of graphene oxide nanofiltration membrane for effective dye/salt separation

Chao Xing ^{a,c,*}, Chang-Yu Liu ^{b,*} (iD 0000-0003-2717-3684), Chao Lai ^c (iD 0000-0002-6021-6343), Shan-Qing Zhang ^{a,*} (iD 0000-0001-5192-1844)

C. Xing ^{a,c,*}

^a Center for Clean Environment and Energy, School of Environment and Science,

Gold Coast Campus, Griffith University, QLD 4222, Australia

^c School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou,

221116, PR China

e-mail: chao.xing@griffithuni.edu.au

C.-Y. Liu^{b,*}

^b School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020,

PR China

e-mail: wyuchemcyliu@126.com

C. Lai °

^c School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou,
221116, PR China

S.-Q. Zhang ^{a,*}

^a Center for Clean Environment and Energy, School of Environment and Science,
 Gold Coast Campus, Griffith University, QLD 4222, Australia

e-mail: s.zhang@griffith.edu.au

Figure S1. The typical SEM images of the PAN substrate before (a) and after (b) cold-pressed.

Figure S2. (a-f) Surface SEM images of GO@PAN membrane and PEI-GO@PAN membranes; (g-l) The water contact angles of GO@PAN membrane and PEI-GO@PAN membranes.

Figure S3. The EDS spectra of the PEI-GO(15:1)@PAN membrane.

Figure S4. The XPS spectra of C=O in C 1s (a) and O 1s (b).

Figure S5. The ultrasound experiments result of GO@PAN membrane and PEI-GO@PAN membranes in water.

Figure S6. The dye/salt separation performance of the PEI-GO(15:1)@PAN membrane to NaCl solutions at various concentrations.

Figure S7. The photo of the 0.01 mg mL⁻¹ GO solution

Table S1. The content of chemical elements changes of GO and PEI-GO(15:1) from XPS spectra.

Membrane	C1s At. %	Ols At. %	N1s At. %
GO	70.0	30.0	
PEI-GO	66.5	16.7	16.8

 Table S2. The diameter of hydrated ions.[1]

Name	Hydrated I	
	(Å)	
Na ⁺	7.16	
Cl-	6.64	
SO4 ²⁻	7.58	

Dyes	Molecular Models	Molecular Models
	(Front View)	(Side View)
Columbia Blue (CB)	26 Å	4 Å ,
Direct Red (DR 80)	44 Å	8 Å J
Methyl Blue (MB)	24 Å	8 Å ,
Congo Red (CR	25 Å	6.5 Å
Amaranth (AM)		5.5 Å

Table S3. The chemical structure and the front and side views of the ball-and-stick models of the hydrated dye molecules with maximum dimensions.[1, 2]

Sunset Yellow (SY)

Deringer

[1] Huang L., Huang S., Venna S. R. and Lin H., Rightsizing Nanochannels in reduced graphene oxide membranes by solvating for dye desalination, *Environmental science & technology*, 2018, **52**(21).

[2] Akbari A., Sheath P., Martin S. T., Shinde D. B., Shaibani M., Banerjee P. C., Tkacz R., Bhattacharyya D. and Majumder M., Large-area graphene-based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide, *Nature communications*, 2016, **7**(1).