Intelligent Assistants – Conceptual Dimensions, Contextual Model, and Design Trends

Hitesh Dhiman, Christoph Wächter, Michael Fellmann, Carsten Röcker

Business & Information Systems Engineering (2022)

Appendix (available online via http://link.springer.com)

A Complete List of Articles used for Literature Review

List of Articles used for Research Objective 1

- Erickson T, Danis CM, Kellogg WA, Helander ME (2008) Assistance: the work practices of human administrative assistants and their implications for it and organizations. In: Proceedings of the ACM 2008 conference on Computer supported cooperative work - CSCW '08, ACM Press, San Diego, CA, USA, p 609, 10.1145/1460563.1460658, http://portal.acm.org/citation.cfm?doid= 1460563.1460658
- Hall S, Quick J, Hall A, Jones A (2014) Surgical assistance who can help? The Bulletin of the Royal College of Surgeons of England 96(7):244–246, 10.1308/rcsbull.2014.96.7.244, http://publishing.rcseng.ac.uk/doi/10.1308/rcsbull.2014.96.7.244
- Henshall C, Doherty A, Green H, Westcott L, Aveyard H (2019) The role of the assistant practitioner in the clinical setting: a focus group study. part 1. British Journal of Healthcare Assistants 13(2):94–99, 10.12968/bjha.2019.13.2.94, https://doi.org/10.12968/ bjha.2019.13.2.94
- Kerry T (2005) Towards a typology for conceptualizing the roles of teaching assistants. Educational Review 57(3):373-384, 10.1080/00131910500149515, http://www.tandfonline.com/doi/abs/10.1080/00131910500149515
- Minondo S, Meyer LH, Xin JF (2001) The Role and Responsibilities of Teaching Assistants in Inclusive Education: What's Appropriate? Journal of the Association for Persons with Severe Handicaps 26(2):114–119, 10.2511/rpsd.26.2.114, http://journals.sagepub.com/ doi/10.2511/rpsd.26.2.114
- Perry M, Carpenter I, Challis D, Hope K (2003) Understanding the roles of registered general nurses and care assistants in UK nursing homes. Journal of Advanced Nursing 42(5):497–505, 10.1046/j.1365-2648.2003.02649.x, http://doi.wiley.com/10.1046/j. 1365-2648.2003.02649.x
- Quick J (2013) The role of the surgical care practitioner within the surgical team. British Journal of Nursing 22(13):759-765, 10.12968/bjon.2013.22.13.759, http://www.magonlinelibrary.com/doi/10.12968/bjon.2013.22.13.759
- Taché S, Hill-Sakurai L (2010) Medical assistants: the invisible "glue" of primary health care practices in the United States? Journal of Health Organization and Management 24(3):288-305, 10.1108/14777261011054626, https://www.emerald.com/insight/content/ doi/10.1108/14777261011054626/full/html
- $\label{eq:constraint} \begin{array}{l} \mbox{Takala M} \ (2007) \mbox{ The work of classroom assistants in special and mainstream education in Finland. British Journal of Special Education $34(1):50-57, 10.1111/j.1467-8578.2007.00453.x, \mbox{http://doi.wiley.com/10.1111/j.1467-8578.2007.00453.x} \end{array}$
- Whisler TL (1960) The "Assistant-to" in Four Administrative Settings. Administrative Science Quarterly 5(2):181, 10.2307/2390778, https://www.jstor.org/stable/2390778?origin=crossref

List of Articles used for Research Objectives 2 & 3

- Aist G, Dowding J, Hockey BA, Rayner M, Hieronymus J, Bohus D, Boven B, Blaylock N, Campana E, Early S, Gorrell G, Phan S (2003) Talking Through Procedures: An Intelligent Space Station Procedure Assistant. In: Proceedings of the Tenth Conference on European Chapter of the Association for Computational Linguistics - Volume 2, Association for Computational Linguistics, Stroudsburg, PA, USA, EACL '03, pp 187–190, 10.3115/1067737.1067781, https://doi.org/10.3115/1067737.1067781, event-place: Budapest, Hungary
- Alvarez I, López-de Ipiña MK, Gilbert JE (2012) The Voice User Help, a Smart Vehicle Assistant for the Elderly. In: Hutchison D, Kanade T, Kittler J, Kleinberg JM, Mattern F, Mitchell JC, Naor M, Nierstrasz O, Pandu Rangan C, Steffen B, Sudan M, Terzopoulos D, Tygar D, Vardi MY, Weikum G, Bravo J, López-de Ipiña D, Moya F (eds) Ubiquitous Computing and Ambient Intelligence, vol 7656, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 314–321, 10.1007/978-3-642-35377-2_43, http://link.springer.com/10.1007/978-3-642-35377-2_43
- Arai F, Ito M, Fukuda T, Negoro M, Naito T (1995) Intelligent assistance for intravascular tele-surgery and experiments on virtual simulator. In: Proceedings Virtual Reality Annual International Symposium '95, pp 101–107, 10.1109/VRAIS.1995.512485
- Armenatzoglou N, Marketakis Y, Kriara L, Apostolopoulos E, Papavasiliou V, Kampas D, Kapravelos A, Kartsonakis E, Linardakis G, Nikitaki S, Bikakis A, Antoniou G (2009) FleXConf: A Flexible Conference Assistant Using Context-Aware Notification Services. In: Hutchison D, Kanade T, Kittler J, Kleinberg JM, Mattern F, Mitchell JC, Naor M, Nierstrasz O, Pandu Rangan C, Steffen B, Sudan M, Terzopoulos D, Tygar D, Vardi MY, Weikum G, Meersman R, Herrero P, Dillon T (eds) On the Move to Meaningful Internet Systems: OTM 2009 Workshops, vol 5872, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 108–117, 10.1007/978-3-642-05290-3_20, http://link.springer.com/10.1007/978-3-642-05290-3_20
- Attanayake D, Pfluegel E, Hunter G, Denholm-Price J (2012) SWIMS (Speech-Based Web Interface for Mathematics Using Statistical Language Models): An Intelligent Editing Assistant for Mathematical Text. In: 2012 Eighth International Conference on Intelligent Environments, pp 327–330, 10.1109/IE.2012.41
- Babaian T, Grosz BJ, Shieber SM (2002) A Writer's Collaborative Assistant. In: Proceedings of the 7th International Conference on Intelligent User Interfaces, ACM, New York, NY, USA, IUI '02, pp 7–14, 10.1145/502716.502722, http://doi.acm.org/10.1145/ 502716.502722, event-place: San Francisco, California, USA
- Balinsky H, Moore NCA, Simske SJ (2011) Intelligent Assistant for Context-Aware Policies. In: 2011IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications, pp 621–630, 10.1109/TrustCom.2011.80
- Bench-Capon TJM, Staniford G (1995) PLAID: Proactive Legal Assistance. In: Proceedings of the 5th International Conference on Artificial Intelligence and Law, ACM, New York, NY, USA, ICAIL '95, pp 81–88, 10.1145/222092.222142, http://doi.acm.org/ 10.1145/222092.222142, event-place: College Park, Maryland, USA
- Berry PM, Gervasio M, Peintner B, Yorke-Smith N (2011) PTIME: Personalized Assistance for Calendaring. ACM Trans Intell Syst Technol 2(4):40:1-40:22, 10.1145/1989734.1989744, http://doi.acm.org/10.1145/1989734.1989744
- Bhattacharya S, Floréen P, Forsblom A, Hemminki S, Myllymäki P, Nurmi P, Pulkkinen T, Salovaara A (2012) Ma\$\$iv An Intelligent Mobile Grocery Assistant. In: 2012 Eighth International Conference on Intelligent Environments, pp 165–172, 10.1109/IE.2012.21
- Bolcer GA (1994) User interface design assistance for large-scale software development. In: Proceedings KBSE '94. Ninth Knowledge-Based Software Engineering Conference, pp 142–149, 10.1109/KBSE.1994.342668

