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1 Proofs of Lemmas and Theorems

1.1 Proof of Theorem 1

Proof By the definition of infimum, there exists f1,ε ∈ H such that

Rreg1,P,c1
(f1,ε) ≤ inf

f1∈H
Rreg1,P,c1

(f1) + ε

for any ε∈ (0, L1(1, 0, λ1)+L1(−1, 0, λ1)]. Note the valueL1(1, 0, λ1)+L1(−1, 0, λ1)
is an upper bound with f1 = 0 for the loss function L1, since it measures the largest
distance between y and f1(x). Thus,

Ω(c1, ||f1,ε||H) ≤ Rreg1,P,c1
(f1,ε) ≤ inf

f1∈H
Rreg1,P,c1

(f1) + ε ≤ Rreg1,P,c1
(0) + ε

= R1,P (0) + ε ≤ 2(L1(1, 0, λ1) + L1(−1, 0, λ1)).

The regularization term Ω is bounded for f1,ε, and there exists δ1 > 0 such that
||f1,ε||H ≤ δ1. By the Eberlein-Smulyan theorem and the Bolzano-Weierstrass the-
orem, there exist f1,P,c1 ∈ δ1BH , b ∈ [0, δ1] and a sequence (f1,εm) such that
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||f1,εm ||H → b and f1,εm → f1,P,c1 weakly with m tending to infinity. Consider-
ing the continuity of L1 and the reproducing property of H , we have

L1(y, f1,εm(x), λ1) −→ L1(y, f1,P,c1(x), λ1)

with m tending to infinity for any (x, y) ∈ X × Y . Taking the expectation on both
sides, it derives that

R1,P (f1,εm) −→ R1,P (f1,P,c1). (1)

Then for any ρ > 0, there exists m0 such that for any m > m0 we have εm ≤ ρ and

R1,P (f1,P,c1) +Ω(c1, ||f1,εm ||H)− ρ ≤ R1,P (f1,εm) +Ω(c1, ||f1,εm ||H)

≤ R1,P (f1,P,c1) +Ω(c1, ||f1,P,c1 ||H) + εm.

For the arbitrary smallness of ρ, it indicates that

lim
m→∞

Ω(c1, ||f1,εm ||H) ≤ Ω(c1, ||f1,P,c1 ||H).

On the other hand, according to Corollary 2.6 in [2] we have

||f1,P,c1 ||H ≤ lim inf
m→∞

||f1,εm ||H = b.

Then, it concludes that

Ω(c1, ||f1,P,c1 ||H) ≤ Ω(c1, b) = lim
m→∞

Ω(c1, ||f1,εm ||H).

Therefore, it derives from Eq. (1) that

Rreg1,P,c1
(f1,εm) −→ Rreg1,P,c1

(f1,P,c1), m→∞.

Since the construction of f1,εm yields the relationship

Rreg1,P,c1
(f1,εm) −→ inf

f1∈H
Rreg1,P,c1

(f1), m→∞,

we have the following equaiton

Rreg1,P,c1
(f1,P,c1) = inf

f1∈H
Rreg1,P,c1

(f1).

Moreover, considering the definition of δc1 , it is obvious that δc1 ≥ δ1 and that
||f1,P,c1 ||H ≤ b ≤ δ1 ≤ δc1 , which completes the proof of the first part of the
theorem. Since the loss functions L1 and L2 are constructed in a symmetric way, we
would have the symmetric results

Rreg2,P,c2
(f2,P,c2) = inf

f2∈H
Rreg2,P,c2

(f2), ||f2,P,c2 ||H ≤ δc2 .

The theorem has been proven.
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1.2 Proof of Lemma 1

Proof Since R1,P and R2,P are constructed in a symmetric way, the results for R1,P

and R2,P could be derived in a symmetric way. Here we only need to get the result
for R1,P . Let (αi) be a dense sequence in [0, 1] with α1 = 0 and αi 6= αj if i 6= j.
Let ti be the solution of

C1(α, tα, λ1) = min
t∈R̄

C1(α, t, λ1), (2)

for each αi, i ≥ 1. Let

f1,m(α) := min{t1, . . . , tm},

f̂1(α) = lim inf
m→∞

f1,m(α).