- Bouloutian S, Kim E (2014) Artificial Intelligence Gaming Assistant for Google Glass. In: Bebis G, Boyle R, Parvin B, Koracin D, McMahan R, Jerald J, Zhang H, Drucker SM, Kambhamettu C, El Choubassi M, Deng Z, Carlson M (eds) Advances in Visual Computing, vol 8888, Springer International Publishing, Cham, pp 770–778, 10.1007/978-3-319-14364-4_74, http://link.springer. com/10.1007/978-3-319-14364-4_74
- Bradley N, Fritz T, Holmes R (2018) Context-Aware Conversational Developer Assistants. In: 2018 IEEE/ACM 40th International Conference on Software Engineering (ICSE), pp 993–1003, 10.1145/3180155.3180238, iSSN: 1558-1225
- Brancaleoni R, Cesta A, D'Aloisi D (1997) MASMA: A personal assistant for meetings management. In: Carbonnell JG, Siekmann J, Goos G, Hartmanis J, Leeuwen J, Lenzerini M (eds) AI*IA 97: Advances in Artificial Intelligence, vol 1321, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 455–458, 10.1007/3-540-63576-9_135, http://link.springer.com/10.1007/3-540-63576-9_135 Brezillon PJ (1994) Design of an intelligent assistant system from several applications. In: Proceedings of International Conference on
- Brezhon PJ (1994) Design of an intelligent assistant system from several applications. In: Proceedings of International Conference on Expert Systems for Development, pp 228–233, 10.1109/ICESD.1994.302276
 Caine A. Cohen P. (2006) MITS: A Mixed Initiative Intelligent Tytening System for Sudalus In: Konada T. Kittlan I. Kleinharg, M.
- Caine A, Cohen R (2006) MITS: A Mixed-Initiative Intelligent Tutoring System for Sudoku. In: Kanade T, Kittler J, Kleinberg JM, Mattern F, Mitchell JC, Nierstrasz O, Pandu Rangan C, Steffen B, Sudan M, Terzopoulos D, Tygar D, Vardi MY, Weikum G, Tawfik AY, Goodwin SD (eds) Advances in Artificial Intelligence, vol 3060, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 550–561, 10.1007/11766247_47, http://link.springer.com/10.1007/11766247_47
- Casamayor A, Amandi A, Campo M (2009) Intelligent assistance for teachers in collaborative e-learning environments. Computers & Education 53(4, SI):1147–1154, 10.1016/j.compedu.2009.05.025
- Chaari WL, Moisan S, Ghalila SS, Rigault J (2007) Distributed Intelligent Medical Assistant for Osteoporosis Detection. In: 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp 4347–4350, 10.1109/IEMBS.2007. 4353299
- Chen L, Cheng S, Birnbaum L, Hammond KJ (2002) The Interactive Chef: A Task-sensitive Assistant. In: Proceedings of the 7th International Conference on Intelligent User Interfaces, ACM, New York, NY, USA, IUI '02, pp 234–234, 10.1145/502716.502773, http://doi.acm.org/10.1145/502716.502773, event-place: San Francisco, California, USA
- Costello E, Doody J, McGinty L, Smyth B (2006) iCARE: Intelligent Customer Assistance for Recommending Eyewear. In: Proceedings of the 11th International Conference on Intelligent User Interfaces, ACM, New York, NY, USA, IUI '06, pp 282–284, 10.1145/ 1111449.1111511, http://doi.acm.org/10.1145/1111449.1111511, event-place: Sydney, Australia
- Coyle L, Cunningham P, Hayes C (2002) A Case-Based Personal Travel Assistant for Elaborating User Requirements and Assessing Offers. In: Goos G, Hartmanis J, van Leeuwen J, Craw S, Preece A (eds) Advances in Case-Based Reasoning, vol 2416, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 505–518, 10.1007/3-540-46119-1_37, http://link.springer.com/10.1007/3-540-46119-1_37
- Croatti A, Montagna S, Ricci A (2017) A Personal Medical Digital Assistant Agent for Supporting Human Operators in Emergency Scenarios. In: Sukthankar G, Rodriguez-Aguilar JA (eds) Autonomous Agents and Multiagent Systems, vol 10643, Springer International Publishing, Cham, pp 228–244, 10.1007/978-3-319-71679-4_15, http://link.springer.com/10.1007/978-3-319-71679-4_15
- Crossen A, Budzik J, Warner M, Birnbaum L, Hammond KJ (2001) XLibris: An Automated Library Research Assistant. In: Proceedings of the 6th International Conference on Intelligent User Interfaces, ACM, New York, NY, USA, IUI '01, pp 49–52, 10.1145/359784. 360100, http://doi.acm.org/10.1145/359784.360100, event-place: Santa Fe, New Mexico, USA
- Czibula G, Guran A, Czibula IG, Cojocar GS (2009) IPA An intelligent personal assistant agent for task performance support. In: 2009 IEEE 5th International Conference on Intelligent Computer Communication and Processing, pp 31–34, 10.1109/ICCP.2009.5284791
 De Roeck A, Kruschwitz U, Neal P, Scott P, Steel S, Turner R, Webb N (1998) YPA an intelligent directory enquiry assistant. BT
- TECHNOLOGY JOURNAL 16(3):145–155, 10.1023/A:1009650503571 Delgrange C, Dussoux J, Dominey PF (2019) Usage-Based Learning in Human Interaction with an Adaptive Virtual Assistant. IEEE
- Transactions on Cognitive and Developmental Systems pp 1–1, 10.1109/TCDS.2019.2927399 Dillenburg JF, Wolfson O, Nelson PC (2002) The Intelligent Travel Assistant. In: Proceedings. The IEEE 5th International Conference on Intelligent Transportation Systems, pp 691–696, 10.1109/ITSC.2002.1041302
- Djian D (2000) Communication Management: E-Mail and Telephone Assistants. In: Goos G, Hartmanis J, van Leeuwen J, Azvine B, Nauck DD, Azarmi N (eds) Intelligent Systems and Soft Computing, vol 1804, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 284-300, 10.1007/10720181-12, http://link.springer.com/10.1007/10720181_12
- Dong R, McCarthy K, O'Mahony M, Schaal M, Smyth B (2012) Towards an Intelligent Reviewer's Assistant: Recommending Topics to Help Users to Write Better Product Reviews. In: Proceedings of the 2012 ACM International Conference on Intelligent User Interfaces, ACM, New York, NY, USA, IUI '12, pp 159–168, 10.1145/2166966.2166995, http://doi.acm.org/10.1145/2166966. 2166995, event-place: Lisbon, Portugal
- Elizalde F, Sucar E, deBuen P (2006) An Intelligent Assistant for Training of Power Plant Operators. In: Sixth IEEE International Conference on Advanced Learning Technologies (ICALT'06), pp 205–207, 10.1109/ICALT.2006.1652406
- Fahmy HI, Douligeris C (1995) END: an expert network designer. IEEE Network 9(6):18–27, 10.1109/65.475168
- Fast E, Chen B, Mendelsohn J, Bassen J, Bernstein MS (2018) Iris: A conversational agent for complex tasks. In: Proceedings of the 2018 chi conference on human factors in computing systems, Association for Computing Machinery, New York, NY, USA, CHI '18, 10.1145/3173574.3174047, https://doi.org/10.1145/3173574.3174047
- Faulring A, Myers B, Mohnkern K, Schmerl B, Steinfeld A, Zimmerman J, Smailagic A, Hansen J, Siewiorek D (2010) Agent-assisted Task Management That Reduces Email Overload. In: Proceedings of the 15th International Conference on Intelligent User Interfaces, ACM, New York, NY, USA, IUI '10, pp 61–70, 10.1145/1719970.1719980, http://doi.acm.org/10.1145/1719970.1719980, eventplace: Hong Kong, China
- Franke U, Mehring S, Suissa A, Hahn S (1994) The Daimler-Benz steering assistant: a spin-off from autonomous driving. In: Proceedings of the Intelligent Vehicles '94 Symposium, pp 120–124, 10.1109/IVS.1994.639486
- Franklin D, Hammond K (2001) The Intelligent Classroom: Providing Competent Assistance. In: Proceedings of the Fifth International Conference on Autonomous Agents, ACM, New York, NY, USA, AGENTS '01, pp 161–168, 10.1145/375735.376037, http://doi. acm.org/10.1145/375735.376037, event-place: Montreal, Quebec, Canada
- Gavrilis D, Georgoulas G, Vasiloglou N, Nikolakopoulos G (2016) An intelligent assistant for physicians. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp 2586–2589, 10.1109/EMBC.2016.7591259
- Gorecky D, Worgan SF, Meixner G (2011) COGNITO: a cognitive assistance and training system for manual tasks in industry. In: Proceedings of the 29th Annual European Conference on Cognitive Ergonomics, Association for Computing Machinery, Rostock, Germany, ECCE '11, pp 53–56, 10.1145/2074712.2074723, https://doi.org/10.1145/2074712.2074723

- Görtz M, Ackermann R, Steinmetz R (2004) The Digital Call Assistant: Determine Optimal Time Slots for Calls. In: Hutchison D, Kanade T, Kittler J, Kleinberg JM, Mattern F, Mitchell JC, Naor M, Nierstrasz O, Pandu Rangan C, Steffen B, Sudan M, Terzopoulos D, Tygar D, Vardi MY, Weikum G, Roca V, Rousseau F (eds) Interactive Multimedia and Next Generation Networks, vol 3311, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 230–241, 10.1007/978-3-540-30493-7_21, http://link.springer.com/ 10.1007/978-3-540-30493-7_21
- Hanke S, Meinedo H, Portugal D, Belk M, Quintas J, Christodoulou E, Sili M, Dias MS, Samaras G (2015) CogniWin A Virtual Assistance System for Older Adults at Work. In: Zhou J, Salvendy G (eds) Human Aspects of IT for the Aged Population. Design for Everyday Life, vol 9194, Springer International Publishing, Cham, pp 257–268, 10.1007/978-3-319-20913-5_24, http: //link.springer.com/10.1007/978-3-319-20913-5_24
- Hon Wai Chun, Lai EMK (1997) Intelligent critic system for architectural design. IEEE Transactions on Knowledge and Data Engineering 9(4):625–639, 10.1109/69.617054
- Hsu JY, Chien-Jung Ting (1998) PHYSIMC: an intelligent assistant for case-based learning. In: Proceedings Tenth IEEE International Conference on Tools with Artificial Intelligence (Cat. No.98CH36294), pp 296–301, 10.1109/TAI.1998.744857
- Huang C, Chang S, Chen H, Chen C (2014) Performance evaluation of an intelligent multimedia learning assistant platform. In: 2014 IEEE Frontiers in Education Conference (FIE) Proceedings, pp 1–7, 10.1109/FIE.2014.7044191
- Hung CK, Lai EM (1994) An intelligent assistant for the management of telecommunications network services. In: Proceedings of International Conference on Expert Systems for Development, pp 234–237, 10.1109/ICESD.1994.302275
- Jain S, Tiwari V, Balasubramanian A, Balasubramanian N, Chakraborty S (2017) PrIA: A Private Intelligent Assistant. In: Proceedings of the 18th International Workshop on Mobile Computing Systems and Applications, ACM, New York, NY, USA, HotMobile '17, pp 91–96, 10.1145/3032970.3032988, http://doi.acm.org/10.1145/3032970.3032988, event-place: Sonoma, CA, USA
- Jakob M, Moler Z, Pechoucek M, Vaculin R (2011) Intelligent Content-Based Privacy Assistant for Facebook. In: 2011 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology, vol 1, pp 499–500, 10.1109/ WI-IAT.2011.67
- Kebreau S, Pierre S, Probst W (1999) An intelligent information-filtering assistant integrated into a multi-agent architecture. In: Engineering Solutions for the Next Millennium. 1999 IEEE Canadian Conference on Electrical and Computer Engineering (Cat. No.99TH8411), vol 2, pp 996–1001 vol.2, 10.1109/CCECE.1999.808174
- Keng Ng, Kramer J, Magee J, Dulay N (1995) The Software Architect's Assistant-a visual environment for distributed programming. In: Proceedings of the Twenty-Eighth Annual Hawaii International Conference on System Sciences, vol 2, pp 254–263 vol.2, 10.1109/HICSS.1995.375454
- Kim J, Spraragen M, Gil Y (2004) An Intelligent Assistant for Interactive Workflow Composition. In: Proceedings of the 9th International Conference on Intelligent User Interfaces, ACM, New York, NY, USA, IUI '04, pp 125–131, 10.1145/964442.964466, http://doi.acm.org/10.1145/964442.964466, event-place: Funchal, Madeira, Portugal
- Kim SY, Kang JK, Oh SY, Ryu YW, Kim K, Park SC, Kim J (2008) An intelligent and integrated driver assistance system for increased safety and convenience based on all-around sensing. Journal of Intelligent & Robotic Systems 51(3):261–287, 10.1007/ s10846-007-9187-0
- Kincaid R, Pollock G (2017) Nicky: Toward a Virtual Assistant for Test and Measurement Instrument Recommendations. In: 2017 IEEE 11th International Conference on Semantic Computing (ICSC), pp 196–203, 10.1109/ICSC.2017.11
- Knoblock CA, Minton S, Ambite JL, Muslea M, Oh J, Frank M (2001) Mixed-initiative, multi-source information assistants. In: Proceedings of the 10th international conference on world wide web, Association for Computing Machinery, New York, NY, USA, WWW '01, p 697-707, 10.1145/371920.372185, https://doi.org/10.1145/371920.372185
- Kroupa T, Berka P (2002) WISECON: the intelligent support for e-commerce. In: Proceedings First International IEEE Symposium Intelligent Systems, vol 1, pp 210–214 vol 1, 10.1109/IS.2002.1044256
- Kurata Y (2010) Interactive Assistance for Tour Planning. In: Hutchison D, Kanade T, Kittler J, Kleinberg JM, Mattern F, Mitchell JC, Naor M, Nierstrasz O, Pandu Rangan C, Steffen B, Sudan M, Terzopoulos D, Tygar D, Vardi MY, Weikum G, Hölscher C, Shipley TF, Olivetti Belardinelli M, Bateman JA, Newcombe NS (eds) Spatial Cognition VII, vol 6222, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 289–302, 10.1007/978-3-642-14749-4_25, http://link.springer.com/10.1007/978-3-642-14749-4_25
- Kwasnicka H, Szul D, Markowska-Kaczmar U, Myszkowski PB (2008) Learning Assistant Personalizing Learning Paths in e-Learning Environments. In: 2008 7th Computer Information Systems and Industrial Management Applications, pp 308–314, 10.1109/CISIM. 2008.51
- Lam MS, Campagna G, Xu S, Fischer M, Moradshahi M (2019) Protecting privacy and open competition with Almond: An open-source virtual assistant. https://doi.org/10.1145/3355757
- Lam MSW, Chan EYK, Lee VCS, Yu YT (2008) Designing an Automatic Debugging Assistant for Improving the Learning of Computer Programming. In: Fong J, Kwan R, Wang FL (eds) Hybrid Learning and Education, vol 5169, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 359–370, 10.1007/978-3-540-85170-7_32, http://link.springer.com/10.1007/978-3-540-85170-7_32
- Lesta L, Yacef K (2002) An intelligent teaching assistant system for logic. In: Cerri, SA and Gouarderes, G and Paraguacu, F (ed) Intelligent Tutoring Systems, Assoc Comp Machinery; Int Federat Informat Proc; Artificial Intelligence Educ Soc; IEEE CS Learning Technol Task Force; French Direct Gen Armement; Asociac Espanola Inteligencia Artificial, Lecture Notes in Computer Science, vol 2363, pp 421–431
- Li FL, Qiu M, Chen H, Wang X, Gao X, Huang J, Ren J, Zhao Z, Zhao W, Wang L, Jin G, Chu W (2017) AliMe Assist : An Intelligent Assistant for Creating an Innovative E-commerce Experience. In: Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, ACM, New York, NY, USA, CIKM '17, pp 2495-2498, 10.1145/3132847.3133169, http: //doi.acm.org/10.1145/3132847.3133169, event-place: Singapore
- Li W, Zhong N, Liu C (2006) ECPIA: An email-centric personal intelligent assistant. In: Wang, G and Peters, JF and Skowron, YY and Yao, YY (ed) Rough Sets and Knowledge Technology, Proceedings, Int Rough Set Soc; Rough Set & Soft Computat Soc; Chinese Assoc Artificial Intelligence; Natl Nat Sci Fdn China; Chongqing Univ Posts & Telecommun; Chongqing Inst Technol; Chongqing Jiaotong Univ; Chongqing Educ Commiss; Chongqing Sci & Technol Commiss; Chongqing Informat Ind Bur; Chongqing Assoc Sci & Technol, Lecture Notes in Artificial Intelligence, vol 4062, pp 502–509
- Lino C, Christie M, Ranon R, Bares W (2011) The Director's Lens: An Intelligent Assistant for Virtual Cinematography. In: Proceedings of the 19th ACM International Conference on Multimedia, ACM, New York, NY, USA, MM '11, pp 323–332, 10.1145/2072298. 2072341, http://doi.acm.org/10.1145/2072298.2072341, event-place: Scottsdale, Arizona, USA