Select a real number α̂ ∈ (0, 1) at which M1 is continuous. There exist two subse-
quences (αij ) and (tij ) such that (αij ) → α̂ and (tij ) → f̂1(α̂) with j tending to
infinity. It follows from the continuity of L1 that

M1(α̂, λ1) = lim
j→∞

M1(αij , λ1)

= lim
j→∞

[αijL1(1, tij , λ1) + (1− αij )L1(−1, tij , λ1)]

= α̂L1(1, f̂1(α̂), λ1) + (1− α̂)L1(−1, f̂1(α̂), λ1),

which implies that f̂1(α̂) is a solution of Eq. (2) for α̂. Since M1 is concave, it is also
continuous for all but at most countably many points of [0, 1] by Theorem 1.16 in [4].
Then in order to construct f∗1 such that M1 is continuous for all points, we only have
to modify f̂1 on the countably many points. Therefore,

R1,P = inf{R1,P (f1)|f1 : X → R measurable}

= inf
f1

∫
(x,y)∼P

L1(y, f1(x), λ1)dP (x, y)

= inf
f1

∫
X

[
P (1|x)L1(1, f1(x), λ1) + (1− P (1|x))L1(−1, f1(x), λ1)

]
PX(dx)

= inf
f1

∫
X

C1(P (1|x), f1(x), λ1)PX(dx) =

∫
X

M1(f
∗
1 (P (1|x)), λ1)PX(dx).

The lemma has been proven.

1.3 Proof of Theorem 2

Proof Since R1,P and R2,P are constructed in a symmetric way, the results for R1,P

and R2,P could be derived in a symmetric way. Here we only need to get the result
for R1,P .
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By the definition of infimum, there exists f1,ε ∈ H such that

R1,P (f1,ε) ≤ inf
f1∈H

R1,P (f1) + ε

for any ε > 0. Since the regularization term Ω(·, ||f1,ε||H) is continuous in 0, there
exists ĉ1 such that for any c1 < ĉ1 we have Ω(c1, ||f1,ε||H) ≤ ε. It follows from
Theorem 1 that

lim
c1→0

Rreg1,P,c1
(f1,P,c1) = lim

c1→0
inf
f1∈H

Rreg1,P,c1
(f1) = inf

f1∈H
R1,P (f1).

In order to prove the theorem, it suffice to give the proof that

inf
f1∈H

R1,P (f1) = inf{R1,P (f1) : f1 ∈ L∞(PX)} = R1,P . (3)

Since k is a universal kernel, for any ε, δ > 0 and any bounded measurable function
h : X → R, there exists f1 ∈ H such that

PX({x ∈ X : |h(x)− f1(x)| ≥ ε}) ≤ δ,
||f1||∞ ≤ ||h||∞ ∈ L∞(PX).

SinceL1 is uniformly continuous on Y ×[−||h||∞, ||h||∞], the first equality of Eq. (3)
is valid.

Now we begin to show the validity for the last equality of Eq. (3). Define two
functions f1,m : [0, 1]→ R and M1,m(α, λ1) as follows:

f1,m(α) =

{
f∗1 (α), |f∗1 (α)| ≤ m,

0, otherwise,

M1,m(α, λ1) = αL1(1, f1,m(α), λ1) + (1− α)L1(−1, f1,m(α), λ1),

where f∗1 is constructed as in Lemma 1. For any α ∈ [0, 1] with |f∗(α)| < ∞, we
have

M1,m(α, λ1) =1[−m,m](f
∗
1 (α))M1(α, λ1)

+ 1R\[−m,m](f
∗
1 (α))(αL1(1, 0, λ1) + (1− α)L1(−1, 0, λ1)).

Moreover as m tends to infinity, M1,m(α, λ1) is monotonically decreasing bounded
in M1(α, λ1) with respect to α , according to the definition of M1(α, λ1), i.e.,

|M1,m(α, λ1)−M1(α, λ1)| → 0.

Therefore, it derives from Lemma 1 that

R1,P =

∫
X

M1(P (1|x), λ1)PX(dx)

= lim
m→∞

∫
X

M1,m(P (1|x), λ1)PX(dx)

= inf{R1,P (h)|h : X → R bounded, measurable}.

The theorem has been proven.
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1.4 Proof of Theorem 3

Proof The set of points misclassified by f is defined as

Ef := {x ∈ X : P (1|x) < 1

2
, f(x) > 0}

⋃
{x ∈ X : P (1|x) > 1

2
, f(x) < 0}.

Given a measurable functions f∗1 : [0, 1]→ R according to Lemma 1, we have

δ1 ≥R1,P (f1)−R1,P

=

∫
X\Ef

C1(P (1|x), f1(x), λ1)PX(dx) +

∫
Ef

C1(P (1|x), f1(x), λ1)PX(dx)

−
∫
X\Ef

C1(P (1|x), f∗1 (P (1|x)), λ1)PX(dx)

−
∫
Ef

C1(P (1|x), f∗1 (P (1|x)), λ1)PX(dx)

≥
∫
Ef

C1(P (1|x), f1(P (1|x)), λ1)PX(dx)−
∫
Ef

M1(P (1|x), λ1)PX(dx).

In order to estimate the first term on the right-hand side, define a novel function
f̃1 : [0, 1]→ R such that

C1(α, f̃1(α), λ1) =


inf{C1(α, t, λ1) : t ≥ 0}, α <

1

2
,

inf{C1(α, t, λ1) : t ≤ 0}, α >
1

2
.

Note, f̃1 is assumed to be measurable by the technique in the proof of Lemma 1.
Since L1 is admissible, we have C1(α, f̃1(α), λ1) − M1(α, λ1) > 0 for any α ∈
[0, 1]\{1/2}. Indeed, for α < 1/2, we have tα < 0, implying that

C1(α, f̃1(α), λ1) = inf{C1(α, t, λ1) : t ≥ 0} > C1(α, tα, λ1) =M1(α, λ1).

For α > 1/2, we have tα > 0, implying that

C1(α, f̃1(α), λ1) = inf{C1(α, t, λ1) : t ≤ 0} > C1(α, tα, λ1) =M1(α, λ1).

Define ∆1 : X → R as follows:

∆1(x) = C1(P (1|x), f̃1(P (1|x)), λ1)−M1(P (1|x), λ1).

∆1 is a strictly positive function on X̂ := {x ∈ X : P (1|x) 6= 1/2}, thus

0 <

∫
Ef

∆1(x)dx ≤ δ1.

Similarly, we could get another symmetric result

0 <

∫
Ef

∆2(x)dx ≤ δ2
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for function ∆2 : X → R as follows:

∆2(x) = C2(P (1|x), f̃2(P (1|x)), λ2)−M2(P (1|x), λ2).

As δ1, δ2 tends to 0, it derives that P{x ∈ Ef} → 0. Note, Theorem 2.6 in [3]
indicates that

RP (f)−RP =

∫
Ef

(1− 2η(x))PX(dx),

where η(x) = min{P (1|x), P (−1|x)}. The function 1− 2η(x) is also strictly posi-
tive on X̂ . Thus, the equation RP (f)−RP −→ 0 holds true. The theorem has been
proven.

1.5 Proof of Lemma 2

Proof Since the hyper-planes f1 and f2 are constructed in a symmetric way, the re-
sults for f1 and f2 could also be derived in a similar way. We only need to get the
result for f1.

Denote F1 = {L1(·, f1(·), λ1) : f1 ∈ δc1I(BH)}. Let {f1
1 , . . . , fn1 } be the ε-net

of δc1I(BH). Then {f1
1 , . . . , fn1 } is shown to be the w(L1,c1 , ε)-net of F1 by virtue

of the definition of the modulus of continuity. Thus, suppose there exists a minimal
w−1(L1,c1 , ε)-net for δc1I(BH), then there exists a ε-net for F1 by virtue of the defi-
nition of the modulus of continuity. Therefore, N (F1, ε) ≤ N (δc1I, w

−1(L1,c1 , ε)).
Since F1 is a subset of of nonnegative functions that are bounded by ||L1,c1 ||∞, it
follows from Hoeffding’s inequality for Theorem 8.1 in [3] that

Pr
{
S : sup

f1∈δc1I(BH)

|R1,S(f1)−R1,P (f1)| ≥ ε
}

≤2N (F1, ε/3) exp
{
− 2ε2m

9||L1,c1 ||2∞

}
≤2 exp

{
H(δc1I, ω−1(L1,c1 , ε/3))−

2ε2m

9‖L1,c1‖2∞

}
.