- Liu Y, Li S, Wang J, Zeng H, Lu J (2015) A computer vision-based assistant system for the assembly of narrow cabin products. The International Journal of Advanced Manufacturing Technology 76(1-4):281–293, 10.1007/s00170-014-6274-9, http://link.springer.com/10.1007/s00170-014-6274-9
- Macias JA (2008) Intelligent assistance in authoring dynamically generated web interfaces. World Wide Web Internet and Web Information Systems 11(2):253–286, 10.1007/s11280-008-0043-3
- Magaña VC, Muñoz-Organero M (2016) Artemisa: A Personal Driving Assistant for Fuel Saving. IEEE Transactions on Mobile Computing 15(10):2437-2451, 10.1109/TMC.2015.2504976
- Mandow L, Perez-de-la Cruz J (2004) Sindi: an intelligent assistant for highway design. Expert Systems With Applications 27(4):635–644, 10.1016/j.eswa.2004.06.005
- Matthews M, Pharr W, Biswas G, Neelakandan H (2000) USCSH: An active intelligent assistance system. Artificial Intelligence Review 14(1-2):121–141, 10.1023/A:1006508409887
- May J, Vargas L (1996) SIMPSON: An intelligent assistant for short-term manufacturing scheduling. European Journal of Operational Research 88(2):269–286, 10.1016/0377-2217(94)00178-2
- McCauley L, D'Mello S (2006) MIKI: A Speech Enabled Intelligent Kiosk. In: Hutchison D, Kanade T, Kittler J, Kleinberg JM, Mattern F, Mitchell JC, Naor M, Nierstrasz O, Pandu Rangan C, Steffen B, Sudan M, Terzopoulos D, Tygar D, Vardi MY, Weikum G, Gratch J, Young M, Aylett R, Ballin D, Olivier P (eds) Intelligent Virtual Agents, vol 4133, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 132–144, 10.1007/11821830_11, http://link.springer.com/10.1007/11821830_11
- Menczer F, Street WN, Vishwakarma N, Monge AE, Jakobsson M (2002) Intellishopper: A proactive, personal, private shopping assistant. In: Proceedings of the first international joint conference on autonomous agents and multiagent systems: Part 3, Association for Computing Machinery, New York, NY, USA, AAMAS '02, p 1001–1008, 10.1145/545056.545059, https://doi.org/10.1145/ 545056.545059
- Molina M (2001) An Intelligent Sales Assistant for Configurable Products. In: Goos G, Hartmanis J, van Leeuwen J, Zhong N, Yao Y, Liu J, Ohsuga S (eds) Web Intelligence: Research and Development, vol 2198, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 596-600, 10.1007/3-540-45490-X_78, http://link.springer.com/10.1007/3-540-45490-X_78
- Molina M (2005) An intelligent assistant for public transport management. In: Huang, DS and Zhang, XP and Huang, GB (ed) Advances in Intelligent Computing, PT 2, Proceedings, Inst Intelligent Machines; Univ Sci Technol; IEEE Computat Intelligence Soc; Hong Kong Computat Intelligence Chapter, Lecture Notes in Computer Science, vol 3645, pp 199–208
- Morris JG, Mitchell CM, Potter WJ (1994) A Designer's Associate: support for the design of software for complex dynamic control systems. In: Proceedings of IEEE International Conference on Systems, Man and Cybernetics, vol 2, pp 1745–1750 vol.2, 10.1109/ ICSMC.1994.400101
- Myers K, Berry P, Blythe J, Conley K, Gervasio M, McGuinness D, Morley D, Pfeffer A, Pollack M, Tambe M (2007) An intelligent personal assistant for task and time management. AI MAGAZINE 28(2):47–61
- Oliver N, Czerwinski M, Smith G, Roomp K (2008) RelAltTab: Assisting Users in Switching Windows. In: Proceedings of the 13th International Conference on Intelligent User Interfaces, ACM, New York, NY, USA, IUI '08, pp 385–388, 10.1145/1378773.1378836, http://doi.acm.org/10.1145/1378773.1378836, event-place: Gran Canaria, Spain
- Ozeki M, Maeda S, Obata K, Nakamura Y (2008) Virtual assistant: an artificial agent for enhancing content acquisition: how ambient media elicit information from humans. In: Proceedings of the 1st ACM international workshop on Semantic ambient media experiences, Association for Computing Machinery, Vancouver, British Columbia, Canada, SAME '08, pp 75–82, 10.1145/1461912.1461927, https://doi.org/10.1145/1461912.1461927
- P D, Bhamidipaty A, Challa S (2008) Intelligent User Assistance for Cost Effective Usage of Mobile Phone. In: Proceedings of the 13th International Conference on Intelligent User Interfaces, ACM, New York, NY, USA, IUI '08, pp 317–320, 10.1145/1378773.1378819, http://doi.acm.org/10.1145/1378773.1378819, event-place: Gran Canaria, Spain
- Payne VL, Metzler DP (2005) Hospital care watch (HCW): an ontology and rule-based intelligent patient management assistant. In: 18th IEEE Symposium on Computer-Based Medical Systems (CBMS'05), pp 479–484, 10.1109/CBMS.2005.64
- Pedro JS, Burstein F (2003) Intelligent Assistance, Retrieval, Reminder and Advice for Fuzzy Multicriteria Decision-Making. In: Goos G, Hartmanis J, van Leeuwen J, Palade V, Howlett RJ, Jain L (eds) Knowledge-Based Intelligent Information and Engineering Systems, vol 2774, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 37–44, 10.1007/978-3-540-45226-3_6, http://link.springer. com/10.1007/978-3-540-45226-3_6
- Quintero MCG, Cuervo PAC (2017) Intelligent driving assistant based on accident risk maps analysis and intelligent driving diagnosis. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp 914–919, 10.1109/IVS.2017.7995832
- Rai S, Raut A, Savaliya A, Shankarmani R (2018) Darwin: Convolutional Neural Network based Intelligent Health Assistant. In: 2018 Second International Conference on Electronics, Communication and Aerospace Technology (ICECA), pp 1367–1371, 10.1109/ ICECA.2018.8474861
- Reiterer H, Mußler G, Mann TM, Handschuh S (2000) INSYDER &Mdash; an Information Assistant for Business Intelligence. In: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, ACM, New York, NY, USA, SIGIR '00, pp 112–119, 10.1145/345508.345559, http://doi.acm.org/10.1145/345508.345559, event-place: Athens, Greece
- Reyes A, Ibarguengoytia PH, Elizalde F, Sánchez L, Nava A (2011) ASISTO: An integrated intelligent assistant system for power plant operation and training. In: 2011 16th International Conference on Intelligent System Applications to Power Systems, pp 1–6, 10.1109/ISAP.2011.6082189
- Sanchez J, Priest J, Soto R (1997) Intelligent reasoning assistant for incorporating manufacturability issues into the design process. Expert Systems with Applications 12(1):81–88, 10.1016/S0957-4174(96)00082-6
- dos Santos CT, Frozza R, Dhamer A, Gaspary LP (2002) DÓRIS Pedagogical Agent in Intelligent Tutoring Systems. In: Goos G, Hartmanis J, van Leeuwen J, Cerri SA, Gouardères G, Paraguaçu F (eds) Intelligent Tutoring Systems, vol 2363, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 91–104, 10.1007/3-540-47987-2_14, http://link.springer.com/10.1007/3-540-47987-2_14
- Santoso HA, Winarsih NAS, Mulyanto E, saraswati GW, Sukmana SE, Rustad S, Rohman MS, Nugraha A, Firdausillah F (2018) Dinus Intelligent Assistance (DINA) Chatbot for University Admission Services. In: 2018 International Seminar on Application for Technology of Information and Communication, pp 417–423, 10.1109/ISEMANTIC.2018.8549797
- Schäfer U, Arnold F, Ostermann S, Reifers S (2013) Ingredients and Recipe for a Robust Mobile Speech-Enabled Cooking Assistant for German. In: Hutchison D, Kanade T, Kittler J, Kleinberg JM, Mattern F, Mitchell JC, Naor M, Nierstrasz O, Pandu Rangan C, Steffen B, Sudan M, Terzopoulos D, Tygar D, Vardi MY, Weikum G, Timm IJ, Thimm M (eds) KI 2013: Advances in Artificial