Since Theorem 1 guarantees that f1,S,c1 ∈ δc1I(BH), we have

Pr{S : |R1,S(f1,S,c1)−R1,P (f1,S,c1)| ≥ ε}

≤Pr
{
S : sup

f1∈δc1I(BH)

|R1,S(f1)−R1,P (f1)| ≥ ε
}

≤2 exp
{
H(δc1I, ω−1(L1,c1 , ε/3))−

2ε2m

9‖L1,c1‖2∞

}
.

The lemma has been proven.
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1.6 Proof of Theorem 4

Proof Define a variable

g1 := sup{|L1(y, t, λ1)− L1(y, t
′
, λ1)| : y ∈ Y, t, t

′
∈ [−δ̂1K, δ̂1K]}.

Let ε ∈ (0, g1), and fix δ1 as in Theorem 3 satisfying R1,P (f1) ≤ R1,P + δ1 for any
measurable function f1 : X → R. Applying Theorem 2, there exists m0 ∈ N such
that for any m > m0, we have

|Rreg1,P,c1(m)(f1,P,c1(m))−R1,P | ≤ δ1/3.

Note, the quantity

sup{w−1(L1,c1(m), ε) : c1(m) ∈ (0, 1], ε ∈ (0, g1)} <∞

ensures that there exists ρ1 such that for any m > m0, we have

H(δc1(m)I, w
−1(L1,c1(m), ε)) ≥ ρ1,

i.e., there are at least two points to cover δc1(m)I(BH). Thus it follows from the
condition on c1(m) that

‖L1,c1(m)‖2∞
m

−→ 0, m −→∞

exp
{
H(δc1(m)I, ω

−1(L1,c1(m), ε/3))−
2ε2m

9‖L1,c1(m)‖2∞

}
−→ 0, m −→∞.

Using Lemma 2 together with Hoeffding’s inequality, we have

Pr
{
S :|R1,S(f1,S,c1(m))−R1,P (f1,S,c1(m))| >

δ1
3⋃

|R1,S(f1,P,c1(m))−R1,P (f1,P,c1(m))| >
δ1
3

}
≤ ε,

for any m > m0. Furthermore,

R1,P (f1,S,c1(m)) ≤ Ω(c1(m), ||f1,S,c1(m)||H) +R1,P (f1,S,c1(m))

≤ Ω(c1(m), ||f1,S,c1(m)||H) +R1,S(f1,S,c1(m)) + δ1/3

≤ Ω(c1(m), ||f1,P,c1(m)||H) +R1,S(f1,P,c1(m)) + δ1/3

≤ Ω(c1(m), ||f1,P,c1(m)||H) +R1,P (f1,P,c1(m)) + 2δ1/3

≤ R1,P + δ1.

Since the hyper-planes f1 and f2 are constructed in a symmetric way, the results for
f1 and f2 could be derived in a similar way. Analogously, we have the result

R2,P (f2,S,c2(m)) ≤ R2,P + δ2,

where c2(m) is defined the same as c1(m) and δ2 is defined as in Theorem 3. It con-
cludes from Theorem 3 that RP (fS) ≤ RP + ε, where fS(·) = |f2,S,c2(m)(·)| −
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|f1,S,c1(m)(·)|, implying the optimal problem Eq. (3) (in the main paper) is universal-
ly consistent.

Now we start to show the strongly universal consistency. The conditions
∞∑
m=1

exp{−εm/||L1,c1(m)||2∞} <∞,

∞∑
m=1

exp{−εm/||L2,c2(m)||2∞} <∞,
(4)

ensure that

exp{−εm/||L1,c1(m)||2∞} −→ 0, m −→∞,
exp{−εm/||L2,c2(m)||2∞} −→ 0, m −→∞.

Furthermore,

exp
{
H(δc1I, ω−1(L1,c1 , ε/3))−

2ε2m

9‖L1,c1‖2∞

}
−→ 0, m −→∞,

exp
{
H(δc2I, ω−1(L2,c2 , ε/3))−

2ε2m

9‖L2,c2‖2∞

}
−→ 0, m −→∞.

Thus the optimal problem is strongly universally consistent.

1.7 Proof of Lemma 3

Proof Since the hyper-planes f1 and f2 are constructed in a symmetric way, the re-
sults for f1 and f2 could be derived in a similar way. We only need to get the result
for f1.

Denote F1 = {L1(·, f(·), λ1) : f ∈ δc1I(BH)}. As discussed in the proof of
Lemma 2, it derives for localized covering number that

N (F1, 2m, ε) ≤ N (δc1I, 2m,w
−1(L1,c1 , ε)).

It follows from Lemma 3.4 in [1] that

Pr
{
S : sup

f1∈δc1I(BH)

|R1,S(f1)−R1,P (f1)| ≥ ε
}

≤12mN (F1, 2m, ε/6) exp
{
− ε2m

36||L1,c1 ||2∞

}
≤12m exp

{
H(δc1I, 2m,w−1(L1,c1 , ε/6))−

ε2m

36||L1,c1 ||2∞

}
.

Since Lemma 1 guarantees that f1,S,c1 ∈ δc1I(BH), we have

Pr
{
S : |R1,S(f1,S,c1)−R1,P (f1,S,c1)| ≥ ε

}
≤12m exp

{
H(δc1I, 2m,w−1(L1,c1 , ε/6))−

ε2m

36||L1,c1 ||2∞

}
.

The lemma has been proven.
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1.8 Proof of Theorem 5

Proof Let g1, ε, δ1 and m0 be defined the same as that in the proof of Theorem 4.
Note that, the quantity

sup{w−1(L1,c1(m), ε) : c1(m) ∈ (0, 1], ε ∈ (0, g1)} <∞

ensures there exists ρ1 such that for any m > m0, we have

H(δc1(m)I, 2m,w
−1(L1,c1(m), ε)) ≥ ρ1,

i.e., there are at least two points to cover δc1(m)I(BH). Thus, it follows from the
condition on c1(m) that

‖L1,c1(m)‖2∞
m

−→ 0, m −→∞,

exp
{
H(δc1I, 2m,ω−1(L1,c1 , ε/6))−

ε2m

36‖L1,c1‖2∞

}
−→ 0, m −→∞.

Using Lemma 3 together with Hoeffding’s inequality, for any m > m0 we have

Pr
(
S :|R1,S(f1,S,c1(m))−R1,P (f1,S,c1(m))| > δ1/3⋃

|R1,S(f1,P,c1(m))−R1,P (f1,P,c1(m))| > δ1/3
)
≤ ε.

According to the procedures in the proof of Theorem 4, it derives that

R1,P (f1,S,c1(m)) ≤ R1,P + δ1,

Analogously, we have the result for f2,S,c2(m) that

R2,P (f2,S,c2(m)) ≤ R2,P + δ2,

where c2(m) and δ2 are defined the same as c1(m) and δ1. It yields by Theorem 3
that RP (fS) ≤ RP + ε, where fS(·) = |f2,S,c2(m)(·)| − |f1,S,c1(m)(·)|, implying the
optimal problem Eq. (3) (in the main paper) is universally consistent.

Now we start to show the strongly universal consistency. The conditions
∞∑
m=1

exp{−εm/||L1,c1(m)||2∞} <∞,

∞∑
m=1

exp{−εm/||L2,c2(m)||2∞} <∞,

ensures that

exp
{
H(δc1I, 2m,ω−1(L1,c1 , ε/6))−

ε2m

36‖L1,c1‖2∞

}
−→ 0, m −→∞,

exp
{
H(δc2I, 2m,ω−1(L2,c2 , ε/6))−

ε2m

36‖L2,c2‖2∞

}
−→ 0, m −→∞.