Intelligence, vol 8077, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 212-223, 10.1007/978-3-642-40942-4_19, http://link.springer.com/10.1007/978-3-642-40942-4_19

- Schmeil A, Broll W (2007) MARA A Mobile Augmented Reality-Based Virtual Assistant. In: 2007 IEEE Virtual Reality Conference, pp 267–270, 10.1109/VR.2007.352497, iSSN: 2375-5334
- Schmitz M, Baus J, Dörr R (2008) The Digital Sommelier: Interacting with Intelligent Products. In: Floerkemeier C, Langheinrich M, Fleisch E, Mattern F, Sarma SE (eds) The Internet of Things, vol 4952, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 247–262, 10.1007/978-3-540-78731-0_16, http://link.springer.com/10.1007/978-3-540-78731-0_16
- Segal RB, Kephart JO (1999) MailCat: An Intelligent Assistant for Organizing e-Mail. In: Proceedings of the Third Annual Conference on Autonomous Agents, ACM, New York, NY, USA, AGENTS '99, pp 276-282, 10.1145/301136.301209, http://doi.acm.org/10. 1145/301136.301209, event-place: Seattle, Washington, USA
- Shumin Wu, Ghenniwa H, Weiming Shen, Ma K (2004) Intelligent user assistance in collaborative design environments. In: 8th International Conference on Computer Supported Cooperative Work in Design, vol 2, pp 259–266 Vol.2, 10.1109/CACWD.2004. 1349194
- Singh-Múgica S, Tovar-Corona B, Silva-Ramírez MA, Jiménez LG (2016) An intelligent system to assist the diagnosis of epilepsy disorder in children: A case of study. In: 2016 IEEE Healthcare Innovation Point-Of-Care Technologies Conference (HI-POCT), pp 142–145, 10.1109/HIC.2016.7797717
- Sinha D, Basu A (2012) Gardener: A file browser assistant to help users maintaining semantic folder hierarchy. In: 2012 4th International Conference on Intelligent Human Computer Interaction (IHCI), pp 1–6, 10.1109/IHCI.2012.6481780
- St Amant R, Dulberg MS (1998) An Experiment with Navigation and Intelligent Assistance. In: Proceedings of the 3rd International Conference on Intelligent User Interfaces, ACM, New York, NY, USA, IUI '98, pp 171–178, 10.1145/268389.268422, http://doi. acm.org/10.1145/268389.268422, event-place: San Francisco, California, USA
- Stefanov N, Passenberg C, Peer A, Buss M (2013) Design and Evaluation of a Haptic Computer-Assistant for Telemanipulation Tasks. IEEE Transactions on Human-Machine Systems 43(4):385–397, 10.1109/TSMC.2013.2257743
- Strohmann T, Siemon D, Robra-Bissantz S (2017) brAInstorm: Intelligent Assistance in Group Idea Generation. In: Maedche A, vom Brocke J, Hevner A (eds) Designing the Digital Transformation, vol 10243, Springer International Publishing, Cham, pp 457–461, 10.1007/978-3-319-59144-5_31, http://link.springer.com/10.1007/978-3-319-59144-5_31
- Sumi Y, Etani T, Fels S, Simonet N, Kobayashi K, Mase K (1998) C-MAP: Building a Context-Aware Mobile Assistant for Exhibition Tours. In: Goos G, Hartmanis J, van Leeuwen J, Ishida T (eds) Community Computing and Support Systems, vol 1519, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 137–154, 10.1007/3-540-49247-X_10, http://link.springer.com/10.1007/3-540-49247-X_10
- Terveen LG, Selfridge PG (1994) Intelligent assistance for software construction: a case study. In: Proceedings KBSE '94. Ninth Knowledge-Based Software Engineering Conference, pp 14–21, 10.1109/KBSE.1994.342682
- Todorov J, Stoyanov S, Valkanov V, Daskalov B, Popchev I (2016) Learning Intelligent System for Student Assistance LISSA. In: 2016 IEEE 8th International Conference on Intelligent Systems (IS), pp 753–757, 10.1109/IS.2016.7737397
- Torres M, Pelta DA, Verdegay JL (2018) PRoA: An intelligent multi-criteria Personalized Route Assistant. Engineering Applications of Artificial Intelligence 72:162–169, 10.1016/j.engappai.2018.03.016
- Torres VM, Chaves AP, Meech JA (1999) Intelligold-an expert system for gold plant process design. In: Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296), vol 1, pp 309–316 vol.1, 10.1109/IPMM.1999.792500
- Verheij B (1999) Automated Argument Assistance for Lawyers. In: Proceedings of the 7th International Conference on Artificial Intelligence and Law, ACM, New York, NY, USA, ICAIL '99, pp 43–52, 10.1145/323706.323714, http://doi.acm.org/10.1145/ 323706.323714, event-place: Oslo, Norway
- Vollebregt A, Hannessen D, Hesselink H, Beetstra J (2002) Modelling Crew Assistants with Multi-Agent Systems in Fighter Aircraft. In: Goos G, Hartmanis J, van Leeuwen J, Hendtlass T, Ali M (eds) Developments in Applied Artificial Intelligence, vol 2358, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 129–135, 10.1007/3-540-48035-8_13, http://link.springer.com/10.1007/ 3-540-48035-8_13
- Weerawarna NT, Haththella HMHRB, Ambadeniya ARGKBR, Chandrasiri LHSS, Bandara MSL, Thelijjagoda SS (2011) CyberMate : Artificial Intelligent business help desk assistant with instance messaging services. In: 2011 6th International Conference on Industrial and Information Systems, pp 420–424, 10.1109/ICIINFS.2011.6038105
- Winiwarter W (1999) PTA A Personal Translation Assistant for Accessing the World Wide Web. In: Goos G, Hartmanis J, van Leeuwen J, Bench-Capon TJ, Soda G, Tjoa AM (eds) Database and Expert Systems Applications, vol 1677, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 996-1005, 10.1007/3-540-48309-8_94, http://link.springer.com/10.1007/3-540-48309-8_94
- Wittig H, Griwodz C (1995) Intelligent media agents in interactive television systems. In: Proceedings of the International Conference on Multimedia Computing and Systems, pp 182–189, 10.1109/MMCS.1995.484923
- Yacef K (2002) Intelligent teaching assistant systems. In: International Conference on Computers in Education, 2002. Proceedings., pp 136–140 vol.1, 10.1109/CIE.2002.1185885
- Yan H, Selker T (2000) Context-aware Office Assistant. In: Proceedings of the 5th International Conference on Intelligent User Interfaces, ACM, New York, NY, USA, IUI '00, pp 276-279, 10.1145/325737.325872, http://doi.acm.org/10.1145/325737.325872, event-place: New Orleans, Louisiana, USA
- Yang C (2010) LABTA: An Agent-Based Intelligent Teaching Assistant for Experiment Courses. In: Luo X, Spaniol M, Wang L, Li Q, Nejdl W, Zhang W (eds) Advances in Web-Based Learning – ICWL 2010, vol 6483, Springer Berlin Heidelberg, Berlin, Heidelberg, pp 309–317, 10.1007/978-3-642-17407-0_32, http://link.springer.com/10.1007/978-3-642-17407-0_32
- Yang D, Garrett JH, Shaw DS, Rendell LA (1994) An intelligent symbol usage assistant for CAD systems. IEEE Expert 9(3):32–41, 10.1109/64.311277
- Yau MY, Lai EM, Chun HW (1994) FPDX: a knowledge-based system for architectural floor plan design. In: Proceedings of International Conference on Expert Systems for Development, pp 309–314, 10.1109/ICESD.1994.302261
- Zhang S, Abdul Zada V, Balog K (2018) SmartTable: A Spreadsheet Program with Intelligent Assistance. In: The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval, ACM, New York, NY, USA, SIGIR '18, pp 1297–1300, 10.1145/3209978.3210171, http://doi.acm.org/10.1145/3209978.3210171, event-place: Ann Arbor, MI, USA
- Zhang W, Wu J (2007) A Learning Search Based Intelligent Assistant of Web Browser. In: 2007 International Conference on Wireless Communications, Networking and Mobile Computing, pp 5629–5631, 10.1109/WICOM.2007.1379

B Article Selection Methodology

The article selection methodology is shown in **Table 4**. For research objective 1, we conducted a general search for terms that are used to designate the professional roles of assistants or terms. We used the advanced search feature of Google Scholar to look for 'the exact phrase, anywhere in the article'. Since results are sorted by relevance, for each search we went through the first 10 pages and chose respective articles after reading the abstract.

To consider various terms used in describing intelligent assistants, we conducted an explorative search. We found that articles presenting intelligent assistants use a combination of an adjective as an alias for some sort of intelligent ability (smart, personal, adaptive, cooperative, or intelligent), followed by a verb in some cases which represents an activity (for example driving, writing, teaching, learning etc.), and the word 'assistant' or 'assistance'. These terms were then used to construct a search expression that searches for the adjectives within 5 words of assistant' (which includes assistance, assistants, assistant). We used a full metadata search (including title, abstract and keywords) and excluded commercially available assistants to focus on the research side of the domain.

We filtered the resulting dataset in two rounds, first by reading the title and then the abstract. The articles selected in the final round were distributed among the co-authors and read in depth.

Search Terms	Databanks/Search	Inclusion Criteria	Exclusion Criteria	Initial	Filtered	Filtered	
	Engine(s)			Hits	first	sec-	
					round	ond	
						round	
	A clarifica	ation of the notion of a	ssistance (RO1)				
'administrative as-	Google Scholar	Articles carried out a	Articles that evaluated	18	11	7	
sistants', 'medical		systematic qualitative	workplace trends in the				
assistants', 'nursing		or ethnographic study	respective fields of as-				
assistants', 'healthcare		of human assistants at	sistance				
assistants', 'surgical		work					
assistants', 'teach-							
ing assistants', 'work							
of assistants', 'role							
of assistants' (and							
variations thereof).							
	A typo	logy for intelligent assis	stance (RO2)				
("adjective" + "verb"	IEEE Explore, ACM	Article was published	Article did not present	2317	356	111	
+ "assistan*") or	Library, Science Di-	in the last 25 years	a system but used the				
("adjective" + "noun"	rect, SpringerLink and	(1994-2019), presented	keywords in a different				
+ "assistan*"), where	ISI Web of Knowledge	a framework or a sys-	context, proposed only				
the adjective is one of	_	tem that offers some	the design of a system				
the following: smart,		form of assistance, dis-	without a description				
intelligent, adaptive,		cussed the features of	of its functionality, was				
personal, cooperative.		the system	not available in a full-				
Wherever supported,		-	text form, already ex-				
a word distance based			isted in the search re-				
search was performed			sults or was a review				
(for example "intel-			article				
ligent" ONEAR/5							
"assistan*").							
Design and evaluation criteria for intelligent assistance (RO3)							
n.a.	data set filtered after	articles that men-	articles that only		356	24	
	first round in RO1 was	tion design goals,	present a system, do				
	used	guidelines or design	not specify any design				
		principles/heuristics	goals, guidelines or				
		etc.	principles				
n.a.	data set filtered after	articles that evaluate	articles that do not		356	60	
	first round in RO1 was	the assistance system	carry out an evaluation				
	used	presented	of the presented system				

Table 4: Article Selection Methodology

C Typology Creation

The first stage of the typology creation contains characteristics that were identified from RO1 (Conceptual-to-empirical). Since it concerns the human aspect of assistants, we expected that entries would have to be removed or modified. The 'client' was removed from the cooperating entities list, since intelligent assistants hove been developed for one-to one interaction with the user. The activities performed by human assistants are varied, and were not carried over to the next iteration; the activities of intelligent assistants are primarily digital and interactive. Finally, we did not find any support for contingency response in the design of intelligent assistants, so the dimension was also removed. In the second iteration, we added characteristics of intelligent agents, and went through the articles in a chronological manner to refine the typology. The final typology is shown in **Table 1**.