Thus, the optimal problem is strongly universally consistent.
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1.9 Proof of Lemma 4

Proof Since the lemma is valid for differentiable loss functions by virtue of Theorem
12.4 in [6], we only consider the lemma for non-differentiable loss functions below.
The idea of the proof mainly follows the approach of [8].

Let Ŝ = Si,(x,y) for some fixed i = 1, . . . ,m. Let ESf be the expectation of f
with respect to the empirical measure induced by S. Recall for a convex, continuous
function f1 : X → R, the sub-differential of f1 in x ∈ X is defined by

∂f1(x) := {x∗ ∈ X : < x∗, x
′
− x >≤ f1(x

′
)− f1(x),∀x

′
∈ X}.

The convexity of L1 implies that L1,c1(m) is locally 1-Hölder-continuous. Actual-
ly, we only have to consider the case for finite dimensional subspaces of H . Theo-
rem 23.8 and 23.9 in [5] show that

Rreg1,S,c1(m)(f1) = 2c1(m)f1 +D,

where

D = {EShΦ : h(xi, yi) ∈ ∂L1(yi, f1(xi), λ1),∀i = 1, . . . ,m},

and the sub-differential ∂L1 is only with respect to the second variable of L1. Since
f1,S,c1(m) is the element minimizing Rreg1,S,c1(m), and 0 ∈ ∂Rreg1,S,c1(m)(f1,S,c1(m)),
there exists h(xi, yi) ∈ ∂L1(yi, f1,S,c1(m)(xi), λ1), i = 1, . . . ,m, such that

0 ≤ 2c1(m)f1,S,c1(m) + EShΦ = Rreg1,S,c1(m)(f1,S,c1(m)) ≤ Rreg1,S,c1(m)(0) = 0.

Note, f1,S,c1(m) has an upper bound by virtue of the proof of Lemma 1. It follows
from the Lipschitz continuity of L1,c1(m) that ||h||∞ ≤ |L1,c1(m)|1. Thus,

h(xi, yi)(f1,Ŝ,c1(m)(xi)− f1,S,c1(m)(xi))

≤L1(yi, f1,Ŝ,c1(m)(xi), λ1)− L1(yi, f1,S,c1(m)(xi), λ1), i = 1, . . . ,m.

Taking expectation with respect to the empirical measure of Ŝ on both sides, it derives

< f1,Ŝ,c1(m) − f1,S,c1(m), EŜhΦ >

≤EŜL1(·, f1,Ŝ,c1(m)(·), λ1)− EŜL1(·, f1,S,c1(m)(·), λ1),

for the reproducing property of Φ. Since

||f1,S,c1(m)||2 + 2 < f1,Ŝ,c1(m) − f1,S,c1(m), f1,S,c1(m) > +||f1,S,c1(m) − f1,Ŝ,c1(m)||
2

=||f1,Ŝ,c1(m)||
2,
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we have

Rreg
1,Ŝ,c1(m)

(f1,S,c1(m)) + c1(m)||f1,S,c1(m) − f1,Ŝ,c1(m)||
2

+ < f1,Ŝ,c1(m) − f1,S,c1(m), EŜhΦ+ 2c1(m)f1,S,c1(m) >

=EŜL1(·, f1,S,c1(m)(·), λ1) + c1(m)||f1,S,c1(m)||2

+ c1(m)||f1,S,c1(m) − f1,Ŝ,c1(m)||
2+ < f1,Ŝ,c1(m) − f1,S,c1(m), EŜhΦ >

+ 2c1(m) < f1,Ŝ,c1(m) − f1,S,c1(m), f1,S,c1(m) >

=EŜL1(·, f1,S,c1(m)(·), λ1)+ < f1,Ŝ,c1(m) − f1,S,c1(m), EŜhΦ > +||f1,Ŝ,c1(m)||
2

≤EŜL1(·, f1,Ŝ,c1(m)(·), λ1) + ||f1,Ŝ,c1(m)||
2

=Rreg
1,Ŝ,c1(m)

(f1,Ŝ,c1(m)).