Meta-Characteristic	Conceptual-to-emp	irical (Iteration 1)	Empirical-to-conceptual (Iteration 2)		
	Dimension	Characteristic	Dimension	Characteristic	
Outcome	outcomes	maintain service provision	outcomes	reduce workload	
		-		learning/skill acquisition	
	outcome type	augment	outcome type	augment	
		compensate		compensate	
			7		
Environment	cooperating entities	principal	assistance target	user	
		assistant		application	
		client	_	tools	
		tools	_	objects	
	1 .	objects	1 .	<u>(,)) (</u>	
	domain	teaching	domain	software development	
		medical	-	design/verification	
		administrative		legal	
Assistant	activity	foreground tasks	activity	decision support	
11551500110	activity	background tasks		answer queries	
		problem solving	-	execute tasks	
		maintain situation awareness	-		
	initiative	self-initiated	invocation mode	autonomous	
		delegation	1	delegated	
		mixed		mixed	
	contingency-response	intervene	flexibility	adaptive	
		adapt		adaptable	
				static	
			input combination(s)	peripheral	
				speech	
				language	
				· .	
			output combination(s)	Visual	
				bontia	
				naptie	
			modality	unimodal	
				multimodal	
			character	yes	
				no	
			ubiquity	platform-specific	
				web-based	
			learning capability	learning	
				learned	

Table 5: Typology Creation I teration 1 and 2

Meta-Characteristic	Empirical-to-concept	ual (Iteration 3)	Empirical-to-conceptual (Iteration 4)	
	Dimension	Characteristic	Characteristic	
Outcome	outcomes	improve productivity	improve productivity	
		learning/skill acquisition	learning/skill acquisition	
		augment experience	augment experience	
		improve work quality	improve work quality	
	outcome type	augment	augment	
		compensate	compensate	
		both	both	
Environment	assistance target	user	application-interface	
		application-interface	objects	
		tools	application-interface & object	
		objects	-FF	
	domain	software development	professional	
		design/verification	F	
		medical work		
		legal		
		administrative	private	
		education	education	
		e-commerce		
Assistant	activity	providing information	providing information	
1656504110	activity	evecuting tasks	eventing tasks	
	invocation mode	autonomous	autonomous	
	invocation mode	delegated	delegated	
		mixed	mixed	
	flexibility	adaptiva	adaptive	
	nexionity	adaptive	adaptable	
		etatic	etatic	
	input combination(s)	peripheral	peripheral	
	input combination(s)	speech/language	language and peripheral	
		language and peripheral	language only	
		sensor input	sensor input	
		sensor input	peripheral and sensor input	
			language & peripheral & sensor input	
	output combination(s)	vieusl	vieual	
	output combination(s)	speech/language	language and visual feedback	
		haptic	language and visual recuback	
		naptie	visual and haptic	
			haptic	
	modality	unimodal	unimodal	
	modality	multimodal	multimodal	
	ombodimont	Mag	Nos	
	emboument	ycs	усо по	
	ubiquity	nlotform specific	no platform specific	
	usiquity	mobile	mahila	
		mobile	mobile	
		web-based	web-based	
	learning on a hilitar	Inutiple devices	multiple devices	
	learning capability	learning	learning	
		learned	learned	

1.2 m 11 a т. . . 0 1 4 m

D Qualitative Review of Design Influences, Evaluated Attributes and Evaluation Methods

The summary of design goals in Table 2 is based off Table 7. Similarly, the summary of evaluated attributes in Table 3 is based off Table 8. We gathered the attributes after reading the articles listed in the table(s).

table 1. Design influences in interligent assistant research.					
Paper Title	Year	Design influence			
Intelligent media agents in interactive televi-	1995	personalization			
sion systems					
SIMPSON: An intelligent assistant for short-	1996	task congruency, information congruency, maintainability			
term manufacturing scheduling					
MASMA: A personal assistant for meetings	1997	control of initiative, personalization			
management					
YPA – an intelligent directory enquiry assis-	1998	usefulness, user-friendliness			
tant					
MailCat: An Intelligent Assistant for Organiz-	1999	simplicity, unobtrusiveness			
ing e-Mail					
INSYDER – an Information Assistant for	2000	agent attributes			
Business Intelligence					
Context-aware Office Assistant	2000	context aware computing			
USCSH: An active intelligent assistance sys-	2000	effectiveness, task accomplishment			
tem					
The Intelligent Classroom: Providing Compe-	2001	competent assistant (bound to specific tasks)			
tent Assistance					
Mixed-initiative, multi-source information as-	2001	mixed initiative agents			
sistants		6			
A Writer's Collaborative Assistant	2002	Shared Plans theory of collaboration			
IntelliShopper: a proactive, personal, private	2002	autonomy, personalization, privacy			
shopping assistant		J I I J I I J I I J I I J			
DORIS – Pedagogical Agent in Intelligent Tu-	2002	environment perception, autonomy, sociability, adaptability, mobility			
toring Systems		\mathbf{r}			
Balancing Efficiency and Interpretability in an	2003	efficiency, interpretability, granularity, context, explicitness			
Interactive Statistical Assistant		, , , , , , , , , , , , , , , , , , ,			
An intelligent personal assistant for task and	2007	directable, personalizable, teachable, transparent			
time management					
FleXConf: A Flexible Conference Assistant Us-	2009	context awareness			
ing Context-Aware Notification Services					
Agent-assisted Task Management That Re-	2010	usability, performance, predictability, understandability			
duces Email Overload					
Ma\$\$iv? An Intelligent Mobile Grocery Assis-	2012	user centred design			
tant					
Learning Intelligent System for Student Assis-	2016	BDI Agents			
tance – LISSA					
Artemisa: A Personal Driving Assistant for	2016	gamification			
Fuel Saving		0			
PrIA: A Private Intelligent Assistant	2017	personalize privately instead of aggregating collective data			
A Personal Medical Digital Assistant Agent for	2017	context awareness, provide assistance without distraction or interruptions			
Supporting Human Operators in Emergency	2011				
Scenarios					
Designing Out Stereotypes in Artificial Intelli-	2018	user centred design, participatory design			
gence. Involving Users in the Personality De-		and control double, participatory doublen			
sign of a Digital Assistant					
Protecting privacy and open competition with	2019	openness privacy control			
Almond: An open-source virtual assistant	2010	opolitios, privacy, control			
open searce virtual assistant					

Table 7: Design influences in intelligent assistant research.

Table 8: Evaluation of intelligent assistants	3			
Title	Year	Evaluated Attribute	Group	Type
User interface design assistance for large-scale	1994	usability	usability	qualitative
software development	1004			
The Daimler-Benz steering assistant: a spin-off	1994	driving attributes	user performance	quantitative
An intelligent symbol usage assistant for CAD	1004	prodictivo occurocy	austom porformance	quantitativa
systems	1994	predictive accuracy	system performance	quantitative
Intelligent assistance for intravascular tele-	1995	collision times	user performance	quantitative
surgery and experiments on virtual simulator	1000		user performance	quantitative
Agents in Their Midst: Evaluating User Adap-	1998	usage metrics (sorting time,	user and system perfor-	mixed methods
tation to Agent-assisted Interfaces		placement rate), error metrics	mance, user feedback	
		(user error, agent error, in-		
		crease in error rate), observa-		
		tions and interviews		
An Experiment with Navigation and Intelli-	1998	precision (proportion of re-	user and system perfor-	quantitative
gent Assistance		trieved information that is rele-	mance	
		vant), recall (proportion of rel-		
		trieved) user actions (selec-		
		tions and duration)		
C-MAP: Building a Context-Aware Mobile As-	1998	usability and user feedback	usability, user feedback	mixed methods
sistant for Exhibition Tours				
Intelligold-an expert system for gold plant pro-	1999	case study	system performance	qualitative
cess design				
MailCat: An Intelligent Assistant for Organiz-	1999	predictive accuracy	system performance	quantitative
ing e-Mail	1000			
PTA – A Personal Translation Assistant for	1999	user feedback about assistants	user feedback	qualitative
Accessing the World Wide Web	2000	behavior (tool:	ugon nonformanas ugon	auantitatina
Business Intelligence	2000	plotion) officionary (task	foodback	quantitative
Dusiness Intelligence		completion time) satisfaction	leeuback	
		(subjective acceptance)		
Communication Management: E-Mail and	2000	technical functionality	system performance	quantitative
Telephone Assistants				-
Balancing Efficiency and Interpretability in an	2002	Usability (ease of learnability,	usability	mixed methods
Interactive Statistical Assistant	2002	usefulness)		
IntelliShopper: a proactive, personal, private	2002	learning accuracy	system performance	quantitative
shopping assistant	2002	atudant nuamaa	ugon nonformana	auantitatina
An intelligent teaching assistant system for	2002	student progress	user performance	quantitative
Balancing Efficiency and Interpretability in an	2003	user operations (navigation	user performance	quantitative
Interactive Statistical Assistant	2000	analysis, organization)	user performance	quantitative
Intelligent Assistance, Retrieval, Reminder	2003	prediction	system performance	quantitative
and Advice for Fuzzy Multicriteria Decision-		-		-
Making				
An Intelligent Assistant for Training of Power	2006	operator performance	user performance	quantitative
Plant Operators	2000			
ECPIA: An email-centric personal intelligent	2006	technical performance	system performance	na
Assistant MIKL A Speech Enchled Intelligent Kiegle	2006	user resetions	uson foodbook	qualitativa
Survey Measures for Evaluation of Cognitive	2000	user reactions	user reedback	qualitative
Assistants	2001	oration, disorientation, flow	ease of use	quantitative
MARA – A Mobile Augmented Reality-Based	2007	user feedback about assistants	user feedback	qualitative
Virtual Assistant		behavior		1
Learning Assistant – Personalizing Learning	2008	learning performance	user performance	quantitative
Paths in e-Learning Environments				
RelAltTab: Assisting Users in Switching Win-	2008	user effort	user performance	quantitative
dows	2000		6	
Intelligent User Assistance for Cost Effective	2008	predictive accuracy	system performance	quantitative
Usage of Mobile Filone	2008	usor offert III Satisfaction	user performance user	quantitativo
generated web interfaces	2000	Perceived Usefulness and Ease	feedback	quantitative
Penerated web interfaces		of Use	TOUGUN	
Virtual assistant: an artificial agent for en-	2008	subjective evaluation	user feedback	quantitative
hancing content acquisition: how ambient me-				1
dia elicit information from humans				
IPA – An intelligent personal assistant agent	2009	learning accuracy	system performance	quantitative
for task performance support				
			Contin	ued on next page

Table 8: Evaulation of intelligent assistants

Title	Year	Evaluated Attribute	Group	Type
Intelligent assistance for teachers in collabora-	2009	system performance	system performance	quantitative
tive e-learning environments				
Agent-assisted Task Management That Re-	2010	user performance	user performance	quantitative
LABTA: An Agent-Based Intelligent Teaching	2010	user satisfaction (ease of use	user feedback	quantitative
Assistant for Experiment Courses	2010	appearance, abilities)	user recuback	quantitative
Intelligent Content-Based Privacy Assistant	2011	predictive accuracy	system performance	quantitative
for Facebook			· -	-
ASISTO: An integrated intelligent assistant	2011	user progress	user performance	quantitative
system for power plant operation and training	0011			
PTIME: Personalized Assistance for Calendar-	2011	usefulness, usability, perfor-	system performance,	mixed methods
The Director's Lens: An Intelligent Assistant	2011	user effort.	user performance	qualitative
for Virtual Cinematography	2011			quantative
SWIMS (Speech-Based Web Interface for	2012	predictive accuracy	system performance	quantitative
Mathematics Using Statistical Language Mod-		- v		-
els): An Intelligent Editing Assistant for Math-				
ematical Text	0.010			
Gardener: A file browser assistant to help users	2012	LKM-GOMS	user performance	quantitative
Towards on Intelligent Reviewer's Assistant:	2012	loarning accuracy usofulness	system performance	mixed methods
Recommending Topics to Help Users to Write	2012	learning accuracy, userumess	user feedback	mixed methods
Better Product Reviews			uber recubuen	
The Voice User Help, a Smart Vehicle Assis-	2012	technology acceptance	technology acceptance	quantitative
tant for the Elderly				-
Design and Evaluation of a Haptic Computer-	2013	operator performance	user performance	quantitative
Assistant for Telemanipulation Tasks	0014		<u> </u>	
Performance evaluation of an intelligent mul-	2014	student progress	user performance	quantitative
Artificial Intelligence Caming Assistant for	2014	technical performance	system performance	quantitative
Google Glass	2014	technical performance	system performance	quantitative
A computer vision-based assistant system for	2015	technical performance	system performance	quantitative
the assembly of narrow cabin products		-		-
CogniWin-A Virtual Assistance System for	2015	helpfulness, improved work ef-	user performance, user	quantitative
Older Adults at Work		ficiency, usefulness, wellness	feedback	
An intelligent assistant for physicians	2016	classification accuracy	system performance	quantitative
An intelligent system to assist the diagnosis of applease disorder in children: A case of study	2016	classification accuracy	system performance	quantitative
Understanding User Satisfaction with Intelli-	2016	user satisfaction, user effort.	user and system perfor-	quantitative
gent Assistants	-010	task compleness, speech recog-	mance	qualitieurite
5		nition quality		
Artemisa: A Personal Driving Assistant for	2016	driving parameters	user performance	quantitative
Fuel Saving	0015			
Intelligent driving assistant based on accident	2017	Assistant accuracy, driving	user and system perfor-	quantitative
risk maps analysis and intelligent driving di-		performance	mance	
"What Can I Help You with?": Infrequent	2017	focus group	user feedback	qualitative
Users' Experiences of Intelligent Personal As-				1
sistants				
PrIA: A Private Intelligent Assistant	2017	precision comparision with	system performance,	quantitative
		state-of-the art based on user	user feedback	
ha Alastana Intelliment Assistance in C	2017	reedback	waan foodho -1-	
Idea Ceneration	2017	satisfaction	user feedback	na
A Personal Medical Digital Assistant Agent for	2017	usability, responsiveness	usability	qualitative
Supporting Human Operators in Emergency				1
Scenarios				
Darwin: Convolutional Neural Network based	2018	classification accuracy	system performance	quantitative
Intelligent Health Assistant	0.017		C.	
Dinus Intelligent Assistance (DINA) Chatbot	2018	classification accuracy	system performance	quantitative
In University Admission Services	2018	user effort	user performance	quantitativa
Tasks	2010		aser performance	quantitative
PRoA: An intelligent multi-criteria Personal-	2018	comparison with state of the	system performance	quantitative
ized Route Assistant		art		-
Context-Aware Conversational Developer As-	2018	subjective evaluation	user feedback	qualitative
sistants				
			Contin	ued on next page

 Table 8: Evaulation of intelligent assistants

Title	Year	Evaluated Attribute	Group	Type
Usage-Based Learning in Human Interaction	2019	user effort	user performance	quantitative
with an Adaptive Virtual Assistant				
From Eliza to XiaoIce: challenges and oppor-	2018	conversations per turn	user and system perfor-	quantitative
tunities with social chatbots			mance	