Since f1,Ŝ,c1(m) minimizes Rreg
1,Ŝ,c1(m)

, it follows that

Rreg
1,Ŝ,c1(m)

(f1,S,c1(m)) ≥ Rreg1,Ŝ,c1(m)
(f1,Ŝ,c1(m)).

Thus, we have

c1(m)||f1,S,c1(m) − f1,Ŝ,c1(m)||
2

≤ < f1,S,c1(m) − f1,Ŝ,c1(m), EŜhΦ+ 2c1(m)f1,S,c1(m) >

=||f1,S,c1(m) − f1,Ŝ,c1(m)|| ||EŜhΦ+ 2c1(m)f1,S,c1(m)||.

Furthermore, we have

||f1,S,c1(m) − f1,Ŝ,c1(m)|| ≤
1

c1(m)
||EŜhΦ− EShΦ|| ≤

2K|L1,c1(m)|1
mc1(m)

.

Therefore,

|L1(·, f1,S,c1(m)(·), λ1)− L1(·, f1,Ŝ,c1(m)(·), λ1)|

≤K|L1,c1(m)|1 ||f1,S,c1(m) − f1,Ŝ,c1(m)||

=
2K2|L1,c1(m)|21

mc1(m)
.

Since the hyper-planes f1 and f2 are constructed in a symmetric way, the results for
f1 and f2 could be derived in a similar way. Thus,

|L2(·, f2,S,c2(m)(·), λ2)− L2(·, f2,Ŝ,c2(m)(·), λ2)| ≤
2K2|L2,c2(m)|21

mc2(m)
.

The above two inequalities satisfy the definition of stability for the optimal problem
Eq. (3) (in the main paper). The lemma has been proven.
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1.10 Proof of Lemma 5

Proof The classifiers f1 and f2 are both stable [7] according to the definition of
stability for the classifier f . It follows from Lemma 3.21 in [7] that

Pr{S : |R1,S(f1,S,c1)−R1,P (f1,S,c1)| > ε+ β1(m)}

≤ 2 exp
{
− ε2m

2(mβ1(m) + ‖L1,c1(m)‖∞)2

}
,

P r{S : |R2,S(f2,S,c2)−R2,P (f2,S,c2)| > ε+ β2(m)}

≤ 2 exp
{
− ε2m

2(mβ2(m) + ‖L2,c2(m)‖∞)2

}
.

The lemma has been proven.

1.11 Proof of Theorem 6

Proof By virtue of the definitions of δc1 and L1,c1 , there exist constants a and b such
that

||L1,c1(m)||∞ ≤ aδc1(m)|L1,c1(m)|1, δc1(m) ≤
b√
c1(m)

,

for any m ≥ 1 and for the sequence (c1(m)). Thus, with m tending to infinity, we
have

||L1,c1(m)||2∞√
m

≤
a2δ2

c1(m)|L1,c1(m)|21√
m

≤
a2b2|L1,c1(m)|21√

mc1(m)
−→ 0.

β1(m) is defined as in Lemma 5. It derives from Lemmas 4 and 5 that

√
mβ1(m) =

√
m2K2|L1,c1(m)|21

mc1(m)
=

2K2|L1,c1(m)|21√
mc1(m)

−→ 0, m −→∞,

since K is a bounded constant. Therefore,

exp{− ε2m

2(mβ1(m) + ‖L1,c1(m)‖∞)2
} −→ 0, m −→∞.

Fix δ1 = ε+ β1(m), the proof of Theorem 4 yields that

R1,P (f1,S,c1(m)) ≤ R1,P + δ1.

Analogously, we have the result for f2,S,c2(m) that

R2,P (f2,S,c2(m)) ≤ R2,P + δ2

where c2(m) is defined the same as c1(m) and δ2 = ε + β2(m). It follows from
Theorem 3 that RP (fS) ≤ RP + ε, where fS(·) = |f2,S,c2(m)(·)| − |f1,S,c1(m)(·)|,
implying the optimal problem Eq. (3) (in the main paper) is universally consistent.
